~ ICOT Technical Report: TR-710

TR-TL0

Scalability Analysis of Static Load Balancing
under Unpredictable Subproblem Sizes

by
K. Kimura & N. Ichiyvoshi

MNobember, 1991

© 1991, ICOT

Mita Kokusai Bldg. 21F (3)3456-3191 -5
ICOT 4-28 Mila 1-Chome Telex ICOT 732964
Minato-ku Tokyo 108 Japen

Institute for New Generation Computer Technology

Scalability Analysis of Static Load Balancing
under Unpredictable Subproblem Sizes

KouicHr KIMURA AND NOBUYUKI ICHTIYOSHI
Institute for New Generation Computer Technology

1-4-28 Mita, Minato-ku, Tokyo 108, Japan

Abstract

We investigate the balance of load between processors in paralle] execution, in which
a given problem consists of many subproblems of unpredictable different sizes. If we solve
each subproblem at a different processor with a polynomial-time algorithm of degree d > 1,
unevenness in the subproblem size is translated into larger unevenness (according to d) in
the load between processors. However, we have found that we can almost balance the load
between processors by assigning only a modest number of subproblems to each processor.
Namely, an u{ingd p) number of subproblems per processor is sufficient, where p denotes
the number of processors. Thus, a large parallel machine will be efficiently utilized in
solving a modestly large problem of this kind with such a naive load balancing strategy.

Formally, we are engaged in average-case analysis of the balance of load, assuming that
the size of each subproblem is random and independently identically distributed according
to a Poisson distribution. QOur results are extensions of the results by Vitter and Flajolet

on the averagze maximum hucket occupancy in hash tables.

1 Introduction

Recently, there has been growing interest in massively parallel computers. These will become
indispensable in the future for solving larger and larger problems. In order to efficiently utilize
parallel computers, we must confront matters that do not appear in sequential computation.
Among others, load balancing is very important to all kinds of these parallel computers, and
deserves to be studied in a general formulation because of its rather machine-independent

nature. (In contrast, the overheads associated with interprocessor communications, another

1

important concern in parallel processing, are likely to be affected by the characteristics of an
individual machine such as the topology of interconnections and others [1]). In this paper, we
investigate the balance of load between processors in parallel execution, where a given problem
consists of many subproblems of unpredictable different sizes, each of which is independently
solved with the same algorithm. For example, a problem concerning large geometric data
(points, segments, polygons, etc.) in a planar region may consists of subproblems concerning
those in the partitioned subregions. Or, a problem concerning a large tree may consists of
subproblems concerning its subtrees. We assume any such decomposition of a problem is given.

One of the most naive approaches to solving this kind of problem in parallel is to solve
each subproblem at a different processor. However, such an approach is likely to incur large
load imbalances due to non-uniform subproblem sizes. For example, if we are using a linear-
time algorithm to solve each subproblem, load imbalance will occur just in proportion as the
subproblems vary in size. Moreover, if we are using a polynomial-time algorithm of degree
d > 1 to solve each subproblem, unevenness in the subproblem size is translated into larger
unevenness (according to d) of the load between processors, as we will see in Section 3.

A simple remedy for such load imbalance is to assign a sufficient number of subproblems to
each processor. Intuitively speaking, if we assign many subproblems to each processor, they will
consist of from smaller to larger subproblems and will, hence, yield a comparable load between
processors on average; thus we may expect a beller result. In Section 5, we investigate this
approach, and will see that in fact we can almost balance the load by assigning only a modest
number of subproblems to each processor. Namely, an w(log” p) number of subproblems per
processor are shown to be sufficient for p processors, when we are solving each subproblem with
a polynomial-time algorithm of degree d.

Similar intuition is behind the scattered decomposition, which has been successfully applied
to balance the load for irregular matrix problems [2]. It divides a matrix regularly into a lot of
fine-grained pieces and distributes them to the processors cyclically.

These approaches to load balancing are static, since the assignment of the subproblems to
the processors is determined prior to execution. A more sophisticated approach is dynamic
load-balancing, in which the subproblems are adaptively distributed to the processors that are
currently lightly loaded [2, 3]. In general, the latler approach seems to outperform the former
althongh it may incur some overheads, which is discussed elsewhere (e.g., [7, 10]). The purpose
of this paper is to invesitigate the static approach.

In this paper, we are concerned with the asymptotic behavior of the balance of load between

2

processors as the number of processors p increases to infinity. In particular, we discuss how large
problem size is required in order to exploit a large number of processors efficiently, namely, how
the problem size should scale with the number of processors. By concentrating on asymptotic
analysis with p — oo, we can obtain rather general results without referring to the details
of machines. These results will be valuable, since the performance of an extra large parallel
computation is properly predicted by its scalability [9]. This is just like the case in which
discussions on the order of the computation timne of a sequential algorithm provide us with a
rough image with respect to its performance for large data.

Because of the randomness of the subproblem size which we usually observe in many com-
binatorial problems, we assume a probabilistic model and engage ourselves in average-case
analysis. Formally, our results are extensions of the results by Vitter and Flajolet [11] on the
average maximum bucket occupancy in hash tables, which owes much to Kolchin ef al. [8].

The organization of this paper is as follows. In Section 2, we define a formal model of the
balance of load between processors. Section 3 1s devoted to the analysis of the balance of load
when each processor solves a single subproblem. In Section 4, we prepare some mathematical
prerequisites for the analysis in Section 5, which 15 concerned with the case when each processor

solves a suflicient number of subproblems. Section 6 summarizes the results.

2 Model of the Balance of Load between Processors

In this section, we define a simple model of the balance of load between processors in a
general formulation without referring to details of machines or problems being solved.

Let p be the number of processors, and Xy, X3, ..., X;» be the size (description length) of
each subproblem, where m is the number of subproblems.

For the varying size of subproblems, we assume a Poisson model [11]. Namely, we assume
that X,,....X,, are independent identically distributed {i.i.d.) random variables according to
the Poisson distribution with parameter @ > 0. This is a natural assumption due to the
classical law of small numbers, when each subproblem consists of many small parts that are
distributed randomly and unbiasedly over all the subproblems. For example, if a lot of points
are distributed randomly and unbiasedly over a planar region that is partitioned into disjoint
subregions having the same area, the number of points in each subregion satisfies the above
condition. Note that o represents the average size of a subproblem.

In solving each subproblem, we assume a polynomial-time algorithm. Namely, we assume

3

that the computation time for solving a subproblem of description length n is given by a
polynomial: e{n) = ayn? 4+ a;_yn¥' + - + a,n + ay. Hence the computation time for solving
the i-th subproblem is c(X;). Note that the average computation time for solving a subproblem
is given by E(c(Xy)) = c*(a), where ¢*(X) is defined by ¢*(X) = ajX* + - 4 a1 X + aj and
o X) = azX® + .- 4 a} X + a3, Here X®) denotes X(X —1)---(X — k + 1).

How to assign each subproblem to the processors is specified by a mapping @ : {1,2,...,m]}
—+{1,2,...,p}. In this paper, we consider only a simple assignment: assigning g subproblems
to each processor, specified by m = pg and @(j) = [(j + ¢ — 1)/q] for some g =1,2,....

The amount of Joad at the i-th processor is given by: L; = Pow(i)=i el X5) = Diiipe;cip o Xj)
for : = 1,2,...,p. In an ideal case in which we can neglect other overheads such as commu-
nication latency, maxy<i<, Li represents the parallel computation time with P processors, and

Ly+-- -+ L, represents the sequential computation lime with a single processor. We define the
load balance factor by:
E(Ly+ -+ L) q-c*{a)
2.1 - N
(21) " p- E{max L;)
E nax > e Xiio1g4s)

1<i<p
“p 4
I_P:_]

where F{max,¢ic, L;) represents the average parallel computation time, and E(Ly+ -4 Ly)
represents the average sequential computation time. Hence E(Ly + -+ + L,) [E{maxycicp Li)
indicates the expected speedup, and 3 indicates the efficiency (the speedup divided by the
number of processors p), which also indicates the processor utilization. Clearly, we have 0 <
7 =<1 andy=1if and only if L; = -.- = L,, which means a perfect balance of load. We will
be interested in whether n — 1 or not as the number of processors p increases to infinity either
with ¢ = 1 and increasing e (Section 3) or with increasing ¢ and fixed a (Section 5).
Throughout this paper, we implicitly assume a standard probability space (0, B, P), where
) is the base space, B C 2% is the o-algebra of events, and P is the underlying probability
distribution over 2. Basically we adopt frequently-used mathematical notations such as those
in [5]. R denotes the set of real numbers, R, the set of non-negative real numbers, and N the
set of natural numbers. X VY denotes max(X,Y), and X' denotes X(X —1)--- (X —k+1).
For a random variable X : @ — R, P¥ denotes the distribution of X over R. P(A) denotes
the probability of an event A, E(X) does the expectation of a random variable X ; while P{A|C)
and E(X|C) denote those under condition C'. We also employ the standard Landau’s symbols:

ﬂ;, = G{bp‘] Al limsupp—tm IEFU'&:J = m: ﬂ::' = o{by} = hmp—tm Iﬂpl,‘;bp = ﬂ!
-ﬂ-}, = ﬂ[b:,_} =] l.lm i]'lfp_,m ﬂpfbp -2 I], “'_II = W[bp} =3 li[[lp_*m ﬂp!bp = oo,

a, = O(b,) a, = O(b,) and a, = 0(b,).

P

We usually use these symbols only for positive values except for O(-) and o(-). And besides,

ap ~ by & limy oo apfby =1, ap < by 4 limsup,_,, ap /b < 1.

3 Assigning a Single Subproblem to Each Processor

In this section, we investigate the balance of load between processors when we solve each
subproblem at a different processor (ie., ¢ = | in the above model). Namely, we study the
case in which the load at the i-th processor is given by ¢ X}, where X, denotes the size of the
i-th subproblem and ¢(-) the time-complexity function of the algorithm being used. So, the
parallel computation time is given by max)<icp¢(Xi). The next theorem gives an estimation
of its expectation. This is a direct extension of the result by Vitter and Flajolet [11] on the

average maximum bucket occupancy in hash tables, which owes much to Kolchin ef af. [8].

Theorem 3.1 Left ¢ : Ry — R, be a non-decreasing (possibly except for small values)
polynomial function of degree d = 1. And let Xy,..., X, be i.i.d. according fo the Poisson

distribution with parameter o > 0. Then we have

(b{ev, p~t - with o = ol
E{{ga;t (X)) ~ e(b{a,p71)) as p— oo with a = oflogp)
L5y

ofa) as p— oo with a = w(logp)

and

max ¢ X;) — cla) ~ '(a)y/2alogp (in probability) as p — co with a = w(log p)

1<i<p
Here we define b= bla,z) € N by b > a and

. et e
3. — o
(3.1) Gri) b

fora >0 and 0 < ¢ < ™. [n particular, when o = ©(1), we have bla, p™') ~ logp/ log log p.

ProOF: For conciseness, we write ¢, = ¢(n) for n € IV, and use the following notations within

this proof.
" ol
e ler) = TR truncated exponential function up to the n-th term (n=0,1,2,...)
1=0 J
pn = pla,p,n) = Plmax X; < n) = {e e, (a)}” (n=10,1,2,...), pog =10

1€igp

Then, we get an expression:

x e(Xi)} = Z enlpn = Pa1) = o+ gfcm —en)(1— pa)

n=0

(3.2) E{m

iy
First we shall consider the case with a = olog p). For a sufficiently large p, b = bla,p~ !} €
N satisfying b > o and condition (3.1) exists, since e ®a™/n! is decreasing in n > & and
e @a®(T(a + 1) ~ 1/v/27a = w(p™®). Let us define A = A(a,p) by e*a®*1/(b+ 1)! = A/p.
Clearly, we have a/(b+ 1) < A < 1. We also define: r = r(a,p) = a/bla,p™!). Then we can
easily see that r — 0 as p — oc with @ = o{log p), using Stirling's formula {¢f. Lemma 2 in §6,
Chapter III in [8]).
Now we have for each k = 1,2,...,

P
o o E—-n-ab+‘.l oG F 1 'r"* B rk
=[1-¢ -—) > (1= o1, >1-
Phik (¢ n_EHnIF —((b+1)! E)— p 1-r) = T 1=%
Hence we obtain
o :I"k
(3.3) S lensr — (1 = pu) EZ Chtkt1 T"*Cb"=ﬂ':f-5]' as p — 0o

nh
since ¢, 15 a polynomial function of n.

Similarly, we have

?
% on emoohtl @ AN .

= -7 — n o~ -_— < e Ir -— ok
P (‘ n—?—l) ({b+ 1]! 1'1.=Z-3r) (1 prz) = 0 = >
Hence we obtain

h

{‘34:’ E{Cn+l - Cﬂ:l[:l pu]

n=0

h=1
= cpall = po) + elpp = po-1)} + @ar{por — pa2) + ¥ calpn — pre1) + colpo — 1)

=]
~ & asp — 00
since the sum of the first three terms is ~ ¢, and the fourth term is < ¢_gpp_q = o(¢y). From

expressions (3.2), (3.3), and (3.4), we obtain

E (ma.x o X,) ~ e(b(a,p1)) as p — oo with a = o{log p)

1<i%
And it is easily verified that b(a,p™') ~ logp/loglegp for @ = B(1), using Stirling’s formula
(ef. p.501 in [11]). These complete the proof for the case with a = o(log p).

Next let us consider the case with @ = w(log p). By integration by parts, we have for n > a,

£ —nan-{-’l

1
—on aﬂdﬂ
. fnm f)"e

T,

(3.5) | — e "eqfa) =

fi

Here the integral in the right side is less than 1/(n — a), since (1 — 8} = e~ for 0 <0 < L.

Hence we have
-n-a_n-l-'!

1 pn = 1= {ﬂ_“ﬂn(ﬂ}}rl “EP‘ {1 — u_“ﬁn{ﬂ’” = nl- (” —r,r]

In particular, for n = [2a],

e e | o -

_ pe o f:) ‘/a

L=plan) & ~plT =

Flaa al'(2a) p (*1 x
and 1 — piaaien S plef4)" a7 - 2-*% for k € N. Hence, we obtain

0 ﬂ ':r o0
(3.6) Z (ent1 — a){l = pn) Sp (i) \/;z Claajekpr2 ¥ -2 0 asp— 00
k=1

a2 |2a)]

Now, let x be a positive constant, v = |a + /2axTog p/, and consider p,.

Lemma 3.1 For any fized x > 0, we have loglog(1/p,) = {1l =k + (1)} logp as p — o0. In

particular, p, =0 for 0 <k <1, and p, — 1 for £ > 1.

PrOOF: By liquation (3.5), we have

—rvuar+‘.l

1
log p, = Plcg{l = , f (1 - ﬂ]“e"ﬁdﬂ}
I 0

For = Q.-I'FB(LUEP}_UE. since {i'.:' _ ET}":r' — =0 oand p-"lr? — i) as o= oo, We have
1 1
v—a 2aklogp

1 1 —fu=aly _ o [w—a)
f (1-8)e™dd < f e lr-akigg — ¢ Y (_1)
¥ T

TR LT U e (e LT
fn(l 8)" e df fﬂg do

e | o= ik

Hence
—er w41

e Mo i P oy ©
| = §)" "’”a’ﬂm—(—)
! fu (e 2ymelogp \ v

and the logarithm of its deminant factor is

o — 2 —_ 3 1
v -t::+ulu:ng§=--l[i E:} +G((Fa—;}] =—ﬁlugp+ﬂ(1|f'?) -log p

From these we obtain the claim. B

PRoOF OF THEOREM 3.1 (COoNTINUED): Taking x = 2 and v = |a + 2«,/0_105;0]: we have
po — 1 and pia; — 0 as p — oo due to the above Lemma. Hence

[20]
(3.7) Y (Cars =)1~ pu) € €zajaall — p) = olcl@)) asp— o0

n=u

(3.8) “Z (Ent1 = a1 = pu) S € = €fo) = O(v — a)d(v)) = olc(a)) asp— oo

n=[m)

fa] =1
(3.9) 37 (enst — (1 = pu) ~ (cla) — o)1 — plaj) ~ ela) asp— oo

n=0

Therefore, from expressions (3.2}, (3.6}, (3.7), (3.8) and (3.9}, we obtain

E{_Jrg;a:{;:; o Xi)} ~cle) as p-— oo with a = w(logp)

Moreover, for arbitrary 0 < kg < 1 < &3, we have Pla + +/2akglogp < maXj<icp Xi <
a + +/2ak, log p) — | as p — oo, by Lemma 3.1. Hence

I'.I.'I&}F]Ejisp E{}:t'} - ﬁ(ﬂ'] , . .
F(Jx_ < () vialorp < Ky 1 asp—oo forl< W< 1 < ¥k

This implies max; <<, of X;) — ¢(a) ~ /(@) 2alog p in probability. These complete the proof

for the case with a = w(logp). I

As an immediate corollary, we obtain the following result. It tells us how large the average
subproblem size (a) should be in order to attain good load balance by assigniug only a single

subproblem to each processor, when the number of processors p increases.

Corollary 3.1 Under the assumptions of Theorem 3.1, we have
(i) 7 — 0 as p— oo with a = o(log p)
(ii) 7 =1 as p — oo with a = w(logp)

where i is the load balance factor defined by Fquation (2.1)

4 Partial Order for Probability Distributions on R,

In this section we prepare some mathematical prerequisites for the analysis in the next
section. Namely, we introduce a partial order on the class of probability distributions on Ry
and give its basic properties. Within this section, M denotes the class of non-negative random

variables with finite expectation. (X VY denotes max(X,Y) throughout this paper.)

Definition 4.1 For X,Y € M, we define P¥ < PY (or simply, X < Y), if and only if
E(XVe)< E(YVe)forall e > 0.

Strictly speaking, the binary relation — is defined on the class of probability distributions
rather than the class of random variables, as one can see in the next proposition. However, for

conciseness, we will usually write X < Y instead of P¥ < P¥,

8

This inequality = is weaker than the stochastic inequality [6], as we will show in the next
proposition. Let u and v be probability distributions over Ry. p is said to be stechastically
smaller than v, and denoted by g <, », if and only if their distribution functions, ¢,(t) =

([0,1]) and ¢.(t) = »({0,1]), satisfy ¢u{t) > ¢.(t) forall t 2 0.

Proposition 4.1 Let XY, Z, X, Y, € M, wheren =1,2,....

(i) If X <Y a.s (almost surely), then X < Y.

(i) IfX <Y andY < Z, then X = Z.

(i) IFX <Y and Y < X, then PX = PV

(ivy If X <Y, then E(X} < E(Y).

(v) If PX <4 PY, then X <Y,

(vi} Assume that P~ and PY converge to PY and PV respectively as n — oo. If X < ¥

for'Wn, then X <Y,

Proofr: Since (i), (i), (iv) and (vi) are trivial by definition, we shall only prove (iil} and
(v). Tt dy(t) = P(X < t) and ¢y(t) = P(Y < f) be the distribution functions of X and ¥
respectively. And define ¢y (f) and &y (t) by

)= [- tdex(a) et = [- 0dér(y)
Then we have

Yy (+oo) =0, Plt) = ¢x(t) — 1, E(XVit)=1t+dx(t) (Vt = 0)
op(te) =0, =t =1, EYVO=tidelt) (%20
(i) X <Y and ¥ <« X, then tox = vy, dx = oy and PX = PY follow.
(v] PX <, PY implies ¢x = ¢y ([6]). Hence ¢ox <4 and X < Y follow.
Proposition 4.2 Let XY, Z € M and 7 15 independent of X and V.
(i) If X <Y, then XVZ <YVZ
(i) IfX <Y, then X+ Z <Y + 2.

(i) WX <Y and YZ C M, then XZ <Y 7.

(iv) Let f : R% — R, be a (Lebesgue) measurable function and f(X,z), f(Y,z) € M for
Wz > 0. If f(X,2) < f(Y,2) for ¥z 2 0, then f(X,Z) < [(Y,Z).

9

PROOF: Since (i), (ii) and (iii) follow from (iv), we shall only prove (iv). For arbitrary ¢ > 0,
since f(X,z), f(Y,z) € M for ¥z > 0,

BUX2)vel = [EUX,2) Vel 2= pPds) = [T BV e P2(ds)

= L‘“" E{f”‘:z} W C]Pz{dz]l — fum E{f(Y,z)Vc|Z = z}‘uz[dz} = E{f(Y,Z)V ¢}

Thus we obtain f(X,Z) < f(¥,2). 1

Corollary 4.1 Let X,... . X, € M and ¥1,..., ¥, € M be 1.i.d. according to p and v respec-

tively. If p < v, then

Proposition 4.3 Let f: (R") — Ry be a measurable funclion such that
flzm!"'1m1y1zk+l:"':zrjl+f{y1"'1y1m!zk+lr"'r:!}
E .”,5:1-“ T B Ty 1':1'} +f|{y~ SRR Y FE-T TS PR .,2,.}

ma‘x{f{m?'"erytz’#+1:"'1zf:|!- f{y!"'1y1mbzk+l$'"'!z:l'}}
‘_:IHB.X{I{-E,.,-,E,QHZJHJ:...,Z-,.]l, f[y:'“ry:-y:zk+lr-“'-z'r}}

for 2 < Wk < r and Ve,y,21,...,2, € R,". And let g : (R") — R4 be a measurable

function such that
glzy,... 2) =gle ... 28,) for¥Ve €S, Ve, ... 2, € R"

where S, denotes the symmetric group of degree v And let X,,..., X, be i.i.d. random vectors

of dimension n, and E[f(X,,..., X}, Elg(X,..... X,]] < +00. Then
{4.1} fl[X-.,Xg,...,X,.:I+g[x1._xg.....,X,-:I—-<f{xhxh...,X;}-f—g[xl,xm...,xr)
ProoOF: By induction on k, it is sufficient to show that

f{xh...1X11Xk._ﬂ:k+11-.-,$r]+§[Xl,ﬂ2-.~--,zk—lgxkymk-l-h-“:xr]
= f{x1?1”1xqull$k+l““1$1‘}+g|[-x11:':231”1¢&—11xk1¢k+1!1'r1$rj

for each k = 2,3,....r and arbitrary xs,..., sy, &p41,...,2&, € R}. Since this reduces to

(4.1) with # = 2, we may assume r = 2 from the beginning. Note that the assumption on f
imples
fle,y)ve+ fly,z)Ve< flz,z)Ve+ fly,y)ve for¥Ve,ye R, Ve>10

10

llence, for arbitrary ¢ = {0,

2E[{f(X1, X3) + 9(X,, Xa)} Vo]
E[{f[-xhxz]'+§(an2}}v¢+{f‘:x27xl}+ﬂfrmx1”"""?l
E{f(X1, X))+ 9(X1, X)) Vet+ {f(X2 Xa)+g(X1,X2)} V]
= 2E[{f(X,, X1)+9(X 1, X2)} V]

15

Thus the claim is established, B

As a special case of this proposition, we obtain the following.

Corollary 4.2 Let Xi,..., X, € M be i.i.d. and assume that 17, .. Y., Z € M are indepen-
dent of X,...., X,. Then we have

5 Assigning a Sufficient Number of Subproblems to Each processor

In this section, we investigate the balance of load between processors when we solve ¢ > 1

subproblems at each processor. We begin with some technical lermmas.

Define A% : {RY)* — R4 by

&d{ml1""tmd}: Z Tyg " Tdiy for #{z[‘_m:h”'ﬁxin) {1 Ezéd]
L€ <o jgnm
Far conciseness, we write A%(z) = A¥(x,...,2) and A" (2 y) = A%t (2 . 2y,...,¥).
I%‘h‘,-—r" "-—;.,—F'
1 2

Lemma 5.1 et X be a Poisson random variable with parameter o > 0. For ¥n > d, let
Xotyoooy Xan be iid. such that P(X,; = 1) = a/n end P(X,; = 0)=1—a/n, and X,, =
(Xogy-oesdnn). Then

xid (dé' X(X—-1) (X —d+ 1}) = d!n]iﬂ AYX,) (convergence in law)

PRrROOF: Since X,; = 0or 1 foreach | <1< n,

[Xn,'l 4 -¥1I..ﬂ:| Xn.ﬁ T -'Kr:-.l'd- = E ‘k-n.t'l e Xﬂuid-u +d 2 X"h":'l o Xﬂ-id
1] b S 1 B pgddp] S0 e ddSn
[distinet) {distinct) (distinee)

namely, (Xn1 + - + Xnn — d) - d! - AYX,) = (d +1)!- A*(X,) holds. Hence we obtain
(Xpy4 4+ Xo0)® = dl- Ad(X,) by induction on d. Here the distribution of Xpg 4+ X
converges to the Poisson distribution with parameter o due to the classical law of small numbers.

Therefore we abtain the desired result. B

11

Lemma 5.2 Let {Xij}icicr1cjen be {0,1}-valued iid. and X; = (X;, ..., Xin) for1 <i<r,
Then, for¥Wd, s =0,1,2,..., we have
{51} Z&dllldfxl1th ﬁ'dﬂﬂ-i('xhth)

h=1

=1
Proo¥r: Since both sides of (5.1) are identical for d = 0, we may assume that d > 1. For

k=0,1,...,n =1, we define AJ1: R} x R} « R}, — R, by

d-i-ia
k+l ['t!y'l ZJ Z To o Thggs Sage """ ‘3.1;4:+;+1
RN S Sldg gl BT
T4 5R41
+ Z Vi = ViaTiagr Tagz """ Fagata
1€ € Lidgap1 T
15”2#{-]

for z=('r1:---:IﬂJs FZ[FI;-“:F:-;L zzl:zi!*-*!zn}

Fixing an arbitrary | < k < n, we write X; = {(Xi,..., Xa)for 1 £1¢ < r. Taking an arbitrary

(Zis)1gicr ki1<i<n € BTV, we define a(X,..., X,) by
a(X,,. Zﬂf+i"f-¥,, x,.zx,.}
=1

where X; = (Xi1, ..o, Xiks Ti b1y -+ &in) for 1 < Wi < r. Since

d+a+2

d 1,8 -
k+1 {X.,Xlkth} E Z ‘jl‘*.?l-”Xﬁdrlzjdrz“'z_fr_:zil"'zid'-tﬁi
h=1 f=d+2 185 € Shgy ap1 20
Jdpish, pp_; Sk
+ E Xf'.h U ”"lidri 155 " Tiap et
lan<--<ig4a41 &M
Id41 =k+1
a4l
-
t E E XlJl e '}*1.]:‘ ATy T T T e Tiage T Fagadr

f=] lepn ";.J‘u+..|.15“|
Jagr=kdd gp g mkaiy
where 2, €3 Xy, (1<i<k), ™ Yo (k+1<j<n),
h=1 h=1

-

we ha.vcﬂfjfl,...,xr]=f|[jf1,,..,i’,]—kg{il,...,j{,}, where

. d+1
f(Xy..,X,) = Z(”-’ > Xy ud) +i(w > Xlil"'xiit—l)

1< <jgsk 1S <y Sk

Z {(E Xigy + Xﬁd+1) Ziaer Liemrie " Fgpany }
=1

fmded bS5y Coligy gy £,
Taq 1Sk e Sk<ay

gl{ih"':i?j

and u;, v are non-negative constants determined by k and {z;; }1cicr, k41<jen for 1 < Vi < r,

1 <¥f<d+ 1. Notethat

Z X'ﬁ‘”xu}; (Xﬂ'f‘-é.-{-xik) {lﬂ"'ﬁﬂr, UE'?TE-EI-I"].J

120 << psk

12

since we have X;; = 0 or 1 by assumption. Thus we can apply Proposition 4.3 to obtain
a(Xy, Koy X)) < f(X0, Xy, X))+ (X4, X, .., X,). Hence by Proposition 4.2 (iv),

we ohtain

STAMIX L X0, 3 X0) < AT (X X0,) Xa)
i=1 h=1

h=1 i=1
Since this holds for arbitrary 1 < k < n, we obtain

STAM(X, X, Y X < L ATT(X G Xy 3 Xa)
=1 h=1 =1 h=1

This is the desired result. §

Lemma 5.3 Let {Xi;hicicr1¢5an be {0,1}-valued vid and X; = (Xa,...,Xim) for 1 £1 2
r?. Then, for¥d,s =0,1,2,..., we have

i At (X, E Xisip-1)r) < iﬂd‘J[Xﬁ i X4)

=1 h==1 =1 h=1
PROOF: This claim is immediately established by repeatedly applying Corollary 4.2. Namely,
in dominating the left side, we replace Xii(h-1)r; by Xw; for each (i.h,3) € {1,...,7} x
{1,...,r} x {1,...,n}, where 1 < A" < r and &' =i+h=—1modr. i

Lemma 5.4 Let {Xij} icicragion be {0,1}-valued i.i.d. and X; = (Xa,.. LX) for 1 <0 <
re, Then we have

Y AYX) < AUX 4+ Xy)

1€igrd
ProoF: By Lemma 5.2, we have
z AYX) = AV(X, E Xi)
=1 h=1
Consider the sum of r such expressions as this right side with dislinct indices. Successively
applying Proposition 4.2 (i), Lemma 5.3 and Lemma 5.2 to it, we obtain
Y AUX) < T ATX LY Xigponye) < AT B Xa) < ATHX, 3 X
=1 =1 h=1 =1 hi=1 h=1
Applying again Proposition 4.2 (i), Lemma 5.3 and Lemma 5.2 to the sum of r such expressions
as this rightmost side with distinct indices and so on, we finally obtain
Td ¥
TAYX) < A(X Y Xa) = A X 4+ X))
=1 h=1

This completes the proof. il

13

Theorem 5.1 Let {X;}12c,4 be i.i.d. Poisson random variables with parameter a > 0, and X
be a Poissen random variable with parameter ra, where r € N. Then we have
S X9« &0
1<i<sd
ProoF: Let n be an arbitrary integer greater than d, and (Xi,;)1<icre 145¢n be idd. such
that P(Xi; = 1) = a/n and P(X;; = 0) = 1 — a/n. We write X, = (Xin1y- .., Xinn) for
1 < Vi < rf, By Lemma 5.4, we have Tigicrd A X i) = A X+ --- + Xyn). Letting

n — 0o, we obtain the desired result due to Lemma 5.1 and Proposition 4.1 (vi).

Theorem 5.2 Let {X; hcicpicjcq be i.0.d. Poisson random variables with parameter e > 0.
(i} Forp — oo with ¢ = w(log® p), we have:

(] ond
F(,ﬂz&};z X,) 7

1€ <y

(ii) For p — oo with q = o{log® p), we have:

() 1/d d
({gﬁlgqﬁf) < blag’",1/p)
Here b= bla,e) € N is defined by b > a and condition (3.1) fora >0 and 0 < ¢ < 79,

ProoF: By Theorem 5.1, Theorem 3.1 and Corollary 4.1, we can immediately establish (ii), and
obtain F fmax@.-s,,z;.g,-ﬂ,xf_j‘}] < ga® in the case of (i). Since E [:max]‘:mpzml.:qX['ﬂ)
E (Thcjee X{7) ~ ga® in the case of (i), the proof is completed. I

Now, let us turn back to the discussion of the balance of load between processors when we
assign ¢ subproblems to each processor. The load at the i-Lh processor is given by ¥ 1< <, €(Xij),
where X;; denotes the size of each subproblem (1 <1 < p, 1 < 5 < ¢) and ¢(-) the time-
complexity function of the algorithm being used. So, the parallel computation time is given

by maxycicp icjc, ¢(Xij). Its expectation is immediately estimated according to the above

theorem, as shown below:

Corollary 5.1 Let ¢(X) = aaX® + - + &y X + aq be a polynomial of degree d > 0 with non-
negative coefficients and {X;;}icicp1<jcq be 1.1.d. Poisson random variables with parameter
a > 0.

(i) Forp— oo with ¢ = w(log® p), we have:

where ¢*(X) is defined by ¢*(X) = a3 X9+ +a]X +aj and ¢(X) = aj X + .- +at XV 4ap,
(i) For p — co with ¢ = o{log® p), we have:

E (ma.x E C{Xij]) 5"‘&5{3@1;&:”?}&

VSRR ey

As an immediate corollary, we obtain the following result. It tells us that we can balance
the load between processors by assigning an w(log® p) number of subproblems to each processor,

when the number of processors p increases while the average subproblem size is kept constant.

Corollary 5.2 Under the assumptions of Corollary 5.1, we have n — 1 as p — oo with
g = w(log® p), where i is the load balance factor defined by Equation (2.1).

In contrast, when g = of(log p/ loglog p)?), we have 5 — 0 as p — oo, since

; —1yy _ log p ’ _
£ (Pg?_g 2 ﬂfX;;J) > E (;gfgg ‘:(X'-'j}) ~ e{bla,(pg) ")) = © ((k_ghﬁp)) = w(q)

Fies<q 152y

due to Theorem 3.1. Thus the sufficient condition for p — 1 (for goﬁd foad balance) in the

corollary, ¢ = w(log® p), is not too strong. (We conjecture that this condition is also necessary.)

6 Conclusions
We have investizated the balance of load between processors, assuming that:
(i} A given problem consists of many aubpfuh]cms varying in size {description length).

(ii) The size of each subproblem is random and independently identically distributed accord-

ing to a Poisson distribution.
(iii) Each subproblem is independently solved by the same polynomial-time algorithm.
(iv) Each processor is assigned the same number of subproblems.

(v) A larger problem consists of a larger number of subproblems, while the average size of a

subproblem is constant regardless of the size of the entire problem.

When the number of processors p increases, if we assign an w(log® p) number of subproblems
to each processor, we can almost balance the load between processors, where d is the order of

the time complexity of the algorithm being used for solving each subproblem. Ience, a problem

15

that consists of an w(plog® p) number of subproblems can be efficiently solved in parallel with

P ProCessors.

Thus we conclude that a static load balancing scheme, assigning the same number of sub-

problems to each processor, is fairly scalable.

References

[1] W. Dally, “Network and Processor Architecture for Message-Driven Computers,” in: R.
Suaya and G. Birtwictle, ed., VLSI and Parallel Computation, Morgan Kaufmann, (1990).

[2] G.C. Fox et al., “Solving Problems on Concurrent Processors,” vol.l, Prentice-Hall, (1988).
[3] M. Furuichi, K. Taki, and N. Ichiyoshi, “A Multi-Level Load Balancing Scheme for OR-

Parallel Exhaustive Search Programs on the Multi PSI," Proc. of the 2nd ACM SIGPLAN
Symposium on Principles & Praetice of Parallel Programming, pp.50-59 (1990).

[4] N. Ichiyoshi and K. Kimura, “Asymptotic Load Balance of Distributed Ilash Tables,” ICOT
Technical Report, to appear, (1991).

(3] K. Ito (ed.), Encyclopedic Dictionary of Mathematics, MIT Press, 2nd ed., (1987).

[6] T. Kamae, U. Krengel and G.L.(V'Brien, “Stochastic Inequalities on Partially Ordered
Spaces,” The Annals of Probability, Vol.5, No.6, pp.899-912, (1977).

I7] K. Kimura and N. Ichiyoshi, “Probabilistic Analysis of the Optimal Efliciency of the Multi-
Level Dynainic Load Balancing Scheme,” Proe. of the 6th Distributed Memory Computing
Conference, {1991).

[8] V.F. Kolchin, B.A. Sevastyanov and V.P. Chistyakov, Random Allocations, Winston &
Sons, Washington, (1978).

[9] V. Kumar and A. Gupta, “Analysis of Scalability of Parallel Algorithms and Architectures:
A Survey,” Froc. of International Conference on Supercomputing, (1991},

[10] V. Kumar and V. N. Rao, “Load Balancing on the Hypercube Architecture,” Proc. of the
1989 Conference on Hypercubes, Concurrent Computers and Applications, (1989).

[11] 1.5, Vitter and P. Flajolet, “Average-Case Analysis of Algorithms and Data Structures,”
in: J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol. A, North-Holland,
Amsterdam, (1990).

16

