ICOT Technical Report: TR-696

TR-t96

Parallel Randomized Search for

Distributed Memory Machines

by
N. Iwayama & K. Satoh

October, 1991

© 1991, ICOT

Mita Kokusai Bldg. 21F (03)3456-3191~5

| c DT 4-2% Mita 1-Chome Telex ICOT 132064
Minate-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Parallel Randomized Search
for Distributed Memory Machines

Noboru Iwayama, Ken Satoh
Institute for New Generation Compnter Technology
4-28 Mita 1-Chome Minato-ku, Tokyo 108 Japan
email: iwayama@icot,or.jp

September 3, 1991

Abstract

For the computation on parallel machines, cach processor should be given even com-
putational load. Generally speaking. there are two tvpes of lnad balancing wethods:
dvnainic ones and static ones, Static methods need the estimation of the task size and
the communication cost, which is diffienlt in most cases. For Dvnamic methods, com-
munication problems shonld be resolved for efficient computing especialy on distribnted
miemory machines.

We give a different type of load balancing method for problems searching a single
solution on di=iributed memory machines, ‘That is a parallelization of randomized search.
Our method requires no communication during computation, and all processors are always
busy. This parallelization on distributed memory machines is profitable for the probloms
which the above methods don’t handle well.

1 Introduction

It s essential for the computation on parallel machines that processors don’t hecome idle due-
ing computation. Fach processor should he given even computational load 1o keep it busy.
Generally speaking, there are two load balancing methods: a dynamic one {ex. [1, 2]). which
dyunamically distributes tasks to idle processors, and, a static one (ex. [3]), which gives cach
processor sibtasks into which the whole task is divided in advance, Static methods are effi-
cicnt when the task size and the communication cost between tasks can be estimated. however
cstimation is difficult i most cases, If you adopt dvnamic methods, communication probifetns
should be resolved for etficient computing. Since distributed memory machines have more ex-
pensive connunication costs than shared memory machines, load balancing should be with less
communication overheads in order to compute efficicntly with distributed memory machines.

[n this paper we give a different type of load balaneing method for problems searching a
single solution on distributed memory machines. That is a parallelization of randomized search.
Our method requires no communication during coruputation, and all processors are always busy.
This parallelization on distributed memory machines is profitable for the problems which the
above methaods don’t handle well.

In section 2 and 3 we give two methods to parallelize randomized searches. In section 1
we compare our method with the parallelization of randomized backtracking, and we show
conclusions and future work in section 3.

2 Parallel Randomized Search

lor distoibuted memory machines, load balancing methods should not cause much communi-
ration, because the communication costs are more expensive than computation costs,

At first some static load balancing method, which only needs communication with each
precessor at the beginning to distribute divided tasks, should be tried. Unless tasks are divided
equally based on the estimation size of the whole task, some processors easily [all into the idle
stale, Since 1 is difficult to estimmate a task’s size generally, static methods with distributed
memory machines are not good for all problems. Next a dynamic load balancing method may be
tried for the problems which static methods are not good at. When the prohlem needs a lot of
conununication, compared with the computation time. this communication becomes overheads
and makes some processors idle. Even if both static and dynamic methods don’t compute some
problems quickly, we want to get a solution to those problems quickly with distributed menmory
machines.

If each processor of a parallel machine independently resalves the problem using different
strategies to search a single solution. the search is done in the time taken for the fastest proces
sor. This idea is suitable for distributed memory machines from the aspect of communication
cost, because no communication is needed during computation except for the copy of the initial
state of the problem at the beginning. We provide parallel search methods iu this paper on the
basis of this idea.

Here, we explain how each processor searches with our method. Each processor resolves the
same problem with a randomized search. We mwan the randomized search as a lollowing naive
search method for getting a single solution: at each potut of choice cach processor chooses at
raniclorn from the candidates, and it retries {rom the beginning on failure until a solution is
o,

Next we state how a parallel search method as & whole, With our method each processor
searches at random. Since that randonmess comes from the random number generator, each
processor uses a different random number generator in order for cach prowvessor Lo resolve Lhe
problem using a different strategy. Therefore, cach provessor can choose ndependently from
search candidates, As soon as one processor gels an answer. that processor instructs the other
provessors Lo stop Lheir searching, We call this parallel seareh method the parallel randomized
search.

After the imitial state s copicd, the parallel randomized search needs no communication
until the answer is found. And the total computation time i< the time taken for the fastest
PEOCESSOL,

However there 1= a possibility of repeated choice of paths that result in failure, We should
avalyze the tiine complexity Lo investigate the ability of the paraliel randomized search.

2.1 Time Complexity of Parallel Randomized Search

Since it takes different times to compute even the same problem becanse of rtandomuess. we
must consider the expected time complexity of the parallel randomized search,

Let p be the existential probability of a solution in a search path. Since the expected trials
for getting one solution with oue processor (.o, fallure occurrences 1) is 1/p, 1, the expected
time for getting one solution with one processor is #/p if the time for one trial to result o
failure or success is constant (¢} for every path. By n processors, the probability of getting oue
solution at some processor 15 p, = 1 — (1 — p)". and the expected trials for getting one solution

Figure 11 Speed up ratio of 8quecn problem

Spaacd wp ratio
17 -
L | —— Tor vaini -
. — Pnvomratani /
15
- HE RN -~
1 ,"f
13 - /
R /
11 =
e
R
a8
,/
i i
_-__,—-—-—I_--
- -
/ e -
M ;/_.-" _._,_--"'- e
o ;’/,.__("—‘—‘F - - -
. -
-
' - - r T T T T v
] Et t Fd] 51 10 1 e

Mumber of Procéasors

Figure 2: Speed up ratio of [gueen problem

Bpsed wup retic

-

/

f'//ﬁ
r,.f"”jf'

T T T T]

k1 - k' - 11 10 1. L
Mumibar -f Prodoaasors

|
Therefore, T,. the expected time for getting one solution by n processors is
!
L—101- pi"
The speed up ratio s
=il p
T. p
In the case where there are few solutions e the search space, namely, p 2= 0,
I,
E
T'his means there is no repeated choice of faillure paths by n processors.
In the case of p = |,

= 1}

ﬂ
T,

weans that when a solution is almost found on ane triall the speed up ratio is bad. o this case

22 |

even one processor gets an answer guickly heeanse the probleny s very easy,
:‘ll-"].ﬁ..ll'l'li}\'f'l'.

1, B I — (1 —
Ty, L {1—p)

= 1L+l —=pi"

means that speed up is L+ {1 — p)" though twice the number of processors is nsed. This shows
that the repeated choives inerease as the number of processors inereases.

2.2 Experiments on MultiPSI Machine

We consider the Trath Maintenance Svstem [1] as an experimental problem for the paraliel
randomized search. TMS cousists of justifications which express reasons for beliefs and derives
a rational state of beliel from justilications, Some researchers in the Al field are devoted 1o
studying 'T'MS for hypothetical reasoning or non-imenotonic reasoning, Since paraliel TMS
algorithms in [5, 6] are based on shared memory machines as the nnderlving architecture, the
algorithims are not suitable for distributed memory machines,

We have implemented a non-determimstic TMS algorithim (7] with the parallel randomized
search on the mesh-connected multiprocessor Multi-PSE [0 We experimented ou TMSs ex-
pressing the 8 and || queen problems with 16 processors. Figure |2 shows the theoretical and
the experimental speed up ratios. We had to 1ake an average time of 100 executions hecause
of randomness of the randomized search. And we used an experimental value of poto ger the
theoretical speed up ratio.

[11 the queen problem the experimental result corresponds well with the theoretical one.,
[n the 8 gueen problem the experimental result doesn’t correspond to the theoretical one. When
over 1 processors were used for the ¥ queen problem. a solution was almost found on | trial {for
about | second]. Although the work of each processor should be halted as soon as a solution
is found. the work cannot necessarily be halted immediately hecause of onr coding stvle. This
overrun is not small compared when with | second, s0 1t affects the total time of the 8 queen
problermn,

3 Combination of Randomized and Static Methods

Because all processors search the whole space independently with the parallel randomized
search, there is a possibility of repeated choices of search paths by different processors. To
cover this defect. we provide a combined method of the parallel randomized search with a
static load balancing method.

By the combined method the scarch space is divided mto subspaces 2o that each processor
may scarch the only given subspace at random. We call this method the divided methad.

Let's consider a situation where ten people search a ten room house for a needle.! By the
former method (non-divided method] each person scarches the whole house, however by the
divided method each person searches a different room and cach room is searched. Both are
the same except that each processor searches the whole house or a room in the house. By
the divided method we expected computation to be faster than computation by non divided
method. since the processor which is assigned to a subspace with a ligh existential probability
of solutions can find a solution quickly. We show in the following that the method which s
faster depends on divisions.

3.1 Comparing Methods with respect to Time Complexity

In this subsection, we compare the divided method with the non-divided method with respect
to their time complexities.

L+1°s divide the search space of a given problem jnto n o subspaces S 000085, and let the
existential probabilities of a solution in a search path for subspaces be g g, respectively, If
we choose, by non-divided method, a subspace S; with probability o, = -r|;+:',[—f- <E s —f.

244 5, = 0], the probability for getting a solution al cach processor, pos
po= 3o
=1
l -
= :Eﬂh +E:,‘t‘l;,

Sinee the probahiliny of pelting a solution at some processor is Pro o, = E=11 = p)” hv
the non-eivided methoed,

;j.;lrlllli'fl| - J - { |' - Z n]q]]-Ir
=1

and, the expected time for getting a solution is
£

e
lru. wriclete
tr
s

By the divided method. each processor searches only a subspace S The probability of

getting a solution at some processor of o processors hy the divided method s

Ll

‘“'"rhl' = l HI:.I' - ql]

=1
the expected time for getting a solution s
. i
die =
" .FJT",.{“.

"This example was originally osed in [10].

.
=t

Whieh method is laster?

PiIIIFI' - 'Fj.'ll-'---r--fr'l' = [I- - Zn:ql}n - nl:-l - {.IIE]
=1 =1

- {ﬁZH =)= 2 osa)" = 10— @)

¥ i < 2 20—) = T111 — g7

-Prrl'il > Frm.mﬁl:u

because
:%Z[I —q) =Y > Tl —q)s.
11521~) =TIl =)" < T g
Frowa. = Pro..
hecanse
SN -e) Yew < II0-ark.

[particular, it o, = 0, namwly 3 g = 0 then Pro. > Pry, . owing to geamettic mean >
harmouie wean with 1 ¢ = 0. We notice o, = Lr i this case. g = g2 = -+ = g, then
Frgin = Proondiv.

From the above discussion, a set of values of =; and ¢ that 15, a way of dividing the search
space, determines which of Fr o and Pryis larger.

3.2 Divided Method Experiments

We expernnented with the 8 queen problein using the above two methods on a MultiPS1
machine. There was no difference between the divided and non-divided methods{table 1) in
the total time of 300 repetitions to gel a single solution.

e the experiments, by the non-divided method each processor chooses at random from the
quecn position 1 L= 200 <30 = L1 =51 < 6,1 = 7.1 = 8} at the first choice point. By
the divided method, when 2 processors are used, we divide the search space into 2 independent
subspaces. from which each processor chooses at random ai the first choice point. One has
candicdate queen positions of {1« 1.1 < 2.0 = 3.0 « 1} as the first choice. The other has
candidate queen positions of {1« 501 = 6.1 = 7. = 8} as the first choice, For 4 processors, we
divide the search space into | independent subspaces. Candidate sets of queen positions as the
first chotce for each subspace are {1x L1 25 {1 =30 0w d} {1 =501 =6} and {1 < 7.1 = 3}
For = processors we divide the search space into ® independent subspaces. [n each subspace
one queen 15 placed [rom the heginning on the chess hoard at a positionof L= L1 =2, .1 =8
respectively . We notice that 2, = 0 in this case,

Because 2, = 0 owing to the divisions of the search space, and ¢ = -+ - = ¢, owing to the
property of the queen problem, Pro 6. = Pro,.oso that theve was no difference between the
two methods, We necd Lo experiinent on problens which have imbalanced 2, and g;.

“This division method is siolar to the statie load balaneing method for OR parcallel search in 3.

PEs | divided method | non-divided method
= KR! 341
1 64 458
2 700 f495
1 i 1157

Table i: Total times for 5 queen problemisec)

4 Related Works

I (9. 10] the parallelization of the randomized backtrack search was provided. This is based on
the saime idea as o section 2 that each processor resolves the problem using different strategies
Lo search a :-'inglr solution. Thollgh. |1}' the divided and non-divided methods, each Processor
retries from the beginning on [ailure, by the parallel randomized backtrack search each processor
goes back to the nearest choice point at the failure so that the processor may choose from
remaining candidates,

We compare our randomized search with the randomized backtrack search about the com-
putation on each processor. By the randomized backtrack scarch, each processor continues to
search lovallv a subtree of a whole search tree until the chosen subtree is scarched completely.
IT the chosen subtree has no solution, the search for the subtree is a waste of time, By our
randomized search, sinee each processor chooses a candidate from a whole search space, e
provessor doesut search locally, However, there 15 the possibility of repeated choices of the
same search path at each processor. while there is no such possibility with the randomized
backtrack search.

The framework of the expected time complexity i [49, 10] is different from ours. In [9, 10].
the time to get a solution by one processor is considered as a random variable. Their speed
wpr ratio of the expected time complexity depends on the distribution function of the random
variable, (e random varable 15 a number of teials, and we assume that the timne for one trial

1= consland,

5 Conclusions

We provided the pavallel randomized search for getting a single solution by distributed memory
machines. Then we provided the combined method of the parallel randomized search with a
statie load balanemg method, For the divided method we considered the expected computation
time and speed up ratio, and showed experimental results ou the MultiPS1 machine. Awd we
compared the non-divided method to the divided method.

Sinee the paraliel randomized search needs no communication during compuotation, thas
method is =uitable for distributed memory machines from the aspect of communication cost.

The followings shonld be done as future tasks:

b Prg,. and Pr, o should be considered for different divisions of real problems’ search
spaces. This helps us choose the suitable method from divided and now-divided one.

2, Because, by the parallel randomized search, random choices at choice points are too
arhitrarv. namelv, the probahilities for choosing each candidate are equal, we introduce
heuristics for bias toward some paths to reach solutions quickly.

-1

3. For the non-divided method, processors should exchange some information about each

other to rednce repeated choice of search paths.

Acknowledgments

We wish to thank Dr.W . Ertel from Techniche Universitat Mimchen, who gave us useful com-
ments on early version of this paper. We wish to thank Dr.V.Kuamar from University of Min
nesota, and the researchers of [COT for helplul suggestions and discussions.

References

b

2]

[6]

7]

bl

0]

Masuzawa, H. et al.: “kabuwake”™ Paralle]l Inference Mechanisim and [ts Evaluation, FJOC-
6. pp. 955 - 962 [1986).

Furuichi, M. et al.: A Multi-Level Load Balancing scheme for OR-Paraliel Exhaustive Search
Programs on the Multi-PS1, #FetF 90, SIGPLAN NOTICES Vol 25 No. 3, pp. 50 - 59
[1990},

Burg, B.: Parallel Forward Checking First Part, JOQT TH-384. (1991
Dovle, 1.0 A Truth Maintenance Svstem, Avfificial Infelligenee, 12, pp. 231 272 (1979).

Petrre, O Jro A Diffusing Computation for Trath Mamtenance, Proe. JOPP-86 pp. 691
GUS { 1Us6].

Fuleomer., R M., Ball W, E.; Correct Parallel Status Assignment for the Heason Mainte-
nance sysleny, Proc, LICAL&9, pp 30 - 35 [1984).

satoh, k.. lwayawa, N Computing Abduction by Using the TMS. to appear in [CLP-
91.(1991}.

Nakajima. koot ale Distributed implementation of KL1 on the Muolti- PSI/V ICLEP-
N TORG),

Janakivam, V. k. et al.: Randomized Parallel Algorithms for Prolog Programs and Back-
tracking Applications, Froc, HCOPP-87, pp 275 280 (1957).

0] Ertel, W.: Random Competition: A Simple, but Efficient Method for Parallelizing Infer-

ence Svstems, Techuiche navevsitdt Minchen, Re port FRI-1{3-90.0 1990).

b

