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Abstract

PHI is an experimental distributed deductive database system developed in the Fifth Generation Computer
Systems Project in Japan. It is implemented on Personal Sequential Inference Machines (PSI) also developed
in the project. The design of PIT started in 1985 and it has been operational since 1988.

A deductive database consists of intensional and extensional databases. PHI is composed of two layers
which handle intensional and cxtensional databases respectively. Query languape of PHI is Datalog and its
query processing is performed in a bottom-up manner. Query optimization of PHI is the combination of
query transformation and techniques developed for relational databases.

This paper discusses the design, implementation and evaluation of the deductive database part of PHI

1 Introduction

In the past decade, the deductive database has become one of the most attractive technologies in the database
field as a key to realize new systems such as knowledge information processing systems or nexi generation
database systems. Tradilional databases such as relational databases are not powerful cnough to realize these
new systems, The deductive database is attractive because of its declarativeness and theoretical concreteness.

The Fifth Generation Computer Systems (FGCS) project in Japan aims to develop a prototype system for
a knowledge information processing system. The aim of the knowledge basc rescarch in the project is to
realize a subsystem in the logic programming paradigm lo manage large shared knowledge bases.
Coordination of various knowledge hases and processing knowledge bases in a distributed environment is
important for future information processing systems. One of the most fundamental issues in the research is
the knowledge base model as a framework. We have selected a deductive database as a fundamental
platform to study knowledge bases in distributed environment.

PHI is an experimental distributed deductive database system developed in the FGCS project, and is
implemented on Personal Sequential Inference Machines (PSI) also developed in the project. The design of
PHI started in 1985 and it has been operational  since 1988, The overall view of PHI and the knowledge
base research in the FGCS project can be found in [WM+88 IM+88]. In this paper, we concentrate on the
deductive database part of PHL

The deductive database is & natural extension of the relational database, Although non-recursive gueries
can be processed by algebraic operations in relational database systems, recursive queries cannot be
processed by RDBs. Thus the central issues of query processing in PHI are how to deal with recursions and
hew ta use algebraic operations of relational database systems to improve the system performance.

In this paper, we discuss the overview of the system in section 2, the query interface in section 3, and the
query processing strategies in section 4, Finally we discuss the results of evaluation of PHIL

2 Overview of the System

A deductive database is a set of clauses, which consists of an intensional database (TDB) containing rulcs and
an extensional database (EDB) containing facts. We assume that the EDB is much larger than the IDB.
There is a well known one-to-one correspondence between a fact of a logic program and a tuple of a

* An esrher version af tis paper appears in the proceedings of IEEE Pacific Rin Conderence on Communications, Compucrs and Signal Processing,
1991,



relation. Set oriented relational database (RDB) operations are very powerful for dealing with a large
amouni of data. Thus RDB operations must be used to realize the deductive inference in order Lo improve
the overall performance.
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Figure 1 Logical configuration of PHI,

The query processing of PHI consists of two phases. The first is the processing of the 1DB related to the
guery. This phase includes the extraction of related rules from the 1DB and the compilation of the goal and
rules to extended-relational algebra which includes ardinary relational operations and others handling
iterative computation. The second phase 15 the execution of the produced operations on the EDB to compute
the answer, The detail of query processing strategy performed in PHI is presented in section 4.

The principal part of PHI consists of two layers which are designed 10 process the above two phases.,
Figure 1 shows the logical configuration of PHI. The upper laver is the Knowledge Management Layer
(KML} which performs the first phase of query processing, The lower is the Database Management Layer
(DBML} which performs the second phase and is essentially a relarional database management system with
some exlensions for the iteralive processing of RDBE operations.

3 Query Language and Interface

The query language of PHI is Prolog without function symbols, that is Datalog with negation. A gquery
consists of 2 goal and rules. The answer set of a query o a deductive database is defined as follows. Let
goal’ be a ground instance of geal. Then, the answer set of the query is the set
G={goal [{DEEDB R =goal’]! where £ is a set of rules and goal is the goal atom in the query, and =
means logical consequence.

PHI computes the set of answers which satisfies the query condition in the same way as relational datahase
systems. It can process ad hoc gueries through its guery interface (see Figure 1}. And it also has an
embedded interface in Extended Scif-containcd Prolog (ESPI[C84], which is the systcm programming
language of PSI based on object-onented and logic paradigms. Because both Datalog and ESP use Hom
clauses, programmers do not have to wse complerely different languages. PHI retums an answer for the
query by unifying contents in the answer set to variables in the goal. Altemative answers will be retumed if
backtracks accur in ESP.

We show below an example of a query embedded in ESP. The interface querying PHI from ESP is
rcalized by a method refure which is & message passed to PHI in the object-oriented paradigm,

srefurel PHI commonAnceéstor] CommAne myName yourName ),
feommonAncestorf CANamel Name2 ) -ancestoriCANamel ) ancestorfCA Nameld 1)

where the first argument is the object corresponding to PHI itself, the second is a goal atom and the third is
a rule which defines common ancestors given names of two persons (varables begin with a capital letier
and constants begin with a small letter). In this example it is assumed that the rules and facts to compute
ancestors are in the deductive database.

At first, when PHI reccives the message, it computes the answer sel, virtual relation commonAncestor,

and it returns an answer such as CommAnc=hanako. Then if a backtrack occurs in the application program,
PHT returns the next answer CommAnc= ume, and 50 on.

L=



4 Query Processing in PHI

As mentioned above, the main issuc of guery processing in PHI is how (o process recursions. There are two
major approaches (o recursive query processing: the top-down approach hased on procedural semantics and
the bottom-up approach based on fixpoint semantics| BRER,LET].

The hottom-up approach computes the least fixpoint of the database corresponding to a query by iteration
of RDB operations. This method is well suited to applying the techniques developed for retational databases.
However its overall performance may not be good because of two problems:

{1) The iterative procedure which computes the least fixpoint involves a lot of redundant compurations,
which yield a lot of duplications.

(2) It computes unnecessary results hecause it computes all elements of the least fixpoint, that 15 least
Herbrand model, of the dabase.

Several methods have been proposed to improve the performance of the bottom-up methods. There are
two main ways  for improving the performance: making the execution algorithm more efficient, and
rewriting of rules before execution. Methods such as the semi-naive and differential methods| BRE7, B85|
contribute 1o decreasing the duplications. Rule rewriting methods such as magic sets[BMSUS6], counting
and reverse counting] BMSURG!, Alexander|RLKS6), Kifer-Lozinskii|KLB6], generalized magic
sets| BeRET]. generalized counting] BeR&T, SZ86], and magic counting[S787] contribute to making the model
smaller.

Query processing of PHI is performed by the bottom-up method to utilize techniques developed for
RDBs. Fixpoint computation 15 performed by the semi-naive method for linear queries and the naive
method for non-linear queries. lts query optimization is realized by query transformation in KML., by
ordering of operations in KML and DBML, and by traditional RDB technigues in DBML. Query
transformation is a rule rewriting method which iransforms queries to other forms that have smaller least
fixpoints while preserving the equivalence of answers. Although exceution order of RDB operations such as
joins is usually decided in DBML, KML can specily part of the execution order so as to realize optimization
similar 1o the magic sets,

Overall query processing of PHI is performed as follows:

(1} The part of the 1DB related to 4 query is merged into rules in the query.

(2) The query is transformed for optimization.

{3) The transformed guery is compiled 1o exiened-relational algebraic commands.

(4) The resulting commands are executed (0 compute the least fixpeint of the query and the EDB.

The least fixpoint is obtained by ilerative computation of algebraic commands. This computation grows
virtual relations corresponding to recursive atoms and it terminates when all virtual relations do not
change. In order to realize that iterative computation, we augmented KBML to have additional commands
such as iteration and set comparison.

4.1 Query Transformation

The role of the query transformation is to obtain a query form that can be executed by subsequent execution
algorithms more efficiently than the original form.

Three types of query transformanions called Horn Clause Transformations (HCT)[MHYT89] are used 1o
transform a query (a goal and rules) to an equivalent form in PHI. A wransformed set of clauses can be
evaluated more efficiently, because it has a smaller least fixed point than the original. The First
transformation, HCT by partial evaluation, simplifies queries by eliminating some predicate symbols using
resolution. The second, HCT by substitution, is a generalization of the distribution of selections] AUT9]. The
third, HCT by restrictor] MYHIZ2], is similar to the magic sets method.

Since the output of these transformations are sets of clauses, these transformations can be used together
and can be combined with any other methods including the top-down method.

In the following sections, goals are denoted like “7-goal ™, variables begin with a capital letter and
constants begin with a small letter,



4.2 HCT/P (HCT by Partial Evaluation)

This transformation is a procedure that uses resolution to obtain a more efficient query. This procedure is
regarded as a generalization of a procedure that substitutes the relational algebra expression of a derived
relation for the relation symbol. It is called HCT/P because it is based on the partial evaluation technigue
developed for program transformation. For example, a query

p(X.Y)

piX. Y - pliX.Y)
pX.Y) - giX.2hp2(2.¥).
gix.¥) - p(X.Y).

i5 transformed to an equivalent query

rapi X Y}
piX Yy - plyX,Y).
pixY) - piXEZlLp2iE£. Y}

[n this example the third rule defining a virtual relation g is eliminated.

4.3 HCT/S (HCT by Substitution)

This transformation is a procedure that substitutes ground terms for variables of a clause to obtain an
equivalent query. It can be regarded as a gencralization of procedures that move the constant in transitive
closure operation. Next is an example of HCT/S.

PeeommenAncestor{A dard fird ),

commaondncestorfA RO - ancestoriA B ancesiorfAC)
ancestor{A B} o parenti AR ).

ancestor{AB) - parentfAC ) ancestor(C B,

15 transformed to

FerommondAncestor(A lard jird).

commeondncestor{ A rard jird) -ancestor(A tard hancestor{A jird).
ancestor{A pard} - parent(A tard).

ancestor(A tari) - paremtfAClancestor(C tard).

ancestor(A jird) - parent{A,jird).

ancestor{A jird) - parentiA.Clancestor(C jird),

HCTYS is always possible for non-recursive queries, but it may not be possible for certain recursive
queries. For example, let us supposc the goal of above cxampie is “-commonAncestor (hanako rard, jird). At
first the procedure tries (0 substilute the constant Aanako for the first argument of commondncestor rule
and it succeeds. Mext it tries to substitute the constant for the first arguments of ancestor rules but it fails
because this substitution does not preserve the equivalence of clauses. Thus the constant hanake is not
substituted in ancestor rules. In other words a selection to the first argument of the virtual relation
commonAncestor is not distributed to the virwal relation ancestor. A more peneral procedure is discussed
in [M90].

4.4 HCT/R (HCT by Restrictor)

HCT/S fails to optimize cenain gueries as mentioned in previous section. HCT/R is based on subsumption
and can optimize this kind of query, HCT/S represents selections by constants (or identical variables in
different arguments} in atoms. There is another way to represent selections, that is selections represented by



separate predicates. We introduce new predicates called restrictors that correspond to selections. This
transformation corresponds to a generalization of magic sets and its variations| MYHIE9],
Suppose we have two clauses in the databasc:

where arguments of atoms are omitted in behalf of explanation.

Since the first clause subsumes the second, the latter is a logical consequence of the former. Hence, a
transformation that replaces the first clause with the sccond can be formulated. HCT/R is a procedure that,
given a sel ol predicates 5. introduces a new restrictor predicate r* for each predicate r in §. We show an

example of HCT/R helow.
Suppose we have 2 same generalion query:

FespfeX).
spiX.X).
sp{X.Y) o« piX A)piY BisgiBA)

Although HCT/S can not distribute the constant ¢ in the goal w the same generation rules (sg), HCT/R can
transform this query o

Pespie X

g"ic).

sg P B) - sg"fBYipiY B

sg"P{A) - g™ XL pX A

selX.X) - se*Bi X

selX.X) - sp™MX)

sg(X.Y) o~ sg™BIX) p(X Abp(Y Blsg(BA)
selX Yy o s2™0Y ) piX Abp(Y.Bhsg(B AL

Atoms with a superscripted asterisk are restrictors which play the role of selections to succeeding atoms
(relations). bifs in restrictors are called adomments and are introduced to eliminate variables which do not
contribute to making the model smaller. A fact as a restrictor is called an initial restrictor clause (sg*c)
in the above example), and can be regarded as a seed of selections. In the above example, sg*% and sg™/
simulate selections on the first and second arguments of relation p, and they grow from the seed sg*8fc).

HCT/R works correctly for any type of queries even if it is mutually recursive. For example, suppose the

query is

-pleX).

prX Y - aflX ¥l

plXY) - alXAlLplAB)giB.Y)
gix.¥) = biX.Y}.

giX.¥Y) = p(X A)ciAB)gi8.¥)

HCT/R transforms this query to

Lple X )

prie X).

p(X. ¥} - p*BfX)alX.Y).

piX. ¥} - p" X aiX Al piA BlLgB.Y)
p*BfiA) - p*BfiX).alX.A)

g bi(B) - p™HiX).aiX A)piAB).

giX.¥) - q*Bf(X )}, b{X ¥).

g(X.¥Y) - g*"PNX)p(X.Alc(AB).g(BY)
prEiX) - gt BirX ).

g Bi(B) - g™ X p(X ALciAB).



In this example, two restrictors p*% and ¢™# are introduced.

Ordinarily, initial restrictor clauses cannot be compiled to algebraic operations. So we add a DEML
command generating an intermediate relation corresponding to an initial clause, which can be embedded in
the sequence of alpehraic commands.

The transformed query which includes restrictors is compiled to the sequence of algebraic and other
additional commands of DBEML., and then the sequence is optimized by DBML in the same way as in RDBs,
If restrictors are treated as ordinary relations in optimization in DBML, the resulting order of operations
might not be aptimal. Thus we designed PHI so that KML could partially control the ordering of operations
which include a restrictor as an operand.

5 Evaluation

Performance of query processing in PHI has been evaluated for a number of queries. In this section, we
present the resulis of a comparative performance evaluation of the query processing for three different
versions of ancestor queries.

Descendant:
Peancestoric, Y,
ancestor{X.Y) - parentiX.Y).
ancestor(X ¥ - pavent|X 7] ancestor(Z. Y.

Linear ancestor:
l-anceseor(X.cl
ancestor{ X ¥) - parenti X, ¥ ).
ancestar(X ¥ - parentiX Ziancestor{ZY).

Mon-linear ancestor:
P-ancestoriX .ol
ancestor(X.Y) - paremt(X.¥Y).
ancestor(X.Y) - ancestor( X, Z)ancestariZ.Y).

We assume the rules which define pareni:

pareat(X Y} - fatheriX Y}
pareniX.Y) - mother{X.Y).

and facts fatker and moder are in the deductive database,

Tuples in father and mather relations form a cylinder structure similar to the evaluation in |[BRER). We
vary the total size of these relations from 27 to 213 tuples, The constant ¢ in the goal is chosen so that it
corresponds o the node al the middle height of the structure. Thus the size of the answer depends on height
of the structure. We assume the total size of the relations to be proportional to 2height,

In Figure 2, for each query and query transformation, we plot the response time against the size of the
data. The total response time for 4 query includes processing time for query transformations, compilation
to relational operations and fixpoint computation. In the following, we refer to each curve by an
abbrevianion such as nl-P5§ defined in Figure 2.

It can bec scen that the botlom-up stralegy withoul optimization is very incfficient (see the top two
curves). Neither HCT/P, §, SP (composition of § and P) for descendant and non-linear ancestor queries nor
HCT/P for linear ancestor query imprave the performance, since the constant in a goal is not used in these
cases. The curve 1-5 shows that HCT/S improve the performance of the linear ancestor query. However its
improvement is insufficient, because the constant ¢ is not entirely distributed to all facts. This insufficiency
is resolved by applying HCT/P 1o the query before HCTYS (see 1-PS).

Another observation is that HCT/R gains certain performance improvements for all queries (see |-R, d-R,
nl-R). Since HCT/R introduces new virtwal relations, it has a certain overhead. However this overhead can
be reduced if HCT/R is combined
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Figure 2 Query processing performance,

with HCT/P (sce I-PR. d-PR, nl-PR}. The difference between curves |-PR and 1-P5 corresponds 1o the
overhead based on introducing a restrictor by HCT/R and it is very small.

The resulis of measurements arc similar o those of analytical methods[BREE] except for ni-PR. Although
the performance of d-PR is analytically better than nl-PR, the result is the opposite. In this case, nl-PR
shows better performance because it converges more rapidly than d-PR and the number of ileration is more
dominant than the size of the model. From this, we can see that set oriented operations of RDB operate
efficiently in the bottom-up method.

6 Conclusions

In thiz paper, we discussed the design, implementation and evaluation of the deductive database part of PHI
In PHI, relational database technologies are utilized o realize a deductive database system, and its query
optimization is performed by query transformations and techniques developed for RDBs. As the result of

the performance evaluation, our approach w deductive databases arrives al two points:

{1} RDB technologies are powerful for realizing deductive databases,
(2} HCTs contributc 10 the improvement of system performance.

We are now designing and implementing a new experimental object-oriented deductive database system
which can handle compaosite objects| MHY Q0]
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