ICOT Technical Report: TR-715

TR-715
Distributed Implementation of KL1
on the Mulu-PSI

by
K. Nakajima (Mitsubishi)

November, 199]

& 1991, ICOT

Mita Kokusa Bldg. 21F {03)3456-3191 —5

1CO T 4-28 Mita 1-Chome Telex ICOT J32064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Distributed Implementation of KL1
on the Multi-PSI”*

Katsuto Nakajima

Abstract

KL1, a committed choice language based on Flat GHC, was implemented on a dis-
tributed memory multi-processor, the Multi-PS1, which has up to 64 processing ele-
ments (PEs) connected by a message passing network.

The key issues for a distributed implementation of KLI are: (1) how to reduce the
amount of inter-PE communication, (2) how to achieve efficient intra-PE and inter-PE
garbage collection, and (3) how to avoid making redundant copies of data objects over
many processors.

The well-defined semantics of KL1 allows ineremental intra-PE garbage collection
by the Multiple Reference Bit (MRB) technique and incremental inter-PE garbage
collection by the Weighted Export Counting (WEC) technique. A global structure
management mechanism is also introduced to avoid meking duplicate copies of large
data objects such a9 program codes. The commuiniéation required for inter-PE process
control is minimized by the Weighted Throw Counting (WTC) scheme.

The implementation has been completed and the performance of inter-PE commu-
nication was evaluated. Although the cost for inter-PE message handling is high, the
effective overhead in the benchmark programs remains within 20% on 64 PEs.

1. Intreduction

KL1 is a stream AND-parallel logic programming language based on Flat GHC [Ueda86a]
[Chik88a). It was designed in ICOT {I]ada.ﬂll]a.] as an interface to fill the gap between
the knowledge information prnomung software and the hardware of the parallel infer-
ence machine(PIM) [Goto88a). It is nol only a system dncnpl.lun language but also
an application-user language for the PIM,

*This chapier is an extended vemion of the paper titled “Distobuted Implementation of KL1 on

the Multi-P5I/V2” in Proceedings of International Conference on Logic Programming, 1985,

Section 7 was derived from the paper titled "Evaluation of [nter-proceasor Communication in the KL1
Implementation on the Multi-PSI™ by K. Nakajirs and N. [chiyoshi in Frecesdings of International
Conference on Parallel Proceasing Vol (Univeristy Park: The Pennaylvania State University Pres,
1580}, pp 613=4. Copyright 1580 by The Pennaylvarua State University. Reproduced by permisson
of the publisher,

The Multi-PSI system [Taki88a, Nakj&0a] was developed as a prototype machine
for the PIM, having the purpose of serving as a testbed for implementing concurrent
language KL1 on a scalable multiprocessor architecture. It is a distributed memory
multiprocessor, whose processing elements (PEs) are the CPUs of the personal sequen-
tial inference (PSI) machine [Naks87a]. Up to i4 PEs are connected by an § x 8 mesh
petwork with wormhole routing. The two-dimensional mesh network has a dense and
simple implementation, and is scalable in that network node degree stays a constant
(4) as the number of nodes increases. The PEs are mieroprogrammable and have an
architecture suilahle for execnting logic programming languages efficiently.

A distributed KL1 implementation was developed on the machine. It is written in
microcode for performance. The design rationale was to obtain a high overall perfor-
mance, taking account of garbage collection overhead, and to decentralize management
information for scalability.

Some performance measurements have been done so far especially on the inter-PE
operations in the system, both in absolute terms (cost of primitive operations) and in
relative terms (rate of communication overhead in non-trivial benchmark programs),
which reveal the bottleneeks in the performance of inter-PE operations.

2. GHC and KL1

2.1 GHC and Flat GHC

GHC (Guarded Horn Clanses) is called a committed choice AND-paralle] languages.
A GHC program is made up of a collection of guarded horn clauses, whose form is:

‘E!r.'— 11,...,G,,3|;B;|,,...,B,,.‘I:m}ﬂ, n }ﬂ]

guard body

where H is called the head, G; the guard goal, and they are called the guard part. B;
i5 the fedy goal and the vertical bar { | } is called the commiiment operator.

The guard part can be considered as test. If there are aliernative clauses, their
guard parts may be tested concurrently (OR-parallel). However, only one clause can
eommit even if more than one clauses can meet the test condition. The execution of
the rest of the clanses are canceled. The caller goal is reduced to the body goals of the
committed clause. These body goals are executed concurrently (AND-parallel). Body
goals may be a unification goal of the form “termy = termgy,” which may perform a
binding to a variable. Body goals are, otherwise, a user-defined goal which represents
the rest of the work. They communicate each other through their common variables
which often represent a stream in the form of D-list.

In the guard part, binding to the caller variable is not allowed and the attempt of
the binding causes a clanse suspension. If there is no clause to commit and at least one
clause is suspended, the predicate call itself suspends. It serves as a synchronization
mechanism between GHC goals.

In Flat GHC, only predefined predicates are allowed an guard goals. This restriction
does not decrease the expressive power of the language as the guard goale are a kind of
auxiliary conditions of the clause[Usdad0a], while it makes the implementation much
easjer and more efficient.

2.2 KlLi

GHC or Flat GHC 18 a clearly defined concurrent language. KL1 was born from them
as a practical and efficient language for the parallel inference machine. Therefore, it
is called a parallel language. KL1 is provided with the following meta-programming
functions for describing not only application programs but also cperating systems.

(1) Shden mechanism: A shéen is a meta-logical unit for controlling and monitoring

KLl goals. It corresponds to a “task™ or a “process”™ in ordinary operating
systems. A shoen consists of all the goals which descended from the given initial
goal of the shéen,
Shéen has & pair of input and output streams for interfacing with the outside.
The input stream named the control siream 8 wed to start, stop or abort the
execution of the shoen from outside. Special events that occurred inside a shoen,
such as termination of all goals, a failure or an exception, are reported on the
outpui sireamn named the report siream. Shoen can be nested to form a tres-like
structure (shden tree} whose leaves are KL1 goals,

{2) Resource management: The upper limit of the resource that can be consumed
by a shoen can be specified by a control message. This mechanism prevents
programs with bugs to go on running wastefully such as in an erroneous infinite
loop. Resource shortage is notified on the report stream, and additional amount of
resource can be selectively given. Currently, resource is measured by the number
of reductions.

(3) Priority pragma (..., H@priority{ Prio),...) : Scheduling by using prierity con-
tributes to efficient problem solving. The shoen has a priority range and each
goal inside it can have an individual priority within this range. The priority is
specified by & priority pragma with a relative value in the allowed range.

(4) Throw goal pragma (..., B@processor(PE),...) : A throw goal pragma in the
source program denotes load distribution. It also contributes to efficient execution
on a mulli-processor machine.

‘L'he priority and processor pragmas are merely guidelines for language implemen-
tatious and may ool stricily be obeyed. The control such as an abortion in a shden
may not be immediately performed. As these functions do not affect the correcioess
of the programs and are expected only for the efficiency, distributed implementation

becomes much easter.

3. Architecture of the Multi-PSI

3.1 TIrocessing Elements

The processing element {PE) of the Multi-PSI is the CPU of the sequential inference
machine, the PSL-II [Naks87a]. It is a 40-bit (8-bit for tag, 32-bit for data) CISC proces-
wor controlled by the horizontal miero-instruction. It enables a flexibie implementation
suited for incrementally enhancing the performance and adding various lunctions. The
cycle time is 20K ns. It has up to 16 Mwords of local memory and a 4-Kword direct-map

cache memory.

Figure 1: Processor Inter-connections of the Multi-PSI System

3.2 Network Controller

Each PE is paired with a specially designed network controller to support message pass-
ing communication between PEs. The network controller has five pairs of input /output
channels connected to the four adjacent network nodes and to the PE of the node (Fig-
ure 1), Each channel consists of 11 bits, 9 bits for data, one for a parity and one for a
busy acknowledge signal of the opposite direction.

The cycle time is 200 ns and the bandwidth of each channel is 5 Mbytes /s, Each
output channel has a 48-byte buffer { Cufput Buffer) to retain messagea when the des-
tination node is busy. Each input and output channel for the PE of the node has a
4Kbyte buffer { Write Buffer and fead Buffer) to reduce disturbance of processing in
the PE. As soon as a complete message (from a message header to a tail) is written
by the PE in the Write Buffer, it is shipped out by the controller unless the transmmit-
ting channel is busy. When a complete message is taken in the Read Buffer by the
controller, the PE is informed by an interrupt signal.

The eontroller has the wormhole routing capability. It can ronte messages according
to the PE number in the message header (Figure 2). A software-defined table called the
poth {able is looked up to determine transmission direction. A fixed routing strategy
called prioritized coordinate ordering is adopted. It means to transmit & message along
the z-coordinale until the distance in the coordinate becomes zero, then to transmit
a.]ﬂug the y-coondinate. As lung as mesaages are taken into the destination PE, net-
work deadlocks never arise because there can be no cyclic chain of messages in transit
blocking one ancther.

10 Destination PE Number Message Header

1] Hoasage Order
0 .
. variable length

{depending on Merzage Order]

1)1 {Source PE Number) Message Tail

Omnly D parl is examined by the Network Conteoller

Figure 2: Message Packet Format

3.3 Messages Handling

The read /write of Read Buffer and Write Buffer are done by microcode. A low level
microcoded routine in the PE is responsible for handling messages to and from the
network controller. It performs composition and decomposition of message packets
such as handling message header and tail (Figure 2), and arranging a 32-bit data in
the PE to/from four byte serial data in the Write/Read Buffer.

The micro routine is invoked by an interrupt when the message tail s queved in the
Read Buffer. Tt moves the complete message to a large memory area, called the Read
Packet Buffer. The aim is to prevent network deadlock by propagating the processing
delay to other nodes along the network path, The messages in the Head Packet Buffer
are decoded at a slit of reductions. On nnnding i IMEssage, if the routine cannot find
enough room to store the whole message in the Write Buffer, it will wait until more
room becomes available.

4. Intra-PE Processing

4.1 Execution Model of KL1 goals

KLI programs are compiled into the sequence of WAM [Warr&3a]-like abstract machine
instructions named KL1-B [Kimu&7a]. It s a register-based instruction set and serves
as an efficient interface between the language and machine architecture.

Coptinuous reduction

Current goal

Suspension
Pop a goal Push a goal

——

Resumption
Suspended goals Prioritised goal stack

Figure 3: (Goal State Transition

Goals are categorized as: (1) ready goals which are waiting for execution, (2) current
goal which is being executed, or (1) suspended goals which are hooked on variables to
be instantiated (Figure 3).

In this implementation, each PE has its own goal stack. Scheduling is performed
on each PE individually. A reduction cycle at each PE is as follows. When a current
goal calls a predicate, the guard parls of the clauses for the predicate are tested. In
apite of the langnage allowing to evaluate alternative clavses simultaneously, guard
unification 15 performed one by one for efficiency reason. Non busy-wait suspension 18
EI'.I!lP-IDJ"CCl. That ia, if the p:cc[ica.l.: call au:ﬂpcmhl t.|:u: gua.l ﬂ hoolked on f.l:Lr: va.riablc(a}
that caused the suspension. If no clause commits and there s no sauspended clause,
a failure is reported on the report stream of the shden with the goal information. In
either case, another goal is popped from the goal slack to be evaluated. If one of the
clauses commits, all the user-defined hody goals, except for the unification goals and
the leftmost user goal in the clause, are pushed to the goal stacks according to the
priority pragmas attached to the goals, Unification goals are executed immediately.
The leftmost user goal is chosen as the next one to be evaluated unless the goal stack
of the higher priority has a goal. When a clause without body goals commits, another
goal is popped from the goal stack.

Every reduction cycle, request for (non-incremental) GC and message arrivals from
the network are checked, and processed if necessary. This timing, ealled the slif cheek,
is most suitable for ewitching the process because the PE is free from goal contexts.

4.2 KL1-B Execution

The KL1-B instructions, including approximately one hundred instructions for prede-
fined predicates, are directly interpreted by the microcode to attsin high execution
apeed.

The microcode of the PE can perform various functions in parallel, such as tag
insertion, two-way or multi-way branching on a tag, specially prepared counter and
flag operation, ALU operation and memory access operation. The arguments for the

(a) Single-refersnced object (L] Multi-referenced ohject
ptrQ —— prril
ptr@ :

Figure 4: Heferences in the MRB Scheme

unifieation are fetched on the registers every reduction eyecle. Control information,
such as the priority and the shien resource, is cached on the registers as long as the
execution context remains unchanged.

4.3 Local Goal Scheduling

If the goal priority should be kept strictly on a mulliprocessor, only one prioritized
goal stack must be managed in the system. However, the access contention on such a
global resource leads to serious performance degradation.

As KL1 prionity pragme is a guideline for efficiency, each PE may have each pri-
oritized goal stack, at the sacrifice of scheduling strictness. Even with such a local
scheduling, it is known to be efficient enough to control the execution in most cases.
lowever, the maldistribution of high priority goals over PEs is possible and problem-
atic. A dynamic load balancing by software is necessary in such a cass.

4.4 Memory Management using MRB

As goals may not be executed in a last-in-first-cut manner, the stack mechanism used
in most Prolog implementations is not suitable for a KL1 implementation. There-
fore, heap-based memory management must be used for flexible memory use, although
memory reclamation is generally inefficient with this scheme. The time spent in GC
may seriously affect the system performance, Thus, efficient GC is vital in a KL1
implementation.

Goal eontexts are maintained in a goal record, which contains the predicate code ad-
dress, argurnents, priority and etc. Goal record can be reclaimed at popping from goal
stack into a free goal record list. However, variable cells or record area for structured
data are difficult to reclaim because they may be shared by two or more pointers. In-
cremental (GO by reference counting is desirable because of its access locality and high
hit rate of cache memory. However, in reference counting, each word cell must have a
reference counter field for the whole memory space. In addition, the cost of updating
the reference counter is high, becanse data objects must always be accessed,

Several methods were proposed to reduce these overheads relying on the fact that
data ohjeets are not used so many Ltunes, and most are used only once [Deut78a]. The
Multiple Reference Bit (MRB) method was propesed [Chik87a] as an incremental GO
method for concurrent logic programming languages.

The MEB method maintains one-bit information in pointers indicating whether
the pointed data object has multiple references to it or not. This multiple reference
information makes it possible to reclaim storage areas that are no longer used.

Figure 4 shows the daia representation in the MREB scheme. A single-referenced
object (a) and a multi-referenced object (b) can be distinguished by the MRB flag on
the pointers, off-MRB by and on-MRE by @ .

=1

The MEB method haa the following two advantages;

s By keeping MRB information in the pointers rather than in the pointed objects,
no extra memory access is required for reference information maintenance.

& On updating an off- MEE array, destructive assignment can be performed.

As vanables in logic languages like KL1 can not be overwritten, updated array
ghould not be identical to its original one. Each update causes a copy of the whole
array with one element modified. However, in the case of a single-referenced array, the
original array can be reused as a new one by modifying the element destructively.

The MEB information is alse used and maintained through the unification. When
& unification consumes a reference path to a single-referenced data ohject, the storage
arca can be reclaimed after the unification. It is known that even with the one-bit
counter, more than 60% of the garbage cells are colleeted in various benchmark pro-
grams. Collected cells are linked in the free lists to be reused. Several individual free
lists for records of various sizes are prepared for them!.

When records in a free list are exhausted, & pre-determined number of new records
are created on the heap top and linked to the free list. In the current implementation,
fragmentation among the free Lists is resolved only by local (non-incremental) GO,
becanse, free list handling operation is too frequent to employ fragment reconstruction
techniques such as the buddy system [Know65a).

5. Inter-PE Processing

5.1 Implementation Issues for KL1

In this KL1 implementation the followings were the most important issues because il
was aimed at a scalable system on a distributed memory multiprocessor.

Reducing Message Communication: Message passing communication is more ex-
pensive than communication on a shared memory. The communication delay is
also large. Reducing the amount of inter-PE communication and maintaining
quick responses are major subjects in the implementation.

Fewer and Local Garbage Collection: As stated in 4.4, GC is the key point in
the implementation for concurrent languages like KL1. On a distributed mem-
oty multiprocessor, the degradation by GC should be considered more seriously,
because naive inter-PE GC might take time proportional to the length of the
reference chains over many processcrs.

Efficient Data Management: KL! has a property where data objects that have
been instantiated onee can be copied, while keeping the program logic. To allow
loeal aceess, data shared by PEs should be copied. However, uncontrolled copying
leads to unnecessary data transfer.

'In the current implementation, the sizes are from 1 to 8, 16, 32, 64, 128 and 256. A record over
256 words is allocated on the heap top.

52 Goal Distribution and Distributed Unification by Inter-PE Messages

5.2.1 Goal Distribution

A KL1 goal specified with a throw goal pragma (B&processor{PE)) is distributed
to another PE, The goal information in the goal record such as predicate code, goal
arguments and execution priority are encoded into Ythrow_geal message. If the goal
argument is an atomic data, it is encoded directly. If it is a structured data such as
vector or string, or uninstantiated vartable, it s encoded as an erlernal poinfer. The
predicate code address is encoded to a pair of an external pointer representing code
module and an offset representing the code position in the module. The code module
handling will be explained in 5.4.8.

At the destination PE, the message is decoded, and a goal record is composed and
is put in the goal stack according to its priority,

5.2.2 Guard Unification

As binding to the caller variable is not allowed in the guard part, guard unification
with an external pointer is suspended until its value is known.

If there is no other clause to commit, a firead message is injected to get the value of
the external pointer to the PE which has the data. A %read message has two arguments:
the external pointer to read and a return address where to be replied to. The later
is also an external pointer pointing to the cell which substitutes the former external
poioter and will be instantiated by the value returned by Yansver_value message. The
puspended goal s hooked on the cell until it is instantiated.

At the PE where ¥read is received, an {answer_walue message is immediately
replied for the ¥read message if the contents of the externally referenced data is an
instantiated value. If the value is an structured data, the surface level (that s, the
elements of the array or list) are encoded. I the elements are structured data, they are
cocoded as external pointers. If the exported data is still an uninstantiated (unbound)
variable, the reply is suspended by hooking the received ¥read message an the variable.
The arguments of }anawer_value arc the destination and the value to reply.

5.2.3 Body Unification

In body unification between an unbound wariable and another, the variable can be
instantiated with the other.

A body unification with an external pointer and an instantiated data is encoded
into %unity message, which corresponds to a write operation in this case. The actual
operation is shifted to the PE (exporting PE) which has the data cell of the external
pointer.

A body unification between an external pointer and a variable falls in two cases:
(1) binding the variable with the external pointer or (2) injecting ¥unify message to
shift the operation to the exporting PE. One of them is chosen according to the binding
rules to prevent a loop of references over PEs. The binding order is determined with
the two exporting PE numbers.

I a PE attempts to perform a body unification between two external pointers, it
sends a %unify message to shift the work to one of the exporting PEs. The direction
is also determined by the PE numbers.

Table 1 summarizes the typical inter-PE messages.

— O —

Table 1: Typical Inter-PE Messages

! Message Order Note
Athrowgoel(PE,Code,Axgs, Move the go;I o npecma PE
Priority,etc.)
%read(Ext Return} Request to reply the value of an external pointer

Y%answer_value(Val Return) | Hespond to a ¥read message
Yunify(Ext,vVal) Request to unify with an external pointer and an

argument
Ytarminated{Shoen) Report a local shoen termination in a PE
Yreleasa(WEC) Heturn WEC value of an external pointer

A Yterminated message reports a local shden termination in a PE. A Yrelease
message carries GO information. They are explained in the following sections.

5.3 Distributed Goal Control
5.3.1 Creating KL1 Shoen
A shoen is created by the following predefined predicate execute [6:

execute{ Goal, ControlStream, Report Stream, MinPrio, Maz Prio, Mask)

(Foal is the initial goal to execute inside the shoen. MinPrio and Moz Prio specify
the range of the execution priority allowed in the shien. ControlStream is nsed to
start, stop or abort the execution inside from outside the shoen. It is also used to
supply execution resource. From ReporiSiream, the events inside the shoen such as
exceptions, resource shortage and the termination of the execution can be observed.
Shoen itself never fails even if ooe of the goals inside the shoen would fail. The failure
is treated as an exception and reported in the ReportStream. Mask is a bit-map to
specily which exceptions should be reported.

Shoens can he nested. A child shéen is treated as one of the goals in the parent

shoen.

5.3.2 Shoen and Foster Parent

Goals which belongs to the same shéen are distributed over many PEs. Any event at
each goal should be reported to the shoen staying at the PE where it is created. To
reduce the message traffic towards a shSen, a cache technique i employed. When a
goal is moved from the shoen PE (the PE that contains the shen) to another, & foster
pareni is created on the PE to which the goal migrated [Ichi87al. Only one foster
parent is created for the shden on each of the PEs which have goals belonging to the
shaen (Figure 5).

The foster parents have the shoen stalus (running, stopped or aborted), the child
count (the number of child goals created on the PE), and the cached resource informa-
tion of the shéen. Goal termination is checked at the shfen only when one of the foater
parents sends a Y terminated message to report that its child count has reached zero,

1u

Processorg

Processory

"}' : Shaen A

: Foster pareat for shoen A

@@ : (Goals in a shoen

Figure 5: Shoen and Foster Parents

£.3.3 Termination Detection by WTC

The termination detection is one of the difficult problems in parallel computation sys-
terns, especially when messages may be in transit on the network as in the Multi-PSI.
Even if all the foster parents report %terminated, the shéen is not necessarily termi-
nated, because there are goals in transit.

One of the solutions for it is the weighied throw counting {(WTC) scheme [Roku88al,
which s an application of the Weighted Reference Counting (WRC) scheme [Wata87al.
In this scheme, each shden manages the amount of the count called WTC. %throw.
goal and Yunify messages are always attached with some amount of WTC, and the
foster parents accumulate their WTCs when receiving the messages. Foster parents
can split it when they throw child goals or issue unify messages.

In this scheme, the following invariant is kept:

Wi ’C,p.“n = Z {Wc"jo.urpnnnr} + E (wcmun;u}

where WT'C\hoen 15 the WTC value maintained in the shéen which should be re-
turned. WT'Closterparens 18 8 WTC held in each existing foster parent for the shone.
WTC message i 3 WTC attached to a Ythrow goal, Yunify or Nterminated message

in transit in the network.

— 11 =

When all the goals in a foster parent terminate, the amount of WTC kept by the
foster parent is returned to the shden by %terminated. The shoen can determine the
true termination of the child goals when all WTC is returned.

This scheme has the following features.

+ WTC can be split locally {at each foster parent), without sending a message (to
the shoen) to maintain the reference counting.

s No racing cccurs in terms of checking zero count at the shden.

5.4 Inter-PE Data Management
5.4.1 Copying Shared Data

When a goal is thrown to another PE, its arguments are also carmed with it. If the
argument is an atomic value, the value itself s sent with the goal. If it is an unbound
variable, & pointer to the variable is created and carried. For a structure argument,
there are three reasonable choices. One is to create and carry a pointer to the structure
((-level copying). The contents will be read when they are actually to be used in a
unification. The second is to copy all the elements of the structure including sll nested
substructures (infinite-level copying). The third is to copy all the elements at the
surface level {1-level copying).

In & distributed system like the Multi-PST where the cost of the inter-PE reference
is relatively high, it is better to copy data for later accesses in many cases. However, an
infinite-level copying may cause unnecessary duplication because the passive or active
unification for the structure might fail at any level in the destination PE.

Following the policy of on-demand copying, the (-level copying is done for the
arguments of thrown goals and the 1-level copying for those of unifications (for the
Val of Yanswer value and Junify in Table 1). It is one of the design decisions to be
evaluated. At least, if it is known that the element of a structure will be read sooner
or later (such as the next element of a stream), it is better to copy the elements at ane
time as long as they are bound to a value. This is left as a future optimization.

5.4.2 Export and Import Tables

When a IE exhausts its heap memory, garbage must be collected. If the PE does
not know whether a cell is referenced from other PEs or it is garbage, the PE cannot
perform GC for its memory without cooperation by all PEs. Global GC, where all
PEa perform GC at one time by exchanging marking messages and indicating the
movements of object cells [Ali8Ga], can be a solution, hut it is expected to be very time
CONSUMIng.

In a large scale distributed memory multiprocessor, local GC, where the PE per-
forms GC alone for its memory when exhausted, is desirable in terms of the system
performance. It is possible if the object celis referenced from outside are represented
by a kind of global ID for the external PEs. The garbage collecting FE needs only
maintain the trapslation table according to the local object movements in a local GC.
The table is called the ezport table (Figure 8). The object cells referenced from the
external PEs are said to be erporfed, and on the referencing side, they are said to be
imported. The global 1D is represented in the form < pe, entry >, where pe is a PE

— 18 —

Processory, Processory,

Import table Export table

EX cell Exported data

BT e X

L 3

Figure 6: Export Table and lmport Table

Black import Black export
EX cell table entiry table entry
Exported
Iﬂ:‘ 0-+—’- axt. ID — I’:u
L] WEC WEC_up ata
izp. ent . WEC_low :
* J col.link l'-—+

|

|—- col.link @
From

import hash tahble export hash table
White import White export
EX cell table entry table entry

o F—[i] ——

Figure T: Export and Import ‘lable Entries

number and entryis the entry position of the export table. The global ID is called the
external 1D,

54.3 Incremental Inter-PE GC by Weighted Export Counting

To reclaim the garbage cells pointed to by the export table, the entries of the table
must be collected when they become garbage. The weighted ezport counting (WEC)
method [IchiB8a) is employed to perform inter-PE incremental GO, This scheme &= also
based on the WRC principle.

An integer representing a WEC wvalue is attached to an exported pointer and is
stored in the import table entry (Figure 7). In this scheme, the total of WEC value of
the imported or to be imported pointers is kept equal to the value ai the exporting
PE(Figure &).

Inter-PE incremental GO is performed as follows.

PE,

e

WEC= 50 PEm
imossage —~]
WEC= 30 VEC= 120
L +1—
WEC= 40
PE;

Figure 8: Weighted Reference Counting Scheme

Each entry for the imported pointers accumulates a WEC when the same pointer is
imported again. The nwmber of imports, the import count, is also counted. When the
contents of the imported pointer are no longer necessary, a §release message is sent
to the exporting PE to return the amount of the WEC. A Yrelease message is sent
when: (1} an instantiated value 1s returned by an Yanswer.value message in response
to a ¥read message, (2) the import count reaches zero by incremental GC by using the
MEB mechanism, or (3} an imported pointer is known to be garbage after a local GO
in the importing PE (see 5.4.6).

When an export entry receives a Yrelease message, the WEC in the entry is
maintained. 1If it becomes zero, the entry s reclaimed. In this case, the exported
ohject cell iteelf may also be reclaimed when the export table entry s kpown to be the
single refearence to the cell by the MRB mechaniam.

5.4.4 Re-exporting

A variable may be exported to the same PE more than once. If the re-exported pointer
to a variable is given with a different external ID, it cannot be determined that it refers
to the same variable. Therefore, the importing PE may send Yread messages twice,
and if the object is a structure data, its copy is brought twice by ¥answer_value. This
can be avoided by reusing the same export and import table entries. For this purpose,
the export hash fable and smport kash table are provided on each side. The export hash
table associates the exported object addresses with their external IDe, and the import
hash table associates the imported external IDs and the import table entry.

5.4.5 White and Black Exports

This external reference management with WEC has overhead in terms of maintaining
both the WEC and import count, and of looking up the hash table to check the re-
exporting. Fortunately, the MRE mechanism can be used to optimize them. To export

— 14 —

a single reference pointer at a low cost, a simplified pair of export and import tables,
called the white erport and white import {ables, are used (Figure 7). The original tables
are called the black export and black import tables. Pointers that was duplicated once
will mostly be copied again later. In contrast, a single reference pointer is not likely to
be duplicated after being exported. Thus, the white export and import tables do not
have hash tables because the exported pointers are rarely exported again for the same
reason.

The white import table can be considered as an import table for the pointers whose
WEC and import count equals one, and its entries are released immediately when
the imported pointers are collected by the MRB GO?. Their white export entries are
alsn released only when the %release message is received. The effectiveness of this
optimization depends heavily on the programs; however, the average characteristics are
expected to be similar to that of the MRB inside a PE.

5.4.6 Local Garbage Collection

The current implementation of local GC is based on the conventional copyimg GC
scheme. The garbage collector moves all data cells reachable from the prioritized goal
stacks and the export tables to a new semi-space. After copying, valid entries in the
import tables are swept. If unmarked entries are found, Yrelease messages are sent
to the exporting PEs to return their WECs.

The tirme spent in local GO can be a big factor in the total performance becanse PEs
requesting a response from the garbage collecting PE have to wait for its termination®.
One selution to improve the GC lime 15 generation GC [Licb83a][Nakj88a], which
avoide moving long life objects at every GC. This is worth while investigating but not
implemented yet.

5.4.7 Global Structure Management

In this export system, the external 1D originates from the exporting PE. For example,
if PEg has a copy of the structure in PE,4, and PE¢ has external references to both the
original structure in PE4 and the copy in PEg, their external [Ds are not the same.
PE; will have two copies afier reading them. I the structure is big and will live long,
it is inefficient in terms of both the memory space and the data transfer overhead. In
the worst case, coples are created at each imports if & pair of mutually linked structures
are read alternately along the loop.

The structure ID solves this problem for such structures. It is a global [D attached
to an instantiated structure, By using this, what was originally the same structure is
duplicated at most once in a PE even if it is imported from different PEs more thano
once,

When a Yread message is sent to a PE for a structure with a structure ID, only the
ID is returned in the $ansver_value message. If the Yread sending PE receives only
the ID, it looks up the structure I hash table (Figure 9) with the ID to search for
the structure address if the PE already has the structure, If it is not found, a ¥resad
message s sent again to copy it. Another hash table, the struciure address hash lable,

#1f an imported pointer is copied, the MHHB of hoth pointer, the original and its copy, are turned
on so that the import table entry is not relensed when one of the pointers becomes garbage.
¥ Mensnges sent to the garbage collecting PE are buffered in the reserved memory area by the PE.

Structure
entry record

Structure 113
hash table *1 " R S
hkash(ID} : Structure L i
L._'. . _ entry record stret. ID
— o] col.link ® strct. adr
col. link - 2
. stret. 1D Structure
Btret. adr e entry recard
[
—
Structure address atret. ID
hash table strot. ade
hash{adr) : structure
Lv- ' -
: »] : Mashed IT) colhmon link
»2 : Hashed address collision link

Figure 9: Structure Entry Records and Hash Tables

is used to get the structure 1D from the structure address when the PE returns the [D
instead of the structure itsell in the Yansver valus message.

The global structure management mechanism is used for the program code, because
code pleces in a program are connected to each other and references to the same code
piece can be imported from various PEs. The problem in this scheme is the collection
of the garbage ID, which needs a kind of global GC scheme, and is not implemented

yet.

5.4.8 Program Code Management

KLI programs are described as a collection of medules which may contain several KL1
predicates, A module is the unit of compilation and is also used as the unit of code
distribution to PEs,

The predicate calis within a module are represented by relative pointers. As they
are constants in the module, they are free of maintenance when the module is moved
in a local GC or is copied to send to other PEs. Only the inter-module predicate calls
nuse ahsolute address pointers which require addreas maintenance in data transfer.

Absolute address pointers in a module are gathered at the top region in the module
to reduce the size of sweeping for maintenance in local GC. The rest (and the greater
part) of the module contains only atomic data, that is, KL1-B instructions (with the
relative address operand if any) followed by their full word constant operands if any.

On a distributed memory multiprocessor with many PEs, an on-demand loading
mechanism for the program code is essential to save the memory area in the system.
The following is how this is realized.

When a goal is thrown to another PE, the code address for the goal is encoded as a
tuple of <module, offset, structure ID>, where module is an external reference to the
code module in the exporting PE, and offsef is the code location in the module.

At the destination PE, structare [is used to check whether the same moduole
exists or not. If it does, the code address is caleulated with offset. 1T it does not, a
Yread message is sent to the exporting PE. The received goal is hooked on a newly
created variable which will receive the module.

6. Programming Environment Support

The Multi-PSI together with the paralle] inference machine operating system, PIMOS
[ChikB8a], provides a programuning environment for developing application programs
of practical sizes. Tt offers various functions for parallel software debugring and its
performance debugging. The KL1 implementation supports these functions so that the
overbead i minimized.

6.1 Trace and Spy

The implementation supports the tracing and apying of goals. KL goals are colored
with normal or traced. The reduction of a “traced” goal results in a frace ercepiion
with the information of all its subgoals to be forked. The monitor process for the shocen
can report them and the user can apecify which subgoals are to be traced next.

The spy function 18 also realized by coloring goals. The user can fork a goal with
spying color with a spied predicate information (the name and arity of the predicate
to be spied). This information is inherited to the child goals. If a subgoal for call-
ing the spied predicate is created, a spy ezceplion is raised reporting the parent goal
infarmation.

6.2 Deadlock Detection

One of the most common and distressful situations in debugging parallel programs is
deadlock. Often, deadlock s known to the wser only after all other executable goals
have terminated, at which time there remain few clues to find the canse of the deadlock.
The basic functions for deadlock should be to detect deadlocks and to show their causes.

In the KL1 implementation, deadlocks inside a PE are all detected at a local copying
GC [lnam®0a]. Typically, when a program falls inactive and seems to be deadlocked,
the user will invoke the GC.

At the GC, the suspended goals which are not reachable from aclive goals are
perpetually suspended. These goals are copied to the new semi-space and examined
further by traversing the “causality graph”(goals and variables connected by reference
and hook peinters) to find maximal goals in the causality. Deadlock ezceplions are
raised to the report stream for each maximal goal. This concise information usually
helps locate the real cause of the deadlock.

The MRB scheme cnables eacly deadlock detection. This is a common merit of
reference counting scheme. If an MRB-off pointer that points to an unbound variable

17 —

with suspended goals hooked on it is found to be discarded at the commitment of a
clause, the suspended goals are known to become perpetually suspended. Reporting a
deadlock exception an the spot is generally more helpful than postmortem detection in _
a local GC, because the clause in execution may be precisely the canse of the deadlock.

6.3 Profiling

Two kinds of profiling facilities are provided. The Skden Profiler counts the number of
reductions of each predicates in the shden. The control of profiling such as start, stop
and collect data are done via the control stream of the shden.

The Processor Profiler measures various dynamic characteristics at each processar,
It records the time stamps of idling and local GCs, counts each inter-PE message
frequency and the total time spent for message handling, records the user-defined
evenis with time stamps, etc. A predefined predicate is used to start and stop the

profiling.

7. Ewvaluation

This section shows the measurement results of the costs of inter-PE operations in the
system. Actual communieation overheads in two benchmark programs are also shown.

7.1 Cost of Communication Primitives

In typical KL1 programs, fine-grain processes (goals) communicate with each other via
logical variables. In the Multi-PSI system, goal distribution is realized by %throw_goal
message, inter-PE reading of values is realized by Yread & Yansver_value protocol.

Figure 10 shows the cost of handling those three messages at both sending and
receiving PE. In Figure 10, Copy_RPEB stands for the time for copying a message packet
from the hardware buffer to the software buffer when a message is received®. Basic
message handling routine corresponds to the routine stated in 3.3, that is, putting
a byte-serial message in the Write Buffer cutting from tagged words in encoding, or
getting a byte-serial measage from the Read Buffer and constructing tagged words for
decoding. .

Encode/decode KL1 term, etc. is for encoding internal KL1 term into a word
sequence for export (by translating sach element of the term to appropriate represen-
tation if it is a structured data and the encoding level is 1, see 5.4.1), or decoding a
word sequence in 8 message packet form into the internal representation of KL1 term
for import.

Send.throw (a) shows the cost of sending a 65 byte %throw.goal message for a
three argument spawned goal. It takes 410 micro instruction steps or 85 ps (cycle
time = 20} ns). Receive_throw (b) shows the cost of receiving the same Ythrow goal
message and storing it to & goal stack.

The bar graphs (c), (d), (¢) and () describe the cost of sending and receiving a
Yiread message and ¥answer walue message. The returned data in this case is a list
whose CAR is an atomic data and the CDR is an external pointer. Yread and {ansver_

*ﬂuwﬂmimnhdlhmthuhnﬂ]mﬂn'{ﬂuﬂﬁ'lﬂcﬂ doean't have moch room Lo store further
messages and the overflow is expected. Copy RPEB in omitted moat of the time.

S 18 -

Sand_throw | platom, EXREF.EXAEF}} [65byies |

{m} [ESEE} b"_ﬂ | BEussc (419 stops)

Receive_throw | platom EXAEF.EXAEF)) [65 byles |

TN NN] 130 pasc

(637 stops)

Sond_read (EXREF) [14 bvies |

el o] | 2Spsec (117 mepa)

Receive_read (EXREF) [14 byles |

i) sG] | 9oe see (173 steps)

Send_snewer value | [aiom | EXREF]} [24 bytea |

CENNNN| | 420 sec (208 stapm)
Recaive_answer valua [[etom | EXREF] | [24 bytes)
LN NN\ | 804 soc (397 atops)
i i 1 i t ; : :
0 20 40 60 80 100 120 140 (eseq)

EXREF Extermnal poirte
B <ory_te RPKE
[5%) Bansic massage handling rolting
[Encodeidecods KLY ., et

Figure 10: Message Handling Cost

value are the two most frequent messages in typical KL1 programs. The costs for
%unify message, though not in the figure, are almost same as those of {answer value,
In all operations, one third to half of the time is spent by Basic message handling
routine. For example, it takes about 12 ps in Basic message handling routine
for handling 14 bytes in (¢). It is four times more than that for receiving them
from the network channel. It proves that the hardware support for message com-
posing,/decomposing is not sufficient and forces the microcode to do much work.
Encode/decode KL1 term, etc. occupies more than half of the time and same
thing can be said compared with the network bandwidth. Possible support hardware
is for manipulating export,/import tablea and their hash tables, It can be a dedicated

amall processar.
7.2 Measurements of Benchmark Programs

7.2.1 Benchmark Programs

The followings are the {wo benchmark programs used here.

— 19 -

Table 2: Message Frequency and Reductions
Pentomino (39.3 KRPS on 1 PE)

— Num of PEs | 4 PEs | 16 PEs | 64 PFs
execution time (sec) 54.63 14.62 435 |
total reductions (< 1000) | 8,317. $,3§'2. 8,340,
reductions /sec (KRPS) 152.2 4701 1,919.4

reductions/msg 221. 108, 88.
msg bytes/sec | = 1000)) 14.5 108.1 440.5
Bestpath (23.4 KRPS on 1 PE)

Numof PEs [4 PEs | 16 PEs | 64 PEs
execufion time (sec) 10.655 4.062 1.691

total reductions { x 1000) BET.7 1213.6 1,605.2
reductions/sec {KRPS) 927 2088 ga0.1
reductions /ms 219 11.7 £.2
M&E h}rfmfaec% = 1000) 1140 692.5 3,854.3

¢ Pentomino: A program to find out all sclutions of a packing piece puzzle Pen-
tomino) by exploring the whole OR tree. Two-level dynamic load balancing is
employed [Furu90a].

* Bestpath: A 160 x 160 grid graph is given together with non-negative edge costs,
The program determines the lowest cost path from a given vertex to all vertices
of the graph by performing a distributed shortest path algorithm. The vertices
are represented by KL1 processes, and they exchange shortest path information
along the edges.

7.2.2 Message & Reduction Profile

Table 2 shows the execution time, the reduction and message frequency, ete. The
message sending rates on 64 PEs are: one message per 88 reductions in Pentomino,
and one per 6 reductions in Bestpath.

The average network traffic can be calculated from these figures. Relative to the
5 Mbyte/s network channel bandwidth, the average traffic on a channel is very small:
0.08% (Pentomino) and 0.3% (Bestpath) of the bandwidth.

7.2.3 Communication Overhead

By counting the number of executed steps and logging the time of entering and exiting
from idle status al each PE, the execution time s broken down as follows; {1) the
total executed ateps for reductions (Computing) and (2) for message handling (Msg
handling), both of which exclude cache miss penalty, (3) the total cache miss penalty
(Cache miss), and (4) the total idling time (Idle).

Figure 11 showa the average of the above figures of all PEs and the resultant speed-
up shown with the ideal one. In Pentomino, the overhead by the message handling and
cache miss is very small and the speed-up degradation was mainly due to idling time.

20

Workrate
Workrala

1 H 4] 16 32 B4 1 ? 4 B 16 3z 64
Num of PEs O e Num of FEs
B <ache miss
B Mg hanciing
B Gomping

] 20 L] 1] 20 L L]

40 4l
MNum of PEs Mum of PEs

Pentomino Bestpath
Figure 11: Decomposition of Processor Time and Speed-up

In Destpath, though the idling ratio of G4 PEs is smaller than that of Pentomino, the
computing ratio is rather low. Not ooly the overthead of the inter-PE communication,
bt the cache miss penalty is very large because of large working set. As the oumber
of PFs graws, the grid graph is divided into smaller blocks (5 =5-grid block for 64 PEs,
16 different blocks at each PE) to keep the workrate high, and it makes the percentage
of communication time larger. ‘The message frequency is expected o be proportional
ta the total length of the block boundaries, which is proportional to the square root of
the number of PEs. This s supported by Tahle 2.

The eost of communication primitives is rather high compared with that for local
reduction {25 ps at 40 KRPS). However, in two benchmark programs examined here,

performance degradation by communication overhead was small. The network traffic
was very small relative to the hardware bandwidth. As the result, it is expected that
the system can seale up to 1K (2° x 2%) PEs range without the network becoming the
bottleneck in performance if the hardware performance of each element remains same
as the Multi-P5I.

8. Conclusion

Thix chapter described the design issues and various techniques in implementing KL1
on a distributed memory multiprocessor, the Multi-PSI. Several evaluation results on
the inter-PE communication with two benchmark programs were also shown.

In addition to the operating system, PIMOS, several application programs such as
a protein sequence alignment program, a case-based legal reasoming system and LSI-
CAD programs (a logic simulator, a cell placement program, and a routing program)
have been developed and are now running on the Multi-PSI.

The Multi-PSI now has its succeasor, called PIM/m. The maximum configuration
of the PIM/m is 256-PE {16x 16 mesh). The PE of the PIM/m is more than twice
faster and four times smaller than that of the Multi-P5I by utilizing CMOS VLSI
technology. The evaluation result of the Multi-PSI network shows that the major part
of inter-PE communication cost i5 that of the message handling by the processor rather
than the network delay, Therefore, the network of the PIM/m was designed to have
roughly the same performance as that of the Multi-P5l, while a hardware support for
message composing/decomposing 15 added to the processor. _

The KL1 implementation described here has been ported to the PIM/m, and will
be used for future research on parallel programming and processing for large scale
multiprocessors,

Acknowledgments

I would like to thank all the peaple at ICOT, Mitsubishi Electric and other related
companies in the fifth generation computer project, who collaborated in the design
and development of the Multi-PST and its K11 implementation.

- 22_

References

[Alig6a] K. A. M. Ali and 8. Haridi. Glohal Garbage Collection for Distributed Heap Storage
Systems. International Jonrmal of Parallel Programming, 15(5); 1986,

[ChiksTa] T. Chikayama and Y. Kimura. Multiple Reference Management in Flat GHC. In
FProceedings of the Fourth International Conference on Logic Programmang, 1987,

[Chikssa] T. Chikayama, H. Sato and T. Miyazala. Overview of the Parallel Inference Machine
Operating System (PIMOS). In Proceedings of the International Conference on Fifth
Generation Computer Syatems, ICOT, Tokyo, 1988,

[DewtT6a] L. P. Dentsch and O G. Bobrow. An Efficient, Incremental, Automatic Garbage
Collector, Commun., ACM, 19(5): 1876,

[Fura9fa)] M. Fornichi, N. Tchiyoshi and K. Taki. A Multi-Level Load Balancing Scheme for
OR-Parallel Exhaustive Search Programs on the Multi-PSL In Proceedings of the Sec-
ond ACM SIGPLAN Symposium on Prnoples and Practice of Parallel Programming
[(FPaPF}, 1590,

[GntBa.] A Gote, M. Sate, K. Nakajima, K. Tald and A. Matswumoto, Overview of the

Parallel Inference Machine Architecture (PIM). In Proceedings of the International
Conference on Fifth Generation Computer Systems, [COT, Tokyo, 1988,

[TchiRTa] N. Ichiveshi, T. Miyazaki, and K. Taki. A Distributed [mplementation of Flat GHC
on the Multi-PSIL. In Proceedings of the Fourth International Conferemee on Lomc
Programming, 1987

[Ichif&a] N. Ichiyoshi, K. Rokusawa, K. Nakajima and Y. Inamura. A New External Reference
Management and Distributed Unification for KL1. In Proceedings of the International
Conference on Fifth Generation Computer Systems, ICOT, Tokyo, 1988,

[Inam@da] ¥. Inamura and 5. Onishi. A Detection Algorithm of Perpetual Suspension in KL1.
In Proceedings of the Seventh Imternational Conference on Logic Programming, Junc
1990.

[Kimu#7a] Y. Kimura and T. Chikayama. An Abstzact KL1 Machine and Its Instruction Set.
in Proceedings of 987 Symposium on Logic Programming, Sept. 1987,

[Knewé5a] K. . Knowlion. A Faat Storage Allocator. Commun. ACM, 8(10): 1965,

[Licb#3a] H. Licberman and C. Hewitt. A Real-Time Garbage Collector Based on the Life-
times of Objects. Commun. ACM, 26{6): 1933,

[Nakj#sa] K. Nakajima. Piling GC — Efficient Garbage Collection for Al Languages. In
Proceeding of the IFIP WG 10.5 Working Conference on Parallel Pracessing, 1988,

[Nakjssa] K. Nakafima, Y. Inamnra, N. [chiyeshi, K. Rokusawa and T. Chikayama. Dis-
tributed Implementation of KL1 on the Multi-PSI/V2. In Proceedings of the Sicth
International Conference on Logic Programming, 1989,

[Naks&Ta] H. Nakashima and K. Nakajima. Hardware Architecture of the Sequential Inference
Machine : PSI-II. In Procesdings of 1987 Symposwum on Logic Programming, Sept.
1987,

[RokusBa] K.Hokusawa, N Ichiyoshi, T. Chikayama, and H. Nakashima.

An Efficient Termination Detection and Abortion Algorithm for Distributed Processing
Systems, [n Proceedings of the 1988 Internobional Conference on Parallel Processing,
Vil. T, 198E.

[Taki#8a] K. Taki. The Paralle]l Software Research and Development Tool: Multi-PS1 sys-
tem. Programming of Future Generation Computers, Elsevier Science Publishers B.V.
(North-Holland), 1988,

- 23

[Uedatta] K. Ueda. Guarded Hom Clauses: A Parallel Logic Programming Language with
the Concept of a Guard. Technical Report TR-208, [COT, 1986.

[Ueda%0a] K. Ueda and T. Chikayama. Design of the Kernel Langnage for the Parallel Infer-
ence Machine. The Computer Journal, Vol.33, No.6, 1930,

[Warr83a) D.H. D. Warren, An Abstract Prolog lnstruction Set. Technical Note 309, Artificial
Intelligence Center, SRI, 1884,

[WatsfiTa] P. Watson and 1. Watson., An Efficient Garbage Collection Scheme for Parallel
Computer Architectures. In Froceedings of Farallel Architectures and Languages Fu-
rope, June 19587,

