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Abstract

The introduction of the constraint concept into logic programming provides constraint logic pro-
eramming (CLP) with more declarative expressiveness power. However, there are cases when CLP
languages cannot be efficiently implemented because of the domains of constraint, In particular,
since we use a CAL language, an instance of the CLP scheme, and this algebraic constraint solver is
based on the Buchberger algorithm and computes the Grobner base, it is necessary to process effi-
ciently, by considering the order of constraint solving. Therefore, it is necessary to handle both the
inference engine and the constraint solver to efficiently process the CLP. Furthermore, to cfficiently
process constraints using the CAL language on applications using the Buchberger algovithin, it is
necessary to construct as simple a Grobner hase as possible,

This paper describes a program analysis method to improve the cfficiency of CLP program
execntion by introducing this graph-theoretic approach, while considering the active researches
of program aunalysis of logic programming. We consider program analvsis methods for the CAL
language and apply this method to some examples inclucing non-linear constraints. The resulis
show that the proposed methad is effective for problems where the algebraie structure ol the set of

constraints is sparsc.

Topiecs: Software
Subtopics: Constraint programming
Keywords: Constraint logic programming, constraint, program analvsis. CAL, geometric the

orem proving, graph-theoretic approach



1 Introduction

The mtroduction of the constraint concept into logic programming provides constraint logic pro-
gramming (CLP) with more declarative expressiveness power in terms of: 1) relations that should be
satisfied on objects or among their attributes, and 2) a control deseription about program execution
[6] [5]. Most CLP language interpreters consist of three modules: an inference engine, constraint
solver, and preprocessor or interface module, The constraint solver solves constraints which cannot
be handled by the engine. In other words, it determines whether a set is solvable, and if it is,
computes the solutions, given a set of constraints. To obtain solutions, it needs solution methods
for the set of constraints, that is solution methods for simultaneous equations.

However, there are cases when CLP languages cannot be efficiently implemented because of
the domains of constraint. In this case, it is important to control the execution mechanism of
an inference engine and constraint solver. For example, in the inference engine that handles literal
resolvent based on SLD-resolution, choice rules of literals and definite clauses unificd with a selected
literal effect the whole process [7] [8]. On the other hand, the processing of constraints effects order
of constraint solving, because a constraint solver solves constraints accumulated by the inference
engine. In short, the solvability of the set of constraints depends heavily on the exploration of the
search tree during resolution.

In particular, since we use a CAL language [1]. an instance of the CLP scheme, and this alge-
braic constraint solver is based on the Buchberger algorithm and computes the Gribner base, it is
necessary to process efficiently, by considering the order of constraint solving [3] [5) [15] [16]. The
construction of a Grobner base is time-consuming and it is known that the Buchberger algorithm is
doubly exponential in worst-case complexity [13] {14]. Therefore, it is necessary to handle both the
mference engine and the constraint solver to efficiently process the CLP. Furthermore, to elliciently
pracess constraints using the CAL langnage on applications using the Buchberger algorithm, such
as geometric theorem proving, it is necessary to construct as simple a GrSbner base as possible.

Meanwhile, in solving large sparse linear squares problems A » ~ b, several numerical methods
that compute the upper triangular matrix of a given A, i.e. the algebraic structure of 4, are proposed
as an efficient method [22] [10] [12]. These methods intraduce a graph-theoretic approach.

This paper describes a program analysis method to improve the efficiency of CLP program
execution by introducing this graph-theoretic approach. while considering the active researches of
program analysis of logic programming [1] [2]. such as functionality analysis, delinite analvsis, or
maode analvsis.

In section 2, we show CLP computation model and a search tree generated by SLD-resolution,
as preliminaries,

[n section 3, we describe the datallow analysis of constraint logic programs and the collection of
sets of constraints based on dataflow analysis [16]. We introduce the dataflow analvsis approach and
optimization based on information gathering usivg this analysis. We give the datallow approach
which uses the top-down analysis based on SLD-refutation. During this analysis. given programs

and queries, flow information ahout variable bindings is propagated across each clause for thal



predicate and substitulions are kept. Finally the substitution set and the set of constraints are
collected, without executing the constraint solver.

In section 4. we describe the structural analysis of sets of constraints, using sparse orthogonal fac-
torization, and its application as an efficient constraint solver [15]. We introduce a graph-theoretic
approach to improve the efficiency of constraint processing by analyzing and using an algebraic
structure of constraint representation. We describe constraints in terms of the graphical represen-
tation and represent the set of consiraints as the structure of a matrix with a bipartite graph.

Section 5 describes program execution improvements based on the ordering of goals and the
preference of variables, program application, and considerations of prograin analysis method effec-

tiveness. Furthermore, the overview of the program analysis system under construction, is shown.

2 Preliminaries

In this section. we describe a compulation model of CLP and a search tree generated by SLID-

resalution.

2.1 Computation Model of CLP

[Def.1] A definite clause is a clause of the form P Py oo oo P Cree oo, O where P P,.... P
is called the literal part of the resolvent and 7y, .., (', is called the constraint part of the resolvent.
[Def.2] A goal clause is a clause of the form — P by PO O

[Def.3] A resalvent is in the form [ where i =< RL; RC =, RL is called the resolvent of a normal
logic program and called the literal resolvent. RC is the resolvent for constraints and takes the
canonical form of a sel of constraints collected by resolution.

[Def.4] A substitution £ is a finite set {vgfty, -+ v ft,}, where each ¢, is a vanahle, each {; is a
term distinet from t,. and the variables vy, - . 1y, are distinct. Fach element 1/t 15 called as a
binding of ;.

[Def.5] Let P he a delinite clanse and let a resolvent f,. calculated at one time, be R, =<
Livba L RC >0 Let P o= PPyl POy, Ca . Cy be a definite clause of P, when there
exists a most general unifier {mgn) ¢ of P# and L0, Then a new resolvent Haqy 15 derived from a

resolvent R, and P using @ such thai the following conditions hold:

e Lot Lpbe an atomn selected according to a computal won rule (1= & <),

o [T RO = (RCUC, UCU. L O is solvable, then the resolvent. Hy,y derives
< (PyBy.. Pl Ly L, )0 RC = froni Pand K.

[Def.6] Let P be a definite program and & a goal. Il successfully derived, then a sequence of
this derivation whose last resolvent is R, =< RL; RC' > such that literal part RL is empty (=¢).
The last constraint part of the resolvent element R of a successful derivation is called an answer

constrainl,

[Def.7] Let P be a definite program. The success set S, of P is defined as follows:



S5y = {{+ F:C) | goal « P; ¢ has a successful derivation of SLD-resolution with an answer

constraint (', }
The computation model of constraint logic programs can be described using an interpreter as

follows: given a CLP program P and a goal (query) &, it starts from an initial goal G and terminates
one of two results: an answer constraint C'# or failure. If a computation succeeds, it outputs an

answer constraint ('8 that is an instance of G deduced from P, otherwise it outputs failure. The
algorithm of the CLP computation model is given below.

[Algorithm]
Input: A CLP program P and a goal &
Oatput: Answer constraint COF il this was an instance of & deduced from & ;
failure, then fallure has occurred.

| begin;

2 Initialize the resolvent R =< KL AC >, composed of a literal part and constraint part, Lo be G, Lhe input goal
4 endlet R, be < (78 =,

1 while the literal resolvent RL is not empty do

3 Select a literal £y from the resolvent

f and a definite clause P — Py Po . PoiCh, Ca, ., Oy from P

T such that Ly and P unify with mgu §;

A Remove Iy fromn literal resolvents and add Py Py ..., Py to the resolvent ;
q W IRCUC UG, 08 s solvahle

i then bel this be a new resolvent B¢

11 Apply # to a new resolvent Bu(=< RL; RC =) and to (7;

12 endwhile

13 if the literal resolvent is empty

i4 then outpnt an answer constraint '8
15 else cutput failure.

16end;

2.2 Search tree generated by SLD-resolution

[Def.8] Let P be a program and G a goal. A scarch tree [7] [8] of a goal G with respect to a

program {7’ is defined as tollows:
e (/' is a rool node of a search tree.

e Nodes of the tree are goals with one goal selected,

¢ Let the resolvent < L.Ly... L:C" > be in a node of the search tree and suppose L, is the
selected atom. Then, for each input clauses P — B Py Py Ol (., the resolvent node
has a successor resolvent < (£ P, . B Ly . L, )0 RO >, where R( = solve((C'UC) ... 1)

4] such that 1, and [” are unifiable with a mgu 4.

¢ Nodes that are empty clavses have no successor.

[Def.9] Leaves of the scarch tree are success nodes where the empty goal has been reached or failure
nodes where the selected goal at the node cannot he reduced any more. Success nodes correspond

to solutions of the rool node of the Lree.



3  (Collection of the Set of Constraints

We introduce the dataflow analysis approach and the collection of the set of constraints using this
analysis [16).

We give the datalflow approach which uses top-down aualysis based on SLD-refutation. Given
a program and queries. flow information about variable bindings is propagated across each clause
for that predicate and substitutions are kept during this analysis. Finally a substitution set and

consiraint set are collecled, withont executing the constraint solver.

3.1 Dataflow Analysis

Dataflow analysis can be described as the process of ascertaining and collecting information about
the behavior of a computer program prior to program execution. The results are used to guide
various code optimizations in the compiler [2].

Here, when given a goal as an input, dataflow analysis ascertains and collects information about
the hehavior of a program, i.e. the sel of constraints, by tracing computation paths on the search
tree in a top down manner. based on Lthe computation model of the logic program.

This analvsis calculates definition relations and references for data in the program, i.e. dataflow
information. This is done by tracing the search tree Tr corresponding to the computation path of
the program. (Given a program P and a goal (7, analysis computes the set of constraints ¢ and its
substitution @ of a success path on the scarch tree, as oulput. Consequently. the instances of ¢ by 8
(('8) are oblained without executing a constraint solver directly. In other words, analysis does not
execute constraint solving (solve{C’U---U RC)). but obtains the set of constraints (- RC).

The algorithm of dataflow analysis is given in Figure L:

{Algorithm] \

Input: Program £ and goal GLPU{QY)
Outpmt: Set of constraint O substitution & of all success paths on the search teee Tr, and all instanees ol seis

of constraints {°F

procedure main((ioal, Subst, Constr, Instance)

hegin
Subst — [},
Clonsiy — {}

analyze_goali Coul, Subst, Constr);
Apply substtoconste| Subsl, Constr, Tnslance):

eni;

procedure analyze_goal(Cuoal, Subst, (onstr)
hegin
for each clawse O of Goed do:
analyze_clanse(d 1, Gool, Subsl, Cousle);
enclfor
end;

procedure analyzeclause(C], Goal. Subst, Constr)
hegin
let €1 be of the foron fead = Fody,
if unify{ Head, (Goal, Subsi1];
then Swbst — Subst ) Subsl1;

[l |



analyze body( Body, Subst, Consir);
else failed_unification{ Head, (Goal, Subst) ;
end;

procedure analyvze_bodv| Gody, Subst, Constr)
begin
let Body be of the fotm Lileral Body; Consiraini. Body ;
if Literal _Body is epty
then return Constr — Constr U Constraint _Dody;
else let Literal . Body be of the form p[X), L Body Ta:l;
genetate_goal(p, Subst, Cp),;
analyze_goal(Cp, Subst, Conatrl);
analyze_body{ L Body Teil, Subst, Constr2),
Constr — Constr UConsir] U Constr2;
end;
Figure 1: Algorithm of dataflow analysis

main/4 is a top-level of the datallow algorithm. In this algorithm, analyze_goal/3 propa-
gates information about the variable bindings of all executable predicate calls across each cor-
responding clause, and it ascertains and collects the static flow information of each predicate.
analyze.clause/4 unifies a clause and a goal, propagates a substitution across the body part of
the clause, and calls analyze bedy/3 using information about the variable sharing hetween the

subgoal and the heacd.

3.2 Collection of the Set of Constraints

Example 1 is given as a typical instance of a CAL program including non-linear constraints.
examplel is a goal (7 and program I contains definitions of nine predicate syinbols, examplel,
1, £2. 13, 4. £5, 6, £7, and £8.

[Examiple]

=  wsxamplael.

axamplal - f1(x2,x5), f2(x2,x5,x7), £3{x3,x6,x7),
f4(x1,x7), F5(x2 xF xB), f6{xl, x4,x7),
fT(xB.x8), fB(x1,.x&).

f1(X,¥) = 2%X°2 + ¥ =2,

f2(E,Y,2) = X & Y2 47 =1,

f3(A,Y,2) - X % Y & 24273 =4,

f4{X,¥) = X + ¥ =3,

IE{X.Y,Z) = X°2 + 28¥ + % =2,

fE(X,Y,Z) :- X°3 + ¥ + 3T =1,
fT(X,¥Y) = % + Y"1 =3,
f8{X,Y) ;= % * ¥ + % =4,

In Example L, the collection process of the sel of constraints reduces subgoals £1(x2,x5),
£2(x2,x5,x7), £3(x3,x6,%x7), f4(x1,x7), £5(x3,x5,x8), f6(x1,x4,x7), £7(x6,x8),
£8(x1,x4). lncrements constraints and substitution, and finally obtains the set al constraints
and the set of substitution {8 (thetal}, #,(theta}, ..., f3(thetas)}. Consequently, the mstance
(0= {2%r2% % x5 =2, x2 * 57 +x7 =1, x3 + x6 + 2%27" = &4, x1 + x7 =3, r3? + 2x5 +
x8 = 1, 0l? + x4 + 3xxT=1, x6 + 28 = 2, x1sx4 + x1 =4 } of the sel of constrainl (' by the

substitution #{theta) = 0, o #y o - - o fly can be obtained. without exceuting the consiraint solver,

i



using dataflow analysis. Figure 2 shows a callection process of a set of constraints based on dataflow

analysis {Example 1)

P ‘:[3_:2,55:,"2-{:2,:5,:1‘”3{:3_nE.x?]. oo [T xB) A xd),
theta ! = (K, ¥ied)

T [2(m? 25 ATy R BT, (T LB B FE e ) (%3 Fexhe=d)

C thetal
theta? = (X 1&E YIRS ZiaT)
-] -
P 3 KT FTURR kB) FBEY 2] | {2742 2enS=d, nlenS Ieal=1)
 theda?
hetad = (F2xd vams, ZENTT
k-4 . - "
T— fafalxdh BB oed) | (2TNE Teas=d, wlenS dval = drabe 270 3=4t
i C thetwsd

ihata = thela! thetal hetan

O 4wl Prufmd, xBens TouTel wIvube"nB dmd,  xl+ad=d]
C thetan
Figure 3, Codlection of the constraint s&1 basea an datallow analysis ([Cxample 1)

4 Structural Analysis of the Collected Set of Constraints

We describe a structural decomposition method of the sel of constraints [15]. Iu this method. the
ot of constraints can he represented in terms of a constraint graph ie. a hipartite graph form.
DM decomposition [10] is also performed, so that a hlock upper triangnlar matrix can be correctly
computed by canonical reordering of a matrix which represents the constraint graph.

Next. we consider improving the efficiency of the constraint solver, through the structural analy-
sis of the constraint graph, which decompaoses this graph into subgraphs and checks their structural

solvability.

4.1 Constraint and Constraint Graph

A coustraint is defined as the rolationship between a set of objects. Hach constraint andl each set
ol vonsteaints are modeled from the viewpaint of graph-theoretic notation. Here, we introduce a
bipattite sraph representation in order to model the constraint graph, hecause a bipartite graph
o usefully portray the structure of a sel of constramt [15] [12].

A bipartite graph [9] is an undivected graph € = {15 L) or (F= (VE V7 R e which bocan
be partitioned into two sets H and V7 (L = VUV ) such that {a,v) € K implics either « € Ve
and o e Vo oorwe V= and e VE That is, all edges go hetween the twa sets P oand V7.

T'he algebraie structure of a set of constraints, such as £1(x2, x5) =0. £2(x2, x5, x7) =0,
. £8(x1, x4) =0 arc modeled with a bipattite graph G = (V1 VT E) (Fignee 3). Constraints

{4 set of constraints) form the 1'* nodes while their variables {parameters) form the 177 nodes. For

=]



example. a constraint £2(x2, x5, x7) =0 forms £2 in the V'* nodes and x2, x5, x7 in the V-

nodes,

f1{x2,x5)=0.
f2(x2 x5,x7)=0.
f3(x5,x6,x7)=0.
fd(x1,x7)=0.
f5({x3 x5 x8)=0.
fE{x1, x4 x7)=0.
f7{x6 x8)=0.
FB(x1,x4)=0.

(a) Set of constraints

Figure 3: Bipartte graph of the set of constriants in Example

4.2 Structural Decomposition of Constraint Graph

In order to find the algebraic structure of the constraint graph, we introduce the constraint graph

structural decomposition method. DM {Dulmage and Mendelsohn) decomposition [10].

4.2.1 DM Decomposition

DM decomposition of a bipartite graph (7 = (V¥ V=: E) determines a finite cover. A finite cover
is a pair of subsets {7 and V of V* and V'~ respectively such that every edge (u,v) of £ is cither
w & [Tor v € V. Decomposition determines irreducible subgraphs {(7.}7, that only have a
rumimum cover and, at most, two tails {(7_, 7, }. It has no tails if and only if & is a hipartite
graph & = (V* V75 E), where | V¥ | = | V- | = n, and has a transversal of order n.

Consequently, this method corresponds Lo finding a canonical reawclering of a matrix which
represents the constraint graph and correctly computing a block upper triangular matrix. Canonical
reordering permutes the columns and rows of the matrix that leave square submatrices on the
diagonal, and a rectangular submatrix in the lower right-hand corner. ‘This is used to solve cach
square 1 turn, each square corresponds to a sct of constraints.

An overview of the DM decomposition algorithm is shown in Fignre 1.

procedure DM _decomposition(Finput, 7 ontput, 7 output)
bvegin
findemazimunimatching( &M ),

|

2

3

4 makeauxiliary.graph{ 7, &0, G g ):

5] incluce amxiliary _praph_and handbe _two_tails{ (7, )
i

T

find_strongly _connected _component{<, &7 )
T [ Lr.~.5l.|hgraph-merge{ﬂ'h I

& end:

Figll re 4: Overview of DM rli‘.rnmpmi e alworiblion



In the above algorithm, find maximum matching/2 finds a maximum matching M in a bipar-
tite graph G = (V¥ 17 £)[4]. make.auxiliary_graph/3 constructs an auxiliary graph (7y =
(V+, V75 E) such that E=Ful{ue)|(v,u)e M}
induce_auxiliary.graph.and_handle two.tails/2 determines the tails {G_,G.}. These tails
are the subgraphs induced by 7y and Uy, where Uiy is a set of the end nodes in Gy hav-
ing start nodes in V' — @"M. and Uy is a set of start nodes in Gy having end nodes in
V- - & M. #ind_strongly connected.component/2 finds the strongly connected components
(11] G = (WS W B (6= L2, nyof Gar - (Ui=y U Uiy ) permute_subgraphmerge/1 sorts
{GG_.GL}U G in topological order. where ' = {G;},. Figure 5 shows the result of the DM
decomposition in Example 1. In a subgraph {7y = (WH Wy Ey), aset Wit represents elements £3,
£5, £7, and W represents elements x3, x5, x8. In other words, & su bgraph iy corresponds to a
sel of constraints, £1(x2,x5)=0, f56(x3,x6)=0, 17 (x6,xB8)=0,

Flgure & Bipartite graph of constramt graph and result of 0M decompasilion

4.2.2  Structural Analysis of the Set of Constraints

Structural analysis of the set of constraints decomposes the constraint graph into subgraphs and
checks their structural solvability to improve the efliciency of the CLP constraint solver. Check of
their strnetural solvability is elfective to a real domain, where constraints arc represented in terms

of a linear equation. and based on the following theorem [10].

[Theorem)|

In DAl decomposition ¢ = (W W0 1) 0 = (1....npU{-. +}) of bipartite graph (@ =
(V4 V7 B the Tollowing items (a) to (o] hold:

(a) If W7 # 06, then | WF i<l W] (Gy)

(b) If W* # ¢, then | W[ W2 [ (GL)

(¢) If [ W =] W | and (7, (i = 1,2,...,n), thena perfect matehing exists.

Ti1 this theorem, structiral solvahility is defined as the existence of perfect inatching ina Lipartite

graph [13].

q



{a) shows that bipartite graph G is not structurally solvable and can be locally under-constrained.
The number of constraint variables belonging to W} is larger than one of the constraints and there
are infinite solutions.

{b} shows that bipartite graph & is not structurally solvable and can he lacally aver-constrained.
The number of variables is fewer than one of the constraints and there is no solution.

(¢) shows that bipartite graph (& is structurally solvable, because each subgraph (it = 1,...,n)
has perfect matching.

According Lo this theorem, we can determine the degree of freedom in the system corresponding
to the set of constraints and select the variables of constraints in executing the constraint solving
on a real domain such that a under-constrained or over-constrained state can be handled.

However, the above structural solvahility check method is not very effective to one of an algebraic
constraint solver of a CAL langnage, because this algebraic constraint solver that is based on a
Buchberger's Grobner base computation algerithm takes a complex domain [4).

Here, since using a CAL language as CLP, we focus on not structural solvability, but dependeney
information determined in the structural analysis of the set of constraints. This dependency infor-
mation between constraints can be determined by rcordering G = {(7;} in a partial order < and by
representing a cirected graph computed from W = W} = ¢ and § as a block upper triangular ma-
trix form. As a result, it is expected that efficient constraint solving can be realized by solving each
block corresponding to the subgraphs (WF W5 (W LWL Lo (WG ), (W W), block
by block. This dependency information is utilized to vplimize a source code of CLP languages for

improvement of program execution.

5 Program Execution Improvement based on the Goal
Ordering and the Variable Preference

We deseribe an improvement of CAL problem execution based on the ordering of goals and the
preference of variables. An experimental result concerning the execution time and the number
of critical pairs generated during program execution is shown on the geometric theorem proving

problems. Finally, we consider main factors in obtaining good results with the efficiency method.

5.1 Determination of the Ordering of Goals and the Preference of
Variables

The ordering of the goals and the preference of variables are determined using the dependency
formation ahtained through the structural analysis of the set of constraints . T'he source-level
optimization ol a CAL program, is perforined based on this dependeney infornination, such that they
can be used as control information for the constraint solver, As a result. it is believed that this

optimization avoids wasteful computation in constraint solving and Wnproves program execution,

Un practice. 1he goal ardering and Lhe variable preference are determined according 1o the number of elewents of
decomnposed scis of constrainta, Lhe degree of the variables of elements, aml the cocfficient of constraints. In other
words, aset of constranits including as simple constraints as possible framn the above view poinks (nuimber of elements,
degree of varialiles and coeffeien of elemenls of constrainis) is selected and ordered in advance,

10



when the optimized program is cxecuted. This is why our optimization approach reduces redundant
computation in critical pair generation when solving algebraic constraints, that constructs a Grobner
hase as an answer constraint, and suppresses the growth of a coefficient to the solution.

Next, we explain the optimization resull using examplel.

The goals are ordered according to a sequence (33, G, and (; that preserves the dependency
formation determined through DM decomposition, such that each set of constraints corresponding
ta the decomposed subproblem can be solved (Figure 6).

examplel -

f4{x1, x7}),
f6(xt, 24, x7), ; Ga
f8(x1,x4),

£1(%2, %5, 6.
£20x%, x5, x7), :

£3(x3, x6, x7),

£E{X3 X5 x8), G
f7{x6, x8).

Figure 6 Execution ordering deterupned by changing the ordering of goals

The preference of the variables is determined usiug a pre predicate of CAL language, such that
the preference of subproblem Gs < the preference of subproblem G, < the preference of subproblem
¢, shown in Figure 7. The Gribner base can be calculated efficiently because we can control a tern
rewriling operation, that is central processing of the algebraic constraint solving. by determining
the preference using the pre predicate.

pre(x3, 100},
pralxé. 100},
pra(zg, 100],
pre(xz §8],
pre(xs 9%,
pre{xl, 98],
pre(zd, 98},
pre(zT. 98}

Figure 7- Ordering of the variables using predicate pre /2

Moreover, the progran analysis system is under construction and consists of the following three
processing components shown in Figure 8: a dataflow component, a structural analysis component,
and a source-level optimnization component. This system reads a CAL program to be analyzed
(shown in Example 1} as an inpul and gencrates an oplimized CAL program {shown in Figures 6

and T) as an output,

L1



i Input program o

Frogram analysis system
I ™y

Coliection based on
dataflow analysis

|

-
Structural analysis of the
\_ collected set of constrainis

v

Source-level optimization bazed
an the ordering of goals and the
'EIIEFEI\E'HEE of variables

Figure B:  Overview of program analysis syslem for CAL

5.2 Applications and Experimental Results

In geometric theorem proving problems, when a geometric theorem is given, a geometric configu-
ration and the conclusion arc translaled into algebraic formulas. This problem is considered as a
problem of ideal membership whose answer delermines whether the theorem holds. Though there
are several approaches to geometric theorem proving [13] [21], the Grobner base approach is fo-
cused on as an apphcation and experiment with the efficiency method. In other words, we choose
a geometric theorem proving problem as a typical example using Grébner base, i.e. an application
problem to an algebraic constraint solver in the CAL.

We apply the prograin avalyvsis method to the geometric theorem proving problems, where the
problems are described in termis of non-linear algebraic constraints, and evaluate this method from
the viewpoint of the time of a program execution (Table ). This experiment is carvicd out using
the CAL language on a personal sequential inference machine (PSI-T1[18]).

Example 2 is a geometric theorem proving problem of a triangle orthocenter deseribed in terims
of 5 hyvpotheses and 8 variables [21] . Example 3 is a geometric theorem proving problem ol a

ninepoint circle described in terms of 8 hypotheses and 12 vaniables [21).

b consequence, our officiency method s effective to these examples, whose algebraic structure

in terms of a graphical representation of the constraint set is sparse.



Problem | Pre-application Post-application |
Example 1 (8 constraints, 8 variables] 1731 121
Example 2 ( Triangle orthocenter : 3 hy potheses, 8 variables) 1565 2371
Fxample 3 ( Ninepointcircle © 9 hypotheses, 12 variables) 3524008 12733

Table 1 - Result of an application of the efficiency method to examples including non-lincar constraints

[ msec)

Table 2 shows the number of critical pairs generated in the Grébner basc constrietion of examples

shown in Table 1.

| Problem - - | Pre-application Post-application |
ExampFl (8 constraints, 8§ variables) - o 12 4
Example 2 {Triangle orthocenter : 5 hy pr::-t"heses, 8 variables) =3 l ' A
Example 3 (Ninepointcircle : 9 hypotheses,12 variables) 3180 | 134

Table 2 : ‘The number of critical pairs generated by an application to Examples

5.3 Considerations of Program Analysis Method Effectiveness

An algebraic constraint solver in CAL language {4] is implemented using the Buchberger algorithm
[14] that determines the Grébner base for testing the satisfiability of the set of non-lincar constraints
in the form of polvnomial equations. The construction of a Crobner base is A time-consuming pro-
cess. 1t turns out that the worst case complexity of the Buchbexger algorithm is doubly exponent ial
[13] [14).

The following points shonld be considered as essential improving the performance of Grobner

base compulation, which is central to the algebraic constraint solver in the CAL [13] [14]:

e The choice of an order for variables affects the perforinance of Crébner base compulation. bor
example, execution time differs drastically between basis computation using various ordering

methods,

o The order in which critical pairs are generated in Grobuer base computation and the number

of generated critical paics considerably aflect performance.

o Much of the computation time depends on the size of the generated rational numbers of the
base. In other words, a coefficient can grow and influence execution time significantly, because

the Crobuer base algorithm is implemented using rational aritlinetic.

To improve the pertormance ol the Grobner hase algorithim. our efficiency method decomposes
ihe sel of constraints into independent and dependent sets and extracts the algebraic syntactic
strueture of the set of constraints. The extracted algebraic structure is represented in the lorm
of dependency information on the subset of constraints and on variables in the constramts. The
structure is used to provide heuristics for control of algebraic constraint solvers.

In our method. the reduction of the number of generated critical pairs aund the construction
of the Grobner base in as simple a forin as possible are regarded as important ol unproving the

performanee of base compulalion {program execution time).
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In the above section, an experiment on the execution time of the program and the number
ol generated critical pairs by application of an efficiency method is conducted to investigate the
relationship between the improvement in program execution time and the reduction in the numher
of generated critical pairs and to clarify the above consideration.

The experimental results in Table 1 and Table 2 show that an application of our efficiency
method to the program analysis of the CAL programs reduces the number of generated critical

pairs, controls the growth of the coefficient, and leads to cfficient algebraic constraint solving based

on Buchberger algorithm.

6 Related Works and Conclusion

Gabbrielli ¢f al. [19] proposes algebraic semantics for the success set S54( P, R} in arder to character-
1ze the operational behavior of programs. They have defined a notion of constrained interpretation
and models and given operational semantics. $53( P, R) represents the computed answer constraint
and is used for the abstract interpretation of CLP programs, that perform the abstraction of an
algebraic operation on the particular structure ® on which the computation is performed. A suit-
able notion of the R-absiract solution 1s needed to perform the abstraction process. Qur structural
analysis of the set of constraints using a graph-theoretic approach will he applied to an abstraction
of the set of constraints and an analysis of the R-abstract solution nsing a success set S55( 2, R).

Serrano [20] presents a constraint-based envirenment for Mechanical Computer Aided Design,
where a graph-theoretic appreach is applied to constraint rmanagement. In this approach, the set of
constraints are represented as a directed graph i.e. a bipartite graph, where nodes indicate variables
and edges indicate relationships on constraint variables. Then, dependencies on the variables of
constraints are generated, and the cvaluation of the sel of constraints and over-constrained or
under-constrained systems in terms of the set of constrainis are detected. The dependency analysis
of the constrained svstems of constraints is similar to onr structural analvsis of the constraint set
in that both approaches use a graph-theoretic approach vsing a hipartite graph for represeutation
of the set of constraints.

Kapur [13] describes a refutational approach to geometric thearem proving using the Crébner
base algorithm and experimeutally observes that the pseudodivision and triangulation in Wu's
method arve strongly related to the the critical pair computation among polvnomials which is central
to the Grobner base method. Critical pair computation ix significantly reduced by obtaining a
triangular form of Wo's method, because critical paivs are computed only among eerlain subset
of polynomials after triangulation. We feel that our structural analvsis of the constraint set, that
decomposes the constraint graph {constraint set) into subgraphs (subscts of constraints). is similar
to computation of triangular form of Wu's method from the point ol reduction of the number of
generated critical pairs. T'herefore, we expect thal our method i utilized as an efficiency one for

geometric theorem proving using the Grobner base algorithen

We have presented a program analysis methad that focuses on the alzebraic structure of the set

of constraints in order to realize a program analysis system for UL tanguages, Especially, we have

IR



given a brief explanation of an application of this method to an algebraic constraint solver. based
on the Buchberger algorithun, of the CLP language, CAL. Through an experiment using examples

where the alzebraic structure of the set of constraints is sparse, we have shown that our methocl is

effective in the following points:

e The execution time of CAL programs is improved by application of our program analysis

method.

e« Our methad reduces the number of generated critical pairs in the Buchberger algorithm that

caleulates the Grobner hase, and therefore the computation time for the Grobmer base con-

struction is reduced.

We are now implementing a program analysis system based on structural analysis of the set of
constraints, using the ESP language en the PSI-II machine. [t seems we have little time to estimate
our efficiency method for program analysis, because we have not yet com pleted an estimation for
the implemented system. Therelore, we need to estimate our method by considering the analysis

time of CAL programs to get a final result.
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