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ABSTRACT

This paper proposes and evaluates the
hardware implementation required for dynamic
load balancing in the prototype PIM/c of the
Parallel Tnference Machine {PIM).

On one hand, PIM/c is configured along a
hierarchical structure of loosely coupled TCMP
clusters (TCMP - Tightly-Coupled Multi-
Processors) in order o utilize the high locality
of logic programs.

On the other hand, an LCMP (Loosely-
Coupled Multi-Processors) approach enables us
to build a more scalable machine using a
cTossbar nerwork.,

Load balancing algorithms and corresponding
hardware suitable for each hierarchy are used.

First, for dynamic load balancing in the
TCMP hierarchy, we propose a register with
broadcast facility to request load dispaiching.
The evaluation determines the overhead due to
memory polling in order to detect the request.
The proposed hardware reduces the execution
time of logic programs by [5%.

Second, for dynamic load balancing in the
LCMP hierarchy, we propose the use of a
shortcut path to request the value of a total load
within a cluster. The evaluation shows that the
overhead due to the request of that value is
reduced as a result of introducing the shoricut
path. Consequently the proposed hardware
reduces the processing time by 50%.

The results obtained confirm that the use of
hardware mechanisms reduces the overhead
due to the dynamic load balancing.

1. INTRODUCTION

Japan's Fifth Generation Computer project
[1] has been centered around ICOT (the
Institute for mew generation COmputer
Technology). ICOT has developed the parallel
logic programming language KL1 (Kernel
Language-1) [2] to describe knowledge and
information processing systems. [COT has also
produced software in KL1, including the PIM
operating system [3].

Presently, we are developing the PIM/c [4] as
a KL1-based machine. Dynamic load balancing
is one of the main rescarch arcas for PIM
[51[6]. As a result of the fact that only logical
relations are present in a KL1 program and they
never define their process of execution with
determinacy, dynamic load balancing must be
used in PIM.

The main problems of dynamic load
balancing are ensuring a high processor
utilization and simultaneously reducing the
overhead. The high overhead of load
equalization can be reduced by minimizing the
data needed. Another possible solution exists in
utilizing the locality of KL1 programs. The
locality could restrict the interactions to groups
of several processors and thus reduce the
communications among groups. Thus, the
hardware can be concentrated in a limited
numbers of processors. In this way, a double
hierarchical (both TCMP and LCMP)
organization is used in PIM/c. Consequently,
we must use a suitable load balancing algorithm
in each hierarchy.



In small scale parallel machines like the
TCMP part of PIM, a receiver-initiate algorithm
15 suitable because there is no wasted
dispatching. In such machines the main
problem is the way to implement a broadcast
facility in order to avoid centralization of load
Tequest

In large scale parallel machines like the
LCMP part of PIM, a sender-initiate algorithm
is suitable because the use of broadcasting
would demand an exagerated throughput. In
such machines, the problem is reducing the
overhead to collect the load information of the
Teceiver.

Consequently, we propose and evaluate
appropriate hardware mechanisms for dynamic
load balancing in each hierarchy. Thus, we
propose a register with a broadcast facility o
request load dispatching in TCMP, and a
shortcut path in the LCMP hierarchy to reduce
the overhead related to requesting the value of a
total load.

We evaluate the real hardware in order to
determine the critical interactions in the cache-
processor-network complex. We carried out the
evaluation using an artificial load model in
order to focus on the speedup produced by the
proposed hardware mechanisms.

2. OUTLINE OF PIM/e HARDWARE
FEATURES

PIM/c has the following distinguishing
hardware features:

A. Hierarchical structure of TCMP and
LCMP.

Figure.1 shows the configuration of PIM/c.
PIM/c is organized along a hierarchical

structure of loosely coupled TCMP clusters to
utilize the localities of KL1 programs.

Thus, the TCMP hierarchy consists of
processors combined in a cluster. Each
processor has its own cache, and they share a
common bus. It has been proven by software
simulation that the common bus might be a
bottleneck. We concluded that the number of
processors in a cluster should be limited to
approximately eight, and that the two-way-
interleaved common bus [7] should be possible
in PIM/c.

We consider that utilizing the access locality
makes it possible to reduce the network
hardware amouni because of reducing the
number of messages transferred among
clusters. As a consequence, in PIM/c the
network is connected only to cluster conrollers
{CC) instead of all processors in the TCMP
hierarchy,
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Fig.1. The configuration of PIM/.

B. Snooping cache.
In order to utilize the access locality in
TCMP, PIM/c uses a snooping cache, as this is



known to reduce the common bus usage [8],
using a bit to denote the shared state of data.

There are two types of cache coherency
protocols: invalidation-type protocols and
broadcast-type protocols. The PIM/c cache
protocol is a invalidation type protocol similar
to the Berkeley protocol [9][10]. For KL1
programs, invalidation protocols are more
suitable than broadcast protocols from the stand
point of the maintenance cost of shared data.
There is no need to rewrite data distributed on
other caches. Because of the high access
locality and the high write ratio of KLI
programs, the data on other caches will not be
used.

C. Crossbar network,

In order to obtain a high throughput in
LCMP, a crossbar network is employed in
PIM/c [11]. Using this crossbar network, each
processor can communicate with other
processors with a throughput of 20Mbytes/s
independently of other communications. In
order to maintain this throughput, message
gqueues are also used. However, we have to
note that the existence of queues means, on the
other hand, an increase in latency.

3. LOAD BALANCING IN EACH
HIERARCHY

Because PIM/c is configured in a double
hierarchy, both TCMP and LCMP, there must
be a suitable load balancing algorithm in each
hierarchy.

3.1 Load Balancing in TCMP

Because the response time in TCMP is short,
a receiver-initiate load balancing algorithm is
suitable. This algorithm avoids the wasted load

dispatching by applying the rule "only fully idle
processors require load dispatching”. In order
to implement this algorithm efficiently, we
concentrate on reducing the overhead resulting
from cache misses.

In the following, we will present several load
dispatching schemes for this purpose:

A. The common goal pool scheme.

In this conventional scheme [12], a record of
load waiting to be executed will be pooled in
one data structure, and any processor will
extract the record to execute the load described
in it. The contents of a record are transferred
through the cache mechanism implicitly by
reading them. We identify this data structure as
the goal pool.

In fine grain multiprocessing like in PIM/c,
the use of this scheme causes some problems
(Fig.2).

With a invalidation cache like in PIM/c, read
accesses will cause cache misses when the
processor that is accessing a given record
changes.

If PIM/c caches were of a broadcast type,
write accesses would cause broadcasting
through the common bus.

With a broadcast cache, it would be
impossible to avoid the frequent data transfers
through the bus anyway.



Fig.2. The common goal pool.

The distributed goal pool scheme [13], in
which each processor has its own goal pool, on
the other hand, can help avoid cache misses for
each individual processor. Consequently, an
explicit load balancing communication method
for the distributed goal pools should be
introduced in the TCMP hierarchy. This
algorithm is based on requesting a load
dispatching. The cache miss overhead is thus
reduced to be proportional to the number of
loads that were transfered by the explicit
communications.

The next problem is related to the communi-
cation style in a KL1 system. In a KL1
implementation, events can interrupt processors
only in a gap between load executions for
which the overhead of context switches is low.
Therefore, if a load request is sent to a specified
processor, it takes many cycles (100 cycles in
PIM/c on average) to respond to the request. In
order 1o shorten the response time, a new type
of communication, the AR (Arbitrary
Responder) communication was introduced in
PIM/c [14].

Fig.3 presents the concept of AR communi-
cation. This communication is sent to any
nrocessor which has more than ane load in its

goal pool. The responder is defined as the
processor which detects the communication
first. As the timing to detect requests differs in
each PIM/c processor, this communication
method 1s expected to shorten the response time
proportionally to the number of processors in
TCMP.

In order to implement this communication
method, there are 2 implementation alternatives:

memory polling and register polling.
giva me a job7?
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Fig.3. Arbitrary responder communication,
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B. The memory-polling scheme.

This new scheme uses a bit-map data. A bit-
map pool is a data array in which each bit
corresponds to a processor requesting load.
This array is located in the shared memory, and
15 updated using exclusive access methods:
Fetch-and-Or and Fetch-and-Zero [15]. All
processors perform the following sequence:

= Idle processors set their comresponding bits
in the bit-map word using a Fetch-and-Or
operation.

« All but the idle processors are polling the
bit-map word, and are checking whether the
value of the bit-map is all-zero or not.

» If one processor detects a non-zero value
for the bit-map word, that processor will be
a responder. It keeps the value into its
register, and clears the bit-map word using
a Fetch-and-Zero operation,

¢ The responder sends one record in its load
pool per one idle processor using a ordinary
communication method with its responder
specified.



« [f the number of loads in goal pool of the
responder becomes one, the bit-map word
will be updated with the value of bit-map in
the register using a Fetch-and-Or operation.

Two problems exist in the memory polling
scheme. One is the overhead to read and check
the bit-map word serially. The second is the
overhead produced by cache misses in all
irrelevant processors after each communication
is finished.

C. The register-polling scheme

This is another new scheme using additional
special purpose registers dedicated for
interprocessor communications [14], as well as
using the load request, In order to reduce the
polling overhead, those registers have a
broadcast feature. The reason for using
registers is that registers can be easily
implement the broadcast feature through the
common bus. We denote these registers as
RFR (Request Flag Registers). These registers
have the following features:

» They have a one-bit width to indicate a
request, and one of them in each processor
is dedicared for the load request.

« They can be read only by their correspond-
ing processor, and they can be written by
any processor in the cluster.

* They also have the facility of broadcast
write; therefore, a load request register in all
processors can be written simultancously.

As shown in Fig.4, the AR communication
can be established by the following sequence:
e An idle processor scts simultaneously the
load request bit in all processors using the
broadcast feature.

« The earliest processor detecting a request
resets simultaneously the request bit in all
processors using the broadcast feature, and
performs dispatching using the bit-map data
in the shared memory.
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Fig.4. Dynamic load halancing support in TCMP.

When using registers, there is no overhead
due to cache misses. Each PIM/c processor has
16 RFR registers, and also has a fast detection
feature of control jump just in case one of
RFRs corresponding to the processor is set to

one.

3.2 Load Balancing in LCMP

Becaunse implementing the broadcast feature in
the LCMP context via the network demands an
exagerated throughput, we adopted a sender-
initiate load balancing algorithm. Sender-initiate
algorithms involve wasted dispatchings, but
simulation results proved that the "Smart
Random Load Dispatching” [6] scheme, which
uses a sender-initiate algorithm, works
efficiently using local load information. Fig.5
illustrates the concept of this scheme.
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Fig.5. Smart random load dispaiching.

In order to avoid wasted dispatchings, the
"Smart-Random" scheme requires the load
amount related to a specified cluster. The
scheme consists of the following sequence:

= The sender processor determines a receiver

candidate randomly.

» The sender processor inquires about the

load amount of the receiver candidate.

¢ If the load amount is less than that of the

sender processor, load dispaiching is
carried out. Otherwise, dispatching is
stopped.

In order to reduce the overhead due to
requesting the load amount, a shortcut path for
the messages inquiring load amount in
comparison to the ordinary messages is
introduced in the network (Fig.6) [11]. The
hardware used for load balancing in LCMP has
the following features:

= A shoricut path to message queues.

» Eight-bit wide registers to indicate the total

load in a corresponding cluster.
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CC: Cluster Controller
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Fig.6. Dynamic load balancing support in LCMP.

The register should be written with the total
load amount by its corresponding processor.

As the load amount is inquired without
waiting at message queues and without waiting
for the cluster controllers to receive, specified
registers can be read in constant time.,

4. EVALUATION STRATEGY

We defined the following two strategies 1o
evaluate the effectiveness of the proposed load
balancing hardware,

4.1 Evaluation on the Real Hardware
We used real hardware for evaluation
purposes as the software simulaton is almost
impossible for the following reasons:
s The cache and the network are present and
many parameters are in effect.
There are many hardware parameters related
to the internal states of the cache and
network. The common bus arbitration time,
and the message packet switching time are
examples in this respect. The overhead of
cache misses and the network latency is
important in this evaluation. Thus, covering
the cache and network effects would have



taken a good deal of time in software
simulation concurrently with processor
activities.

We denote the unit as the reduction. We
assume that the unil is approximately
200 cycles in PIM/c.

e Indeterminacy in the granularity of loads.

We define the goal as consisting of an
arbitrary number of reductions (1 to 16).

4.2 Evaluation using an Artificial
Load Model
We carried out the evaluation on an artificial e Indeterminacy in the number of goals.

load model for the following reasons: We assume that each processor generates

* In order 1o scparate the effect of bare
hardware.
An evaluation independent of the specific
application is necessary in onder to isolate
the speedup produced by the proposed
hardware mechanisms.
= In order to separate the effect of load
balancing.
The real KL1 execution environment
involves many new control sequences in
addition to load balancing. For example,
handling the priority of loads needs another
polling action using RFR registers. The
total performance depends on the usage of
the proposed hardware in other control

sequences.

an arbitrary number of goals (1 to 4096).

= A high write ratio and a high share ratio.

Accesses performed within the reduc-
tions have the following parameters:
write ratio - (.5, share ratio - 0.5.

With the common pool scheme, the
share ratio is set to 1.0, and the size of
the working set is multiplied by the
number of processors in a TCMP, in
order to simulate the overhead of
accessing the common goal pool.

= A high access locality.

In our experiment, we define the locality
as a number of successive accesses Lo
the same address. The value is set to 4 in
order to simulate free list manipulation in
KL1, which consists of allocating,
instantiating, referring and deallocating a

5. EVALUATION RESULTS memory cell.

We carried out the evaluation of the proposed l
load balancing hardware in both TCMP and N I
LCMP hierarchies.

PEi

5.1 Evaluation in the TCMP hierarchy

We carried out this evaluation focuosing on the

174096

effect of cache misses.

A. The load model. . [
This model reflects the following time —
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Fig.7. A Load model with variable granularity.

characteristics of KI.1 program executions:
* A unit load.




B. Load balancing schemes.

In order to determine the effectiveness of the
proposed hardware, we carried out the
evaluation using the following five load
balancing schemes:

» A STATIC_DIST (static distribution)
scheme.,
We assume a static load distribution of
loads produced by a compiler. No
dynamic load balancing is performed with
this scheme.

+ A COMMON_POOL scheme.
As described before, a common goal pool
is assumed with this scheme.

« A DIST_POOL (distributed pool)
scheme,
With this scheme, the distributed goal
pools are introduced without the AR
communication method. The responder is
selected as a non-idle processor using bit-
map data and is specified in the memory
area where its processor number is
written.

« A MEM_POLL
scheme.
As described before, we assume the use of
the distributed goal pools and the AR

{memory-polling)

communication method.

» A REG_POLL (register-polling) scheme.
As described before, in this scheme, each
processor polls the special-purpose
register with broadcast facility in order to
reduce the overhead due to the memory-

polling.

C. Results of the evaluation at the TCMP
level.

We control the initial load amount in each
processor. According to the variation of the

initial load amount, 14 cases are simulated on
each load balancing scheme with a 8 processor
cluster. The resulting data are the total elapsed
time (T), the total idle time (I), the total wait
time after requesting for load (i), the total
dispatching time (t), the total reduction count
(R) and the load request count (r).
The following measures are defined:

Mominal reduction cost =T/ R ........ (5.1.1%
Reduction cost= (T -I-t}/ R ........ (5.1.2)
Utilization = (T =T}/ T e (5.1.3)

Fig.8 shows the effect of the utilization on
reduction cost. The nominal reduction cost with
the five above mentioned schemes is plotted as
a function of utilization. The nominal reduction
cost varies related to the utilization. However,
the utilization is not the only significant
parameter in TCMP schemes. Fig.8 shows that
the results of applying the five schemes can be
classified into the following three groups:

« Group I. This group corresponds to

applying only one scheme, the
COMMON_POOL scheme. The results
indicates the overhead due to cache misses
compared with the results of the
DIST_POOL scheme.
Group II: This group consists of results
corresponding to the MEM_POLL and the
DIST_POOL schemes. The comesponding
results indicate the overhead due to the
memory-polling compared with the results
of the REG_POLL scheme.
Group III: This group consists of results
corresponding to the REG_POLL and
STATIC_DIST schemes. Note that the
REG_POLL scheme is almost free from
both polling overhead and cache misses
compared with the results of the
STATIC_DIST scheme.



As a result of this experiment, it is confirmed
that the overhead caused by memory-polling
and cache misses is not negligible, and can be
reduced using the proposed registers.
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Fig.8. The effect of utilization.

Fig.9 shows the effect of the memory-
polling. In relation to the request count, the
nominal reduction cost is almost unchanged.
This fact indicates that the memory-polling
overhead caused by checking request
occurrences is larger than the overhead due o
cache misses caused by both the load
requesting and the load dispatching.

The speedup obtained is 15% in comparison
to the MEM_POLL scheme and 30% in
comparison to the COMMON_POOL scheme.
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Fig.9. The effect of memaory polling.

Fig.10 presents the effect of broadcasting.
Both of the wait time and the dispatching time
are plotted as a function of request count. It is
confirmed that RF (Request Flag) registers with
a broadcast feature reduce both the wait times
and dispatching times. The RF registers reduce
the dispatching overhead by 20%, and reduce
the idle ume by 15%, respectively.
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Fig.10. The effect of broadcasting.

5.2. Evaluation in the LCMP hierarchy



In the LCMP hierarchy, the evaluation is
focused onto the effectiveness of avoiding the
wasted dispatchings by using the correct load

information.

A. The Load model.

The load model in LCMP is defined in a way
as to reflect the changes in the number of load
in the goal pool. The load model is as the
following:

+ An initial goal is denoted as L{16) (Fig.
11).

+ The execution of goal L(i) produces (i-1)
subgoals, L(i-1),..., L{1), L{1). Thus, the
goal L(i) has 21-1 reductions.

» Each reduction takes 300 cycles to execute
using network messages.

* The message length required for the load
dispatching is 27 bytes long. Thus, it
takes 27 cycles to send this message
through the 9 bit-wide network interface.
The message length requesting the load
amount is 2 bytes long.

Fig.11. A load model with floating load amount.

B. Load balancing cases.
We assumed the use of the "Smart Random
Dispatching” [6]. There are only two cases with

respect to the use of the proposed hardware
mechanisms:

» the case with hardware.

» the case without hardware.

C. Results of the LCMP level evaluation.

We control the dispatching rate by changing
the interval of the dispaiching control. In order
to determine the efficiency of load dispatching,
the total elapsed time (T), the total idle time(T)
and the dispatching rate (d) are measured. As
the load balancing algorithm is the same for the
two schemes except for the hardware support,
differences in the results are produced only by
the latency in control information.

Fig.12 shows the results obtained by
applying the smart random load dispaiching
scheme without its hardware support. The
processing time and the valization are plotted as
a function of the dispatching rate. The
dispatching rate is defined as the ratio of all
goals dispatched to other cluster to all executed
goals. In order to compare the results in the two
cases, we assume that the dispatching rate is
controlled to be 209%. Because the safe control
exists in the upper side of the minimum point.
Without the hardware support, the resulting
speedup is approximately 3.3 at the point of 0.2
dispatching rate.
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Fig.13 shows the results applying the smart
random load dispatching scheme with its
hardware support. The processing time and the
utilization are plotted as a function of the
dispatching rate. With the hardware suppor
actve, the processor can reduce the overhead
due to requesting the load amount. The
resulting speedup is approximately 5.5 at the
point of 0.2 dispatching rate.
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Fig.13. Smart random dispatching
with its support hardware,

Comparing the two results, the use of
proposed hardware halves the processing nme

at the point of 0.2 dispatching rate, where the
control of dispatching rate seems to be
possible.

We must note that the shortcut path can be
also used for other load balancing schemes,
including the minimum load distribution
scheme [16]. The evaluation of these schemes
is under contemplation.

6. CONCLUSION

Hardware implementation of dynamic load
balancing is proposed in both TCMP and
LCMP.

We propose a register with broadcast facility
to request load dispatching in TCMP. Also, in
LLCMP, the network unit uses a shortcut path to
request the value of a total load register. The
evaluation was carried out on the real hardware
using an artificial load model.

The evaluation results in the TCMP hierarchy
determine the overhead due to memory polling
in order to detect the request. The proposed
hardware reduces the execution time of logic
programs by 15%.

The evaluation results in the LCMP hierarchy
show that the overhead due to requesting the
load amount is reduced as a result of
introducing the shortcut path. The proposed
hardware reduces the processing time by 509%.

It is confirmed that the proposed hardware
reduces the latency of control information, and
subsequently the overhead produced by
dynamic load balancing.
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