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Abstraetl

In order to express incomplete knowledge, extended logic pro-
grams have been proposed as logic programs with classical nega-
tion as well as negation as failure. This paper concerns how to
deal with & broad class of commonsense knowledge by using ex-
tended logic programs, and presents the semantics of hypothetical
reasoning based on extended logic programs. Like Poole’s frame-
work, some clauses are dealt with as assumptions distinct from a
theory about the world and are used to augment the theory. This
theory formation framework can be used for default reasoning, ab-
duetion and inconsistency resolution. We also show a translation
of the framework to an extended logic program whose answer sets
correspond to consistent belief sets of augmented theories.
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1 Introduction

Recent investigations in theories of logic programming have revealed the
close relationship between the semantics of logic programming and other
theories of nonmonotonic reasoning developed in Al: negation as failure in
logic programming is a nonmonotonic operator. This relationship opened up
the new application of logic programming to commonsense reasoning. To deal
with incomplete information easily, Gelfond and Lifschitz [8] extended the
class of general logic programs by including classical negation, in addition to
negation as failure, and showed ways to represent some incomplete knowledge
by extended logic programs. The semantics of an extended logic program is
given by the answer sets, which is a suitable extension of the stable models [T)
of a general logic program. As a result of incorporation of classical negation in
extended logic programs, the notion of consistency becomes more important.

Tn this paper, we expand the idea of Gelfond and Lifschitz extensively, and
present methods to deal with broader classes of commonsense knowledge. As
argued by Kowalski [18], abduction plays an important role in commonsense
reasoning and will be one of the major promising extensions of logic pro-
gramming, Therefore, we need an abductive framework based on extended
logic programs, On the other hand, to fill gaps in knowledge, one wants
to represent and use “default” and “prototypic” knowledge. However, since
defaults are usually inconsistent as a whole, simply adding all defaults to the
theory would often result in no consistent answer set in the framework of
Gelfond and Lifschitz. To overcome this difficulty, we shall deal with default
knowledge as a part of knowledge distinct from a theory about the world,
and use defaults to augment the theory and to predict what we expect to be
true. This view of default reasoning can be best seen in Poole’s framework
for consistency-based hypothetical reasoning [24], which relates an abduc-
tive framework called Theorist [25] to Reiter’s default logic [29]. Formally, a
knowledge system K is represented by a pair, (T, H), where

1. Fach of T and H is an extended logic program, that is, a set of clauses
of the form

Lo+~ Ly, ..., LpynotLyyyy... ni0t Ly,

where n = m > 0, and each L; is a literal, a formula of the form A or
-A (A 15 an atom),



9. T represents a set of facts that are known to be true in the domain,
and

3. H represents a set of possible assumptions that may be expected to be

brue.

Then, the main task of a knowledge system is theory formation, that is, to find
a subset E of H such that T'U & is consistent (such that therc is a consistent
answer set of T U E). We would not like to accept an incoherent theory (a
theory with no answer set) as a set of beliefs. By using this mechanism, two
types of reasoning can be performed:

1. Default reasoning. Find a maximal (with respect to set inclusion) sub-
set I of H such that T'U E is consistent. Such a maximal set F is the
basis of an expansion of the incomplete theory in accordance with de-
fault reasoning. The notion of such an answer set of I'U I corresponds
to the set of literals that belong to an extension in [24].

£

Abduction. Find an explanation E(C H) of a formula O such that
(i) T U E is consistent and (i} O is derived from T U E. The second
condition may be expressed in either of the two possible ways: there
is an answer set of T'U E which satisfies O; or, (7 is salisfied by cvery

answer set of T U E.

The syntactical difference of our knowledge system from Poole’s frame-
work [24] is that while the latter uses the first-order predicate calculus, ours
uses extended logic programs to formalize commonsense knowledge. For
knowledge systems, the fact that a formula has an cxplanation does not
imply that the formula holds in an extension (an cxample will appear in
Example 3.16). In this sense, defanlt reasoning is clearly distinguished from
abduction. I H represents a set of defaults, then an cxplanation is accept-
able only when it is included in a maximal subset E of H such that T U E is
consistent.

A simple form of default assumptions can be represented by

L+~ notl,

where 7, is a literal and L is the literal complementary to L: [or instance,
when A is an atom, A = -A and =A = A. These assumptions are also
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considered by Gelfond and Lifschitz [8] as the closed world assumption or
assumable atomic predicates. However, they don’t deal with them as as-
sumptions distinct from the theory, but include them in the programs. For
example, let the theory consizt of two clauses:

Q + ~P(A), ~P(B),
"'Q‘{"’f

and let us consider the closed world assumption for the predicate P:
“P(z) + not P(z).

If these clauses are conjoined, no answer set is available. Instead, we would
like to get two consistent answer sets, {=P(A), -Q} and {-P(B), -Q}, by
dealing with the assumptions as distinct clauses which can be invalidated or
ignored when they cause inconsistencies. Moreover, sometimes assumptions
may be added to make an incoherent program have consistent answer sets.
Thus the proposed framework can also be viewed as a system for inconsis-
tency resolution.

A naive computation to find each maximal consistent set of assumptions
would be carried out to search through the power set of H, starting from
the whole set H as the initial £ and removing one clause from E at a time
until we get consistent answer sets of T U E. In Section 4, we will show
alternative methods for the computation by translating a knowledge system
K = (T,H) to an extended logic program K* such that each answer sef of
K* corresponds to an answer set of ' U £ where E is a subset of I such
that T'U E is consistent. We will firstly consider the simplest form of defauit
assumptions, which are in the form of clauses without bodies. Then later,
we will extend the framework to deal with any extended logic program as
default assumptions.

Finally, the proposed framework will be compared to other hypothetical
reasoning systems based on logic programming [16, 10,19, 11, 23] in Section 6.
In particular, the proposed method for inconsistency resolution is different
from the TMS-style consistency maintcnance. While the TMS adds a new
clause to remove inconsistency, our proposal disregards some assumptions to
remove incoherency. In this sense, the proposed framework can be considered
as a generalization of nonmonotonic ATMSs [4, 15].



2 Classical Negation and Consistency

This section prescnts basic properties of extended logic programs that were
introduced by Gelfond and Lifschitz [8], on which our framework of theory
formation is based. There are at least three reasons why extended logic
programs are, among other forms of logic programs, suitable for hypothetical
reasoning.

1. The incorporation of classical negation into programs enables us to
provide for the incompleteness of information in answering queries as
well as in representing knowledge. This issue is discussed deeply by
Celfond and Lifschitz [8].

2. The idea of allowing classical negation to appear in heads of clauses is
very useful to formalize cxceptions to general rules. Typical examples
can be seen in represeutation of legislation by Kowalski [17], and in a
simple form of default reasoning by Kowalski and Sadri [19].

1. As seen in later sections, even in the notion of the simplest form of
assumplions —assuming ground atomic formulas—there exists the con-
cept of classical negation. An atom A can be assumed to be true il it
is consistent with a theory, that is, if =4 is not derived from a theory.
One may wrile this kind of assumptions by introducing new propo-
sitional letters, something like A’, as A « not A'. In fact, classical
negation can be shown to be computationally climinated in such a way
in [8]. However, such an introduced propusition again imposes the con-
cept of consistency because A and A’ cannot be believed at the same
time. Therefore, it is quite natural to represent hypothetical reasoning,
whose central part is maintaining consistency, by using extended logic
programs. Later, we will discuss this issue again in Section 5.

In the semantics of extended logic programs, a clause containing variables
stands for the sel of its ground instances. We denote by Lit the set of ground
literals in the language. Then the semantics of an extended logic program is

given by its answer sels.

Definition 2.1 [8] Let II be a set of ground clauses not containing net. The
answer set, a(Tl), of IT is the smallest subset § of Lit such that



1. for any clause Ly « Ly,..., Ly € II,if Ly,..., Ly € S, then Ly € §,

and

2. if § contains a pair of complementary literals, then S = Lit.

Definition 2.2 [8] Let IT be any extended logic program. A set S C Litis
an answer set of I1 if S is the answer set of T, that is, § = a(I1%), where
[15 is the set of clauses without not obtained from II by deleting

1. every clause containing a formula net L in its body with L € §, and

2. every formula nof L in the bodies of the remaining clanses.

Intuitively speaking, each answer set is a possible set of beliefs: each literal
in an answer set can be considered to be true in the belief set. If neither an
atom A nor its negation = A is contained in an answer set, the truth value of
A is unknown in the belief set. Thus the answer sel semantics can provide
for indefinite answers in answering queries, and such unknown information
can be referred to in an extended logic program. In this semantics, positive
and negative literals have the same status so that the result of negation by
failure to prove A does not mean that A is false .

If T is a general logic program, ie., a set of clauses without classical
negation, then the answer sets of Il are identical to the stable models of II
given by Gelfond and Lifschitz [7].

For convenience, we classify extended logic programs as follows.

Definition 2.3 Let II be an extended logic program.

(1) T is consistent if it has a consistent answer set.

(2) 11 is contradictory if it has an inconsistent answer set.
(3) T is incoherent if it has no answer set.

The above definition is exclusive and complete: every program is either
consistent, contradictory, or incoherent. This is verified by the following two

observations.

!This is a hig difference from well-founded semantics [26] or stationary semantics [27]:
we do not allow the inference that if 4 does not mateh the head of any clause of Il in
accordance with the default reasoning behind negation as failure, then put A into the false
part.



Proposition 2.4 (Minimality of answer sets [8]) Let II be an extended logic
program. For any two answer sets S and 8" of Il, if S C 5" then § = §".

Corollary 2.5 No extended logic program is both consistent and conlradic-
tory, and a contradictory program has only one answer set Lat.

Gelfond and Lifschitz [8] show the relation between the answer sets of an
extended logic program and ertensions of the corresponding Reiter's default
theory [29]. Every clause in an extended logic program II of the form

LD4_le--:Lm3nﬂth+h“*1nntLﬂ “]

can be identified with the default rule

L].""!....FF'I.L,“ . MLm-bl]---jM_-Lm
Ly '

According to [8], there is a 1-1 correspondence between the answer sets of
II and the extensions of the default theory (II,0). Note that a clause not
containing not

Ly« Ly,...,Ly, (2)
can be identified with the default rule
it AL
Lo ‘

While the last form of default rules are not excluded by Reiter’s definition,
the existence of at least one justification for each default rule is presupposed
in [29, Corollary 2.2], which says a closed default theory (D), W) has an
inconsistent extension if and only if W is inconsistent’. In our case, the
default theory (II, #) may have an inconsistent extension even though the set

of wifs W is empty. The precise characterization of contradictory programs
can be given simply as follows.

“As far as the author knows, this observation for Justification-free defaulis has first
been discussed by Brewka [1]. These default rules cannot be replaced with

Llha-uﬁLlﬂ. : M!F’u&
Lo

because such a transformation would never produce inconsistent extensions.
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Proposition 2.6 An ertended logic program Il is contradictory if and only
if the set of clauses of the form (2) (i.e., the clauses without not) in 11 is
contradictory.

Proof:  [Lit is an answer set of II if and only if Lit is the
answer set of 1197 that is the set of clauses obtained from IT by
deleting every clause containing a formula not I in its body (hy
Definition 2.2) if and only if TT** has an inconsistent answer set
(by Definition 2.1). O

The above proposition tells us that for a contradictory program, con-
tradictions may not be removed even if either any clause is added to the
program or any clause with net is removed from the program (see Proposi-
tion 3.2 (1)). Thus our main goal is to resolve incoherent programs rather
than contradictory programs. Although Gelfond and Lifschitz claim that the
class of extended logic programs is the place where logic programming meets
default logic halfway, the relation itself does not provide us how to do default
reasoning by using extended logic programs because every clause is identified
with a default rule, and because considering all clauses together may result
in an incoherent program, as seen in Section 1.

3 Theory Formation

The last observation encourages us to split an extended logic program Il into
two parts (T, H) such that TUH = Il and T'N H = 0, where T stands for a
set of facts and H for a set of assumptions that may be expected to be true.
The resulting system is called a knowledge system. As explained in Section 1,
the main task of a knowledge system is theory formation, that is, to find a
subset E' of I such that T'U E' is consistent.

Definition 3.1 Let K = (T, H) be a knowledge system. K iz consisfent if
there is a sel £ C H such that T U E is consistent. K is contradictory if
for any sel EC H, T U FE is contradictory. K is incoherent if K is neither

consistent nor contradictory.

The abhove definition is exclusive and eomplete.
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Proposition 3.2 Let K = (T, H) be a knowledge system.
(1) K is contradictory if and only if T' is contradictory.
(2) If T is consistent then K is consistent.

(8) If K is incoherent then T is incoherent.

Proof: (1) The only-if-part is obvious from Definition 3.1. The
if-part is a direct consequence of Proposition 2.6.

(2) Obvious from Definition 3.1.

(3) We prove the contrapositive of the claim, Suppose that T is
not incoherent, that is, T is either consistent or contradictory. If
T is consistent, then K is consistent by (2). If T is contradictory,
then K is contradictory by (1), In both cases, K is not incoherent.
O

The converse directions of Proposition 3.2 (2) and (3) do not hold. Adding
assumptions to an incoherent program may make the knowledge system ob-
tain consistent answer sets.

Example 3.3 Let us consider the knowledge system (T, H) where T' =
{P + notP}and H = {P « }. While T is incoherent, T U H has a
consistent answer set {P}.

In the following subsections, we will consider formalizations for several
kinds of commonsense reasoning by using theory formation.

3.1 Default Reasoning

One of the most obvious and important applications of theory formation is
default reasoning, where default assumptions are assumed to be true unless
there is evidence to the contrary. Thus as many assumptions as possible are
taken into account in a set of beliefs. The notion of such an answer set of
the augmented program by a maximal consistent set of assumptions roughly
corresponds to the set of literals that belong to an extension in [24].

Definition 3.4 Let K = (T, H) be a knowledge system. An exfension base
of K is an answer set of T'U IV where E is a maximal (with respect to set
inclusion) subset of H such that T'U E is consistent.

11



For default reasoning, the task of a knowledge system is to get its exten-
sion bases. This framework can make a contradictory or incoherent program
I1 become a consistent knowledge system (T, H) such that T =T U H, pro-
vided that prototypic or typical knowledge is appropriately put into a set H
of default assumptions that is distinct from a set T of clauses representing
factual or erceptional knowledge. To obtain extension bases, some assump-
tions are allowed to be ignored, but no assumption can be dispensed with
unless it is necessary to do so.

Example 3.5 Suppose we have the knowledge system K = (T, H ), where

T ={ =Flies(z) « Penguin(z),
Bird(z) «— Penguin(z),
Bird( Polly) +,
Penguin(Tweety) «— },
H ={ Flies(z) — Bird(z) 1.
Here it is easy to see that T"U H is contradictory. There is the unique
extension base S of K

5 = { Bird(Polly), Penguin(Tweety),
Bird(Tweety), Flies(Polly), ~Flies(Tweety), }.

Notice that the assumption is used for + = Polly but is ignored for z =
Tweety.

There are many special issues addressed in defanlt reasoning, such as
multiple extension problems and priorities between defaults. Thanks to the
two connectives in logic programming, the nonmonotonic operator not and
the constructive implication «, some of these topics would be more natu-
rally dealt with than by systems using the first-order predicate calculus as
knowledge representation language °. We will not pursue these topics further
because they are out of the scope of this paper. Instead, we shall show in
the next two subsections that maximally consistent theories of knowledge
systems can be used for providing the meanings of extended logic programs
representing tasks other than default reasoning.

IAnother feature of using — is that, as discussed in [19], while Pocle's system [24]
needs constraints to prevent the use of contrapositives of clauses, they are not necessary
for extended logic programs. See also the difference of the two approaches with respect to
narmng defanlts in Section 4.2

12



3.2 Isolating Inconsistency

Suppose that an extended logic program II is inconsistent, either incoherent
or contradictory. In this case, we cannot get any information on belicls be-
cause II has no answer set or the answer set contains every literal. Although
we could notice simply that the program has bugs, no partial information on
some atoms cannot be given by the result. Instead, we would like to have
some conclusions about objects which are irrelevant to the inconsistency.

Reasoning in the presence of inconsistency is thus often necessary in
database systems or expert systems, and has been studied in the field of
nonstandard logies in an attempt to restrict inferences from contradictions.
However, the main difficulty here is that an incoherent program does not
infer anything so that such a restriction does not work. That is why we need
another approach to this problem.

If T1 represents a finite set of clauses, we may characterize maximally
consistent subsets of II. If a belief is contained in an answer set of such a
maximal subset, we conjecture that the belief may be true in a possible belief
set of I1 if inconsistencies are removed. The idea of isolating inconsistencies
is not a new cne; for example, it can be seen in Rescher [31] for propositional
logic. When there are more than two maximally consistent subsets of II, the
uscr may be responsible for choosing one of them. More formally, for II, we
shall consider the knowledge system

K =(0,II).

Fach extension basc of K can give the meaning of a result of reasoning (with
inconsistency ) [rom II. If Il is an incoherent program, then by considering the
corresponding knowledge system K, for each source of incoherencies called
“odd-loops”, a clause in the loop will be removed to obtain consistency.

Example 3.6 Consider the knowledge system K = (0, II) where

M={ P+ notP
Q) +— not R
Re—not8 1}.

The unique extension basc of K is {ft}. No other clauses other than the
first can be disregarded; the clauses without either the second or the third
clause would remnain to be incoherent unless the first clause was removed.

13



If some of the clauses of I are reliable, then of course we may have a
knowledge system like K = (114, IT;) where I1; is reliable and 11; is suspicious.
We will discuss this issue later more generally in Section 6.5.

Example 3.7 (Barber's Paradox) Suppose that 1 is the extended logic pro-
gram consisting of two clauses:

Shaves(Jun,z) « not Shaves(z, ),
< Shaves(Ken, Ken) + .

This II is incoherent because the clause
Shaves{Jun, Jun) « not Shaves(Jun, Jun) (3)
is present in the program. Now, let K = (T, H) be a knowledge system where

T ={ -Shaves(Ken, Ken) 1,
H ={ Shaves(Jun,z) + not Shaves(z,z) }.

The default {3) is ignored in the unigue extension base of A,

{ ~Shaves(Ken, Ken), Shaves(Jun, Ken) }.

3.3 Closed World Assumption

Another interesting application along the line of maximally consistent theory
lormation 1s the closed world assumption (CWAY] [28] for some predicates in
the language. Gelfond and Lifschitz use the CWA to fill the gap between
a stable model of a general logic program IT and an answer set of Il when
interpreted as an extended logic program: an extended program II' that
consists of the clauses of IT and the CWA for each predicate P with n distinct

variables in the langnage
ﬁP{E],...,I“]'E—?E.DtP{Il.'..,.l.;Eﬂ) {-‘1}

precisely characterizes the meaning of [l in stable model semantics [8, Propo-
sition 4]. In other words, the CWA for all (or some specific) predicates is
consistent with any coherent general logic program. However, as shown in
Section 1, if the CWA iz used together with an extended logic program then

14



the augmented program is not consistent in general. Thus, we would not like
to assume all negative ground literals even if each of them can be consistently
assumed. This problem is analogous to the application of the CWA to non-
Horn clauses in databases, which may produce an inconsistent augmentation
[28]. For disjunctive databases, Minker [21] proposes the generalized closed
world assumption (GCWA) which concludes —4 for a ground positive literal
A if A is false in every minimal model of the clauses. In our case, instead of
simply using the minimal models, A can be tested for the membership in the

extension bases.
We shall consider two ways to represent the CWA in an extended logic

programs II. The first one is to use the knowledge systern
K, = (II,CW}),

where CW is the CWA (4) for all {or some) predicates. For a ground positive
literal A, =A can be assumed in a belief set if it is a member of an extension
base of (II, CW), and A can be concluded to hold if it is contained in every

extension base of (II, CW).

Example 8.8 Let the extended logic program IT consist of the following
three clauses:

Q « ~F(A),
~Q « -~P(B),
P(C) — P(A), P(B).

And suppose that CW consists of the CWA for the predicate P:
~P(z) + not P(z).

It is easy to see that II U CW is incoherent. Now consider the knowledge
system Ky = (11, CW). There are two extension bases of K;:

{-P(A), ~P(C), @} and {~P(B), ~P(C), ~¢ }.
Since = P{() is contained in both extension bases, it can be concluded.

The second method is simpler than the first one and uses the knowledge

svstem
Ky = (II, N Lit),

15



where N Lit is the statements of negative literals of the form
AP(2y,y... Ty) — (5)

for all (or some) predicates. Again, for a ground positive literal A, A can
he assumed in a belief set if il is a member of an extension base of (I, N Lit),
and = A can be concluded to hold if it is contained in every extension base
of (1, NLit).

Example 3.9 Let the extended logic program II consist of the following

clauses:
Pe—not@Q,
Q —notR.

II has the unique answer set S = {}. Now, suppose that N Lit contains
three assertions,

= s

= —,

-~ .

The unique extension base of the knowledge system Ko = (I1, N Lit) is
S'=8SU{-F,-R}={-PQ, ~RH}.

In this case, IT is a general logic program, and the extension base S’ is the
same as the answer set of the program, I[IVC'W, which is proposed by Gelfond
and Lifschitz [8] where CW is the CWA of the form (4).

Proposition 3.10 Let IT be a general logic program. Suppose that CW is
the CWA (4) for all predicates, and that N Lit is the clauses of the form (5)
for all predicates. Then, the following three are equivalent.

(1) § is an answer set of TUCW.

(2) S is an extension base of the knowledge system (II,CW).

(8) S is an estension base of the knowledge system (II, N Lit).

Proof: (1) = (2). Since TUCW is consistent by the supposi-
tion, obviously its answer set S is an extension base of (II, CW).
(2) = (3). This is a special case of Proposition 4.3, which will
be described in Section 4.1, where Hy and H; in Proposition 4.3
correspond to N Lit and CW, respectively.

16



(3) = (1). Since II does not contain classical negation, it holds
that II is consistent if (T, N Lit) is consistent. Now, an extension
base § of (II, N Lit) can be represented by the set of literals con-
sisting of the literals of a stable model Sp of IT together with the
negative literals each of whose atom is not contained in Sp. By
[8, Proposition 4], this S is an answer set of TUCW, O

Note again that for an extended logic program II, Proposition 3.10 does
not hold. The differences between the two knowledge systems, (1T, CW) and
(II, N Lit), appear in the next two examples.

Example 3.11 Let us consider the following extended logic program 1l and
two sets of hypotheses, C'W and N Lit:

M={ P+not=P },
CW={ =P+notP }, NLit={ -P« }.

There are two extension bases of K; = (IL,CW): §; = {FP} and 5; = [~}
But only 5; is the unique cxtension base of Ky = (II, NLit). In this case,
the hypotheses in Ky is stronger than K's. Thus, (II, N Lit) makes negative
literals to hold as many as possible, while (II, W) prescrves the semantics
of Il in a possible belicf set.

Example 3.12 Suppose that II, CW and NLit are given as follows.

M={ P+not-P,

C =P -Q,
0~ H

CW——{ "rpi-“ﬂﬂfp, NLI’E‘:-[ —'Pl—,
Qe notQ@ }, Q~ 1.

There is only onc cxtension base of Ky = (ILCW): 5§, = { P, ~Q, ~C'},
which is the unigue answer set of Il U CW. However, unlike the previous

example, Ko = (T, N Lit) obtains an extra extension base in this case: 53 =

{=P,-C}.

17



3.4 Abduction

Theory formation was originally motivated by the goal of providing a formal
account of inference to the best explanation of observations. This inference
has been known as abduction. In this case, the task of a knowledge system
is to find an ezplanation F of a given formula O as follows.

Definition 3.13 Let K = (T, H) be a knowledge system, and O be a for-
mula. A set E C H is an ezplanation of O (with respect to K ) if:

1. TU E is consistent, and
2. O is derived from T U E.

While the first condition is clear, the meaning of the second condition is
somewhat controversial. It may be expressed in either of the [ollowing *:

(a) there is an answer set of T'U E which satishes 0.

(b} O is satisfied by every answer set of T L E.

Here, we assume that (7 is simply a conjunction of literals, and we say that O
is satisfied by a set § C Lit if every literal in O is contained in S °. We write
E explainsy O if E is an explanation of O in the sense of the first definition
of derivability (a), and write E ezplainss O if E is an explanation of (0 in
the sense of the second definition of derivability (b).

“For restricted Ha, the first criterion is used in [16], and the second is in [10].

5The assumption that an explained formula is a conjunct of literals can be reduced
when the model theoretic semantics for not and — is provided. For this purpose, we
need the following three-valued semantics. Let L be a literal, G be a conjunct of literals
and for formulas with not, and § C Lit. L is true in 5 if [ € 5, false if L. € 5; otherwise
unknoun. not L is true in 5 if L € 5; otherwise false. (& is true in 5 if every element in &
is true in 5; false if at least one element in G is false in 5; otherwise unknown. L — G is
true in S if either both 7 and L is true in S or (7 is sed true in S5; otherwise false. For
example, P — =P is true in @ and in {F} but false in {—=P}. P+ not P is false in @ and
in {=P} but true in {P}. 5 is a three-valued model of a set T of clauses if every clause
in IT is true in S§. By using this semantics, we can show that every answer set of I1 is a
minimal {in the sense of set inclusion of literals) three-valued model of II. Note that this
gemantics differa from the model theory for three-valued stable model semantics given by
Preymusinski [26, 27)
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Unlike Poole’s system [24], semimonotonicity [29] does not hold even if
either all default assumptions in a knowledge system arc clauses without
bodies or they can be identified with Reiter's normal default rule

LU — L],...,Lm, ﬂﬂ'r',_‘Ln.

In other words, when we have two knowledge systems K = (T, H) and K' =
(T, H') such that H' C H, for an extension base 5’ of K', there may not be
an extension base S of K such that 5 € 5. This is because the clauses T
can be identified with Reiter's nonnormal defaults.

Example 3.14 Let K = (T, H) and K' = (T', H') be two knowledge systems
where

T={ P« B,

@ — A, not P,

P —not@ 1,
H={ A,

B« B
H={ A« 1.

K' has two extension bases: S = {A, @} and 53 = { A, P}. Clearly
H'" C H. However, Sy is not a subset of the unique extension base of K:

S={A B, P}

From the above discussion, the fact that a formmla has an explanation
does not imply that the formula is satisfied by an extension base. That is,
for knowledge systerns, explicability and membership in an extension differ.
In this sense, default reasoning is clearly distinguished from abduction. In
default reasoning, a set H of assumptions iz used as defaults, whereas in
abduction it is used as premises. If H represents a set of defaults, then an
explanation is acceptable only when it is included in a maximal subset E of
H such that T U F is consistent. In other words,

Definition 3.15 Let K = (T, H) be a knowledge system, and O be a for-
mula. Assume that H rcpresents a set of defaulls and that EC H. A set E
cxplains O by defaults (or, E plausibly explains Q) (with respect to K ) if:

1. E explains; O, and
2. there is a set £’ C H such that
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(a) E C E',
(b) £’ is a maximal subset of H such that T"U I'' is consistent,
(c) and either

i. E' ezplainsy O (written E explainsg O), or

. E' explainsg O (written K ezplainsg O).

K cautiously predicts O (written K predictss ) if every extension base of
K satisfies 0.

Example 3.16 Let K = (T, H) be the same knowledge system as Exam-
ple 3.14, that is,

T={ P~ 01,
Q) + A, not P,
P —not@) },
H={ A+,
B — }.
1. By = {A «}. T'UE, has two answer sets: 5, = {4, ()} and

S,={A, F}
E; explains; both @ and P, but cannot erplains; £ A Q.
E, erplainsy neither ) nor F.

2, By =1{B+}. TUE; has the unique answer set: S;={ 5, P}.
E,; cxplains; and erplainsg P.

3. H = Ey U E;. K has the unique extension base: S={A, B, P }.
H explains; P for every 1 =1,2,3,4, and K predictsy P.
E; (and E;) erplainsy and explainsy P.
() can be neither erplaineds nor explainedy.

If we follow the first definition of derivability, ) has an explanation F; be-
canse 5 contains . [lowever, since 5, is not a suhset of the unique extension
hase 5 of K, () does not hold in an extension. Notice that in this case Fy
can also explain P because §; contains P. Tt i enrions that P A @ cannot
he explained by E, while I, can explain both I and Q.

If we use the second definition of derivability, £} can be never explained
with respect to K because S; does not satisfy (). In this case, P cannot be
explained by E; either, but F can be explained by either £; or H.
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Sinee 1'U I is consistent, if H represents default knowledge, then P can
be explained by defaults, but Q cannot be explained, whichever definition of

derivability we choose.

4 Reduction to Extended Logic Programs

In this section, we will show a method of the transformation from any knowl-
edge system K = (T, H) to a single extended logic program K" such that
every consistent answer set of T U E for any E C H can be characterized by
an answer set of K*, and vice versa. Also, the extension bases of K will be
shown to correspond to a class of the answer sets of K*. Furthermore, we
will show in Section 5 that this program K* can be reduced to a general logic
program with integrity constraints. Recall that even if a program II is inco-
herent, an augmented program II' 2 [T may be consistent (see Example 3.3).
Thus, for a set £ C H such that T'U E is incoherent, we cannot prune the
supersets of F in 27 to find an extension hase of K. Hence, the methods
have computational advantages because we can characterize all consistent
answer sets of T U E for any E C H by analyzing the single program K*.

We require three steps for the translation to K*. To begin with, we will
examine a knowledge systern Ky = (T, Hy) such that Hp is a set of clanses
without bodies (Section 4.1). The first transformation is performed from
Ky to a knowledge system K, = (T, H,) such that K, is not contradictory
unless T' is contradictory. Then, the second translation constructs the target
extended logic program K* such that K* is consistent under a certain con-
dition. Next, in Section 4.2, we will describe the third translation from any
knowledge system K = (T, H) to the simple knowledge system in the form
considered in Section 4.1, and then the three transformations will be finally
combined.

In the following, for an extended logic program II, we denote the heads
of the clauses of II as

Head(TT) = { Ly | (Lo « Ly,... Lo, not Ly, ... not Ly) € I1 },
and the literals complementary to the heads of clauses in II as

Head(Il) = { g | (Lo & Ly ..y Lyn,not Ly, ynot L) € 11}
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4.1 Simple Default Assumptions

We firstly consider a simple knowledge system each of whose assumptions is
in the form of an assertion of a ground literal

Lo . (6)

Since positive and negative literals are dealt with symmetrically in extended
logic programs, we have no reason to restrict the simplest form of assumptions
to being positive. Let us consider a knowledge system Ko = (T, Ho) where Hy
is a set of clauses of the form (6). We will translate iy to a non-contradictory
programn Lhen to a consistent program.

Adding all literal assertions in Hp to the program T would result in a
contradictory or incoherent program. For example, when Hp is contradictory,
T U Hy must be contradictory by Proposition 2.6. To remove contradictions,
we can simply block the application of a default (6) if it happens that T is
derived, by adding a formula not L to its body. Now let K, = (T, If;) be the
knowledge system obtained from Ky = (T, Hy) by replacing each clause in
Hy of the form (6) with a clause in H; of the form

L—notl. (7

Then, T U If; is not contradictory unless T' is contradictory. This is because
I, does not contain a clanse without not so that the following property can
be shown to hold by Proposition 2.6.

Proposition 4.1 Let Ky = (T, Hp) end K, = (I, H,) be two knowledge
systems as above. K, is contradictory if and only if T U H, s contradictory
if and only if T' is contradictory.

Notice that T'U H, may be incoherent even if K is consistent. Before we
proceed further o remove incoherencies, let us consider the case that TU H,
is consistent. To characterize the extension bases of knowledpe systems, we
introduce the fvllowing definition.

Definition 4.2 Let IT and H be two extended logic programs. An answer
set § of Il is H-mazimal if there is no answer set 5" of IT such that

S MHead(H) C §' N Head(H).
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For a knowledge system K = (T,H), the distinction between the H-
maximality of an answer set and an extension base of K is important. When
T U H is consistent, since every assumption is not ignored, any answer set of
T U H is an extension base of K, but it may not be an H-maximal answer
sel of TU H. On the other hand, when S is an H-maximal answer set of
T U E for some set [ C H, it may not be an extension base of K. In
an H-maximal answer set, assumptions in a maximal subset of H are used
in practice, whereas in an extension base, assumptions just take part in a
maximal subset of H but some of them may be canceled so that their heads
are not contained in the extension base.

For the first translation, the next proposition is shown to hold.

Proposition 4.3 Let Ky = (T, Hy) and Ky = (T, H;) be two knowledge
systems as above. Supposc that T\J H, is consistent. If S is an Hy-mazimal
answer set of T U Hy, then § is an extension base of Ko,

Proof: We firstly prove that if S is an answer set of T'U H;,
then S is an answer set of T'U Hy*. Suppose that S is an answer
set of T Hy. Since

H* {Le |(L—notL)e H,L¢&5}

{(L—)eH,|T¢5}C Hy

and S = o((T U H))¥) = a((T U H,%)%), § is an answer set of
TuU H®.

Now, suppose that S is an H,-maximal answer set of T'U Hy.
Suppose also to the contrary that S i 15 not an extension base
of Kg. Then, there exists a set Eq (H,® C Ey € Hp) such that
T'U Ey is consistent. Let 5" be an answer set of TU Eq. By H,® C
Ey C H,%', clearly it holds that S Head(H,) C §' N Head(H,),
contradicting the H,-maximality of §. O

The converse of Pmpmitinn 4.3 does not hold: there is an extension
base of Ko = (T, H,) which is not an Hj-maximal answer set of T U H,
(suppose a case that an extension base S contains neither L nor T for a
literal L € Head(H,)). Moreaver, it cannot give every consistent answer set
of T U Ey for any set Ey C Hg, which is sometimes useful for abduction.
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Example 4.4 Let us consider the knowledge system Ky = (T, Hy) and its
translated knowledge system K, = (T, H,), where

T={ ~PenotP,

C~PFQ,
= — }1
Hy={ P+, Hy={ P+ not-F,
Q I Q —mnot—} }.

Kg has two extension bases: S} = { P, =C } and §; = {-F, @, ~C }. llow-
ever, 5, is the unique answer set of T'U H,. In Sy, neither ¢ nor —@ holds.
Note also that there iz an answer set of T'= T'U®: 53 = {-F, -C}, which
cannot be obtained from the answer sets of T U Hy,

Another difficulty of Proposition 4.3 is that the consistency assumption
for T'U H, is indispensable. For example, we have seen in Section 1 and in
Example 3.8 that an extended logic program with the CWA may be inco-
herent but the corresponding knowledge system may have extension bases.
Therefore, adding all assumptions (L + not L) in H; to the program T
would result in an incoherent program even if T is consistent. Thus our next
target is to remove incoherenctes. In the following translation, we will char-
acterize all consistent answer sets of T' U Ey for any set [y © H, as well as
each extension base of K. The next lemma gives the background for the
translation.

Lemma 4.5 Let T be a non-contradictory extended logic program, and £,y a
set of clauses of the form (7). If T U E, has an answer set S, then for each
clause in Ey with the head L, S contains either L or L but not both of them.

Proof: By Proposition 4.1, T U E; is not contradictory and
hence S does not contain both L and L. If § does not contain I,
then by the existence of (L « not L), (I'U E,)® contains (L «)
and so L € a(T'U E,)%) = 5. If § does not contain L, then L
must be contained in § because if L ¢ § then L € S holds by the
same argument as above contradicting L € §. O

The basic idea of the next translation is that we ezpand each incomplete
extension base S of Ky = (T, H,) by adding the extra literal L for each
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assumable literal L € Head(H,) which is undefined in S. The augmented set
of literals contains either L or [ for each L € Head(H,) and is an answer set
of T U Hy U H; (H; is the added assumptions) by Lemma 4.5.

Now, for each clause in H; of the form {7)

L+« natf,
we shall consider the opposile assumption of the form
L —notl. (8)
For H,, we denote the set of opposite assumptions of the form () as
T ={L«~notL|LcHead(H)}.
The result of the second translation is the extended logic program
K*=TUH UH.

FFurthermore, for knowledge systems Ko = (T, Hy) and K, = (T, Hy), we
shall impose the following restriction on the syntax of T'. This restriction
will be removed completely in the next subsection.

For any (L « ) € Hy (or (L — notT) € Hy),
every clanse in T does not contain L in its head (9)
and contains netther I nor net I in its body.

Although the restriction (9) on T seems to be strong, there are still three
utilities of assumptions within this restriction. For each (L + not L) € H,

we allow T to include the following clauses:

1. Conditioned conclusions: Lo +— L, L1,..., Len,not Ly, ... not Ly, .

L, may be concluded if L can be assumed to be true. For example, it
can represent properties of normal cases.

2. Cancellation of defaults: Te—1L ... Lynotl,y,....notk,.

This clause may block to assume [ and represents a condition for an
exception to hold.

25



3. Abnormal conclusions: Lg+— Ly,... Ly ,not L, yq,...,n0l L, not L.

Lo may be concluded if L cannot be assumed to be true. For example,
it can represent properties of exceptional cases.

Example 4.6 If the clause
—Ab(z) — not Ab(x)

is a default assumption in H, the following clanses in T satisfy the condi-
tion (9):

Flies{z) + Bird(z),~Ab{z) (conditioning)

Ab{z) — Ostrich(z) (cancellation)

~Flies(z) «— not —Ab(z) (exception) .

The next is the main result of the second translation.

Theorem 4.7 Let Ky = (T, Hy) be a knowledge system such that Hy is a
set of clauses of the form (7) and T satisfies the condition (9). If S is a
consistent answer set of T'U E| where E| is a subset of H,, then

§' = § U Head(H, \ E,) (10)

is n consistent answer set of K*. Moreover, every consistent answer sel of
K* can be represented in the form (10) where S iz a consistent answer set of
T U E, for some set E; C H,.

Proof: Let § be a consistent answer set of T'U £y (E, C ;).
Since no literal L € Head(H;) appears in the head of any clause
in T, for any literal L € Head(H; \ E), it holds that L & 5.
Therefore, 8 is consistent.

By Lemma 4.5, Head( E;°) C S and (Head(E, )\ Head(E; ®)) C S,
it follows that Head(E;%) C §, and

Head(H, \ Ey) U (Head(E,) \ Head(£,))
_ (Fead(H,) \ Head(E, %)) C .

Since no clause in T contains not L for any I € Head(H,) in its
body, it holds that 75" = T'S and

H,¥ = {L +« |I. € Head(E,") } = E;*.
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MNow,

o (K7)¥)
ofT% U H,S UHY)
o TS UES U{T « | L € (Head(H,) \ Head(E;)) })
al (T U E,)¥) U (Head( H,) \ Head( £,%))

(since no clause in T' contains

any L € Head( ) in its body)

S UHead(H, \ E;) (by (Head(E;)\ Head(E,")) € S}
5.

Hence, 5’ is a consistent answer set of K*.

To prove the second claim, take any answer set S' of K*, and
define _
E = {[LPﬂDfL}EH1|LES"}

Clearly, By C Hy and Hy¥ = {L — | L € Head(Ey)} = E1¥"
Then,
§ = of(TUH,UH)Y)
TS UHS UE®)
(
(

|

f

TS UES U{L « | LeHead(H, \ E1)})
= T U ET)UHead(H, \ Ey).

Now, let § = a(T5'UE,""). Since &' = SUHead(H, \ E), it holds
that T% = T5 and E;¥ = E;¥ by the condition (9). Therefore,
S=a(TSUE%) =a((TUE)%). O

Example 4.8 Let us verify Theorem 4.7 in the cxample of the CWA intro-
duced in Section 1. Let K, = (T, H,) be the knowledge system, where

T={ QQ*— -FP(A), ~P(B), }
Hy ={ -P(x) « not P(z) },
In this case, H; = { P{z) ~ not=P(z) }. There are three answer sets

of TUH, UH;: &' = {~P(A), P(B), -Q}, 5" = { P(4), -P(B), ~Q },
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and 53" = { P(A4), P(B), -} }. By using the translation in the proof of the
second claim of Theorem 4.7, we get the three corresponding answer sets:

Sy ={-P(A),Q} for TU{-P(A) ~ nat P(A)},
8, ={~P(B),-Q} for TU{~P(B)+ not P(B)}, and
Sa={-Q} for TUR=T.

The next two properties characterize the knowledge system Ky with literal
assumptions by the translated program K. These are the final results of this
subsection.

Corollary 4.9 Let Ky = (T, Hp) be a knowledge system such that H, 15 a
set of clavses of the form (6) and T' satisfies the condition (9). If 5 iz a
consistenl answer sel of T'U Ey where Ey is a subset of Hy, then

§' = § U Head(Hy \ Ey) (11)

is a consisient answer sef of K*. Moreover, every consistent answer set of
K* can be represented in the form (11) where 5 is a consistent answer set of
T U Ey for some sel By € Hy.

Proof: The first claim can be proved in a similar way as Theo-
rem 4.7. To prove the second claim, for any answer set S' of K~,
we can define Iy = {(L «) € Hy | L € 5§'} and use the same
argument as the previous proof. O

Theorem 4.10 Let Ky = (T, Hy) be the same knowledge system as Corol-
lary 4.9. If § is an ertension base of Ky, then

§' = SUHead(Ho \ Eo), where Eo={(L )€ Hy|LES}, (12)

iz an Hy-mazimal answer set of K*. Moreover, every Hy-mazimal answer

set of K* can be represented tn the form (12) where S is an exlension base
r.‘J'fKnp

Proof: Suppose that 5 is an extension base of Ky, Then, 5 is
an answer set of T'U Ey because Head(£y) € 5. By Corollary 4.9,
S is a consistent answer set of K. Suppose to the contrary that
5" is not an Hy-maximal answer set of K*. Then, there is an
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answer set S of K* such that S N Head(H,) C §" 1 Head(Hyg).
Since Bg={(L —)cHy|LeS}={(L+~)EH | Le S} it
holds that Ey < {(L «) € Hy| L € §"}. This contradicts the
maximality of Fy in 279, Hence, S’ is an Ho-maximal answer set
of K*.

Now, we prove the second claim. Suppose that 57 is an Hg-
maximal answer set of K*. By Corollary 4.9, 5 can be repre-
sented by S = § U Head(H, \ Ey), where S is an answer set
of TUF,and Eg = {(L «) € Hy | L € 5"} ={(L «) €
Il | L € §}. Supposc to the contrary that 5 is not an exten-
sion base of Ky. Then, there is a set F' (Eq C F € Hp) such
that T U F is consistent. Let R be an answer set of T U F.
By Corollary 4.9, R* = R U Head(H \ F) is an answer set of
K*. By Eg C F, clearly Head(£y) C Head(F") C R. Therefore,
S'NHead(Hy) ¢ RNHead(Hy) C R'NHead(H;). This contradicts
the Hy-maximality of §'. O

Example 4,11 Let us consider the knowledge system Ky = (T, Ho), which
is the same as kixample 4.4, and the translated sets of assumptions, H; and
.H1:

T={ ~P«notP, Ho={ P+,
CeFQ, Q- b
= },

H-|={ Pt—nﬂt—'P, E:{ ﬂPi—ngtP1
Qe not-Q }, Qe notQ }.

There are three answer sets of K* = TUHUH: §' = {P,-Q,~C},
5 ={-P,Q,-C}, and S = {~PF, -Q, ~C }. Of these, 5" and S, are
two Hy-maximal answer sets of K*, and they correspond to the expansions
of the two extension bhases of Ky: S, = {P,~C} and §; = { P, @, ~C}.
Note that S5’ is the expansion of the answer set of T: Sy = { =P, ~C}.

4.2 Complex Default Assumptions

Tn the last subsection, we considered a knowledge system K = (T, /) where
H is restricted to being either a set of clauses of the form (6) or a set of
clanses of the form (7). Moreover, we considered only the case where a set
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of clauses T satisfies the condition {9). In this subsection, we remove all of
these restrictions: we allow any extended logic program for both T and H.

Example 4.12 Let us firstly consider the case in which T does not satisfy
the condition (9) for K = (T, H) where H is a set of assumptions of the
form (7). Suppose that K is the following knowledge system:

T={ Q« P,

Q +— -P,

—Q t
H={ =P+notP }.

K does not satisfy the condition (9) because P appears in the body of the
first clause of T [t is easy to see that K has the unique extension base:
S ={-Q}, which is the only answer set of T. However, when we introduce
the opposite assumption, H = { P « not—P}, we see that the program
T HUH is incoherent. Thus Theorem 4.7 cannot be used in this case. This
is because neither P nor —F can be consistently added to T but introducing
H forces the answer set to include either of them by Lemma 4.5.

We shall translate a knowledge system K to an extended logic program
K*. The basic idea is “naming defaults” and is similar to Poole [24]. After
the translation, we can utilize the results for literal assumptions presented

in the last subsection.

Now, let K = (T, H} be any knowledge system. For each clause C € H
of the form (1), we shall associate a propositional symbol & which is not
appearing elsewhere in K ®. For any subset £ of H, we define the following
sets of clauses:

Ay(E) = {fc+~ |CEEY},

A(E) = {ép —not-b|CecE},

(E) = {dc+—notés|C€E}, and

(E) = {Lo— 6¢yLuy. -, Lyny110t Ling1, .- n0t Ly |
C=(Lo—Ly,...,Lp,not Lpyy,...,not L) € E}.

SIf an assumption ¢ contains n distinet free variables x = zy,...,#,, then we can
name C with §z(x) where 8¢ is an n-ary predicate symbol appearing nowhere in K. Note
that every variable appearing in a clause is a free variable in our language.
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For K = (T, H), we define the extended logic program K™ as:
K*=TUT(H)UA(H)UA(H).
Before analyzing the program K*, let us first consider a knowledge system
Ko=(TUl'(H),Ao(H)).

This knowledge systemn has only atomic assumptions and satisfies the condi-
tion (9) because no és € Head(Ag(H )} appears in any clause other than in
the body of one clause in I'| H) 7. Therefore, we can apply Corollary 4.9 and
Theorem 4.10 for K.

The basic property of the translation is shown by the next theorem.

Theorem 4.13 Let K = (T, H) be uny knowledge system, and E be a subset
of H. 5 1s a consistent answer set of T U E if and only if

5" = S U Head{ Ag(E))
is a conststent answer set of T'U I'(E) U Ag( F).

Proof: Suppose that S is an answer set of T U E, Then 9 is
obviously consistent. It is easy to see that the knowledge system
(TUT(E), Aol E)) satisfies the condition (9). Therefore, T = T°%
because 5" does not contain any new literal other than the names
of assumptions of E. Similarly, I'(E)* = I'(E)?, and Ag(E)¥ =
Ap(E)= {6~ |C e E}.

"We can allow T to include clauses containing f € Head{An(H)) within the restric-
tien {9) and use them for exceptions and cancellations, as in the previous subsection. Since
these clanses are not necessary for our purpose, we do not pursue this possibility further
in this subsection (sve also Example 4.18).
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Now,

al(TUT(E) U Ao(E))¥)
(TS UT(E)° U Ag(E))
a(TSU{be — |CEE}YU{Ly+—Ly,...,Lm |
(Lo ~— Ly,..., Loy, ot Lypjn,...,not L) € E,
Lm-l-l'lr"&Lﬂ ‘555'} }

(by unfolding the clauses of ['(£)¥ by Ag(E))
a(TS U ES U Ag(E))
el (T U E)¥) U Head(Ag(E))
S U Head(Ag(E))} (by 5§ Head{Ag(E)) = 0)
S,

Henece, 5" is a consistent answer sel of T U I'(E) U Ag( E).

On the other hand, suppose that S’ is a consistent answer set of
TUT(E)U Ag(£). Since § N Head(Aq( E)) = B, we can immedi-
ately identify S from S’. By using the same translation as above,
we see that

S = a(T¥ UT(E)¥ UAl(E))
(TS U ES U Ag(E))

a(T U E)5) U Head( Ag( E)).

|

Since (T U E)%) N Head(Ag(E)) = @, it holds that

S =a((TuE)®).

Hence, 5 is an answer set of TU E. O

By comhining Theorem 4.13 and Corollary 4.9, we get the following re-

sult. Every answer set of any consistent theory from K = (T, H) can be
characterized by an answer set of K* =T UT(H)UA(H)U A(H), and vice

Corollary 4.14 Let K = (T, H) be any knowledge system. If S is a consis-
tent answer set of T'U £ where E is a subset of H, then

§' = S Head(Ag( E)) U Head(Ag(H \ E))

is a consistent answer set of K=. Moreover, every consisten! answer set 5'
of K* can be represented in the form (13) where S is a consistent answer set
of 'UE for some set E C H.
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Corollary 4.14 shows that for (T, H) if TU E (E C H) has a consistent
answer set S then §; can be consistently added to S for every assumption
C in E and the negated names of all other assumptions can be also added
to 5, and that we can find these answer sets of the consistent theories from
(T, H) by removing all of positive and negative naming assumptions from
the answer sets of K,

Finally, we can characterize the cxtension bases of K = (T, H) by com-
bining Theorem 4.10, Theorem 4.13 and Corollary 4.14.

Corollary 4.15 Let K = (T, H) be any knowledge system. If 5 is an exten-
sion base of K, that is, an answer set of TU E for a mazimal subset E' of H
such that T U E is consistent, then

§' = S U Head(Ag( E)) U Head({Ao( H \ E))

is @ Ag( H)-mazimal answer set of K*.
Conversely, if §' is a Aol H)-mazimal answer set of K, then

§ = 8"\ (Head(Aqs(H)) UHead(Ag(H)))
is an extension base of K.

Example 4.16 Let K = (7, H) be the knowledge system introduced in

Example 4,12
T={ @« P,
G — =P,
) }9
H={ =FP+~notP }.

Now, we can name assumptions as

ﬁO{II)-{ éﬂP!—M!P'—_ }7 ﬂ.ﬂ.d
F(H]={ —'Fi—é_p._mp*ﬂﬂtp }f

Recall that K has the unique extension base: § = {-@Q }. It is easy to check
that §' = SU { =8-p—nep } is the unique answer set of K* =T U I{H)U
A(HYUA(H).

33



Example 4.17 Let us see how an incoherent program 1l is dealt with to get
consistent answer sets. We construct the knowledge system (0, II) according
to Section 3.2 and apply the reduction techniques. For example, consider the
knowledge system K = (@,IT) where

M={FP«notP}.
In this case, S = {§ is the unique extension base of K. Now,

oMy ={ bpenatp — }
T(M)={ P« bppoipynotP }

The unique answer set of K~ is
§=5u { _"Efv—nntf' } .

Example 4.18 Consider the knowledge system K = (T, H) introduced in
Example 3.5:

T'={ =-Flies(z) — Penguin(z),
Bird(z) «— Penguin(z),
Bird(Polly) «—
Penguin(Tweety) « 1,

H ={ Flies(z) « Bird(z) }.

In this case, we can name defaults as

Mo(H) ={ Birdflies(z) — }, and
I'(H)={ Fles(z)+ Birdflies(z), Bird(z) }.

Then, we see that there is the unique Ay(H }-maximal answer set of K*:

5" = { Bird( Polly), Penguin({Tweety), Bird(Tweety), Flies( Polly),
Birdflies( Polly), - Flies(Tweety), ~Birdflies(Tweety) } .

Removing all the naming literals from S’, we get the unique extension base
Sof K:

5 = { Bird( Polly), Penguin{Tweety),
Bird(Tweety), Flies( Polly), —Flies(Tweety), }.
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The difference between Poole’s system and ours with respect to the naming
is that the naming in [24] has the effects of introducing normal defaults, for

example,
: M Bird(z) D Flies(z)
Bird(z) O Flies(r)

where O is classical implication. This causes unintended side effects: from
~Flies(Sam) we can conclude ~Bird(Sam) (this should not be allowed be-
cause we do not know the reason for Sam’s inability to fly: Sam might
be a penguin). To prevent such an inference, we must add a fact like
(=Flies(z) D —Birdflies(z)). But, this further causes another side effects:
from the assumption Birdflies(Paul) and the contrapositive of that fact
(~Flies(z) O —Birdflies(x)) we can conclude Flies( Paul). To prevent the
last inference, we must use this fact as a constraint. In our case, both kinds
of pruning rules are unnecessary.

5 Reduction to General Logic Programs

The question now is how to compute the proposed framework for theory for-
mation. Since we have scen that every knowledge system can be transformed
to a single extended logic program, we can use methods to compute answer
sets of extended logic programs. For this purpose, Gelfond and Lifschitz [8]
show how to reduce an extended logic program to a general logic program.
The method is to replace every classical negation with a new propositional
symbal, for example, = A is replaced by A’. However, even if the original ex-
tended logic program is incoherent, such a reduced program may have stable
models.

Example 5.1 Let IT be the extended logic program shown in the example
of the CWA in Section 1, and II* be the corresponding general logic program
obtained by the reduction in [8]:

IT={ Q@‘—‘ ~P(A), -P(B), It = { g*{_ P{AY, P(B),
~P(z) = not P(z)  }, P(z) — not P(z) }.

While T is an incoherent program, the translated program II* has an incon-
sistent stable model: M = { P(A), P(B)", Q, @' }.
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By [8, Proposition 2|, it holds that II is consistent if and only if II* is
consistent. Note that not every incoherent program may be translated to
a general logic program that has inconsistent stable models; it may remain
to be incoherent (for example, II = { P « not P }). Conversely, not every
translated general program that has inconsistent stable models may corre-
spond to an incoherent extended logic program; it may be translated from
a contradictory program (for example, [I* = { P «, P’ «}). We have
classified inconsistent extended logic programs into two types: contradic-
tory programs and incoherent programs. These inconsistent programs may
be transformed to general logic program which have either inconsistent sta-
ble models or no stable model. In either case, we cannot accept programs,
since we would like to get consistent programs by theory formation, that is,
programs whose translated programs have consistent stable models. Thus,
we can prune all inconsistent stable models regardless of the status of the
original extended programs.

By the above argument, we need a mechanism to check whether the re-
sulting stahle models have a pair of complementary propositions, say A and
A", If a stable model possesses a pair then we discard it. For this purpose,
we can represent pruning rules as infegrity constraints (in the form defined,
for example, by Sadri and Kowalski [32]) ®. For example, for each atom A
such that both positive and negative literals appear in the program, we may
add an integrity constraint:

— A, A (14)

These constraints have to be considered at the implementation level. Satoh
and Iwayama [33] describe how to compute stable models satisfying integrity
constraints by a TMS-like bottom-up manner. On the other hand, in systems
based on stable models such as [16, 11], more general integrity constraints
than simple constraints of the form (14) are often allowed, yet none of them
considers classical negation. Although such a general expression is not al-
lowed at the representation level in our system, for an integrity constraint of

the form
‘_Lh"*er:ﬂdLm-I-ltH-:ﬂ'ﬂLnHr {15}

8 A similar proposal for using integrity constraints can be seen in pruning non-stable
minimal models by Eshgi and Kowalsk [6].

“Integrity constraints of the form (15) roughly correspond to quantifier-free formulas
with a modal operator K of the form, -H L1 v.. . V- K L VK Lpy V...V K Ly, in
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we can represent a corresponding set of clauses by introducing a new propo-
sition €' as
C — L],...,Lm,ﬂﬂtL’m+],.. . ,ﬂﬂfL“,
(16)
= — .

Thus all we have to deal with at the implementation level are only clauses
of the form (14)!°. Neither a general checking mechanism like [32, 16] nor a
generator of a new clause to remove inconsistencies [11] is necessary. More-
aver, at the representation level, it is often more convenient to use classical
negation because assumptions and exceptions are dealt with naturally by
using elassical negation, as discussed in Section 2. In fact, Kowalski and
Sadri [19] do not use integrity constraints at the representaticn level but use
classical negation in a restricted way.

Alternative methods to compute the theory formation framework can
be conceived. Since we have seen that every clause in H of a knowledge
system K = (T, H) can be transformed to the unique naming assumption,
we can use nonmonotonic ATMSs [4, 15] to compute explanations of each
atom. The consistency maintenance is then performed by pruning each set
of assumptions which is subsumed by a minimal nogood.

6 Discussion

In this section, we compare the proposed [ramework to other hypothetical
reasoning systems based on logic programming. Our framework makes it
possible to deal with incomplete knowledge and to remove inconsistencies, so
that comparisons should be made from those viewpoints.

Feiter's definition [30].

WElkan (5] shows another method to eliminate integrity constraints within the frame-
work of general logic programs. He translates a constraint of the form (15), where I,
(1 <i<n)is an atom, to the following clauses:

- -!"L1""|-L"1-.ruHDf Lﬂlli-l ---- niot Lﬂ s
) = not 7,

Cho— !"I-I'Z#.-Gjr

Oy = Chy

where , €y and y are propositions not mentioned in the original program. However,
ineorporating classical negation allows us to represent it in a more concise form (16).
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6.1 Abductive Logic Programming

There are some proposals for abduction by using logic programming.

Eshgi and Kowalski [6] use a backward-chaining procedure to answer if
a query is satisfied by a stable model of a general logic programs, but they
do not consider assumptions other than formulas representing negation as
failure. Their framework is expanded by Kakas and Mancarella [16] to allow
for assumnable predicates.

In addition to [16], Gelfond [10] proposes abductive frameworks for logic
programs. The most significant difference is that ours allows any extended
logic programs as assumptions but both [10] and [16] consider only assump-
tions of the form of literal assertions (6). For these simple forms ol assump-
tions, our framework is in essence equivalent to them. Note that the defini-
tions of ezplanaiions are different between [10] and [16]: [16] uses explains,
whereas [10] uses explainsy (see Section 3.4). Kakas and Mancarella [16] deal
with general logic programs with integrity constraints, which are special cases
of our framework, as a background theory, and assumptions are only atomic
assertions. Gelfond [10] allows a background theory to be an extended dis-
junctive program, whose semantics is given in [9]. It is possible to extend
our framework by allowing such programs for both background theories and
assumptions according to the semantics.

Other big difference is that their systems [10, 16| consider only abduction
as an application and cannot be applied to default reasoning except that
[10] considers an application to diagnosis in a different way. As explained in
Section 3.4, the fact that a formula has an explanation does not imply that
the formula is true in an extension of a knowledge system. Thus, when a set of
assumptions represents default knowledge, it is not suitable for commonsense
reasoning to find only explanations.

6.2 Exceptions

The proposed method for inconsistency resolution can be applied to much
broader classes of default knowledge than Kowalski and Sadri’s system [19],
which handles a simple form of ezceptions. Even for the simple form of
exceptions, the methods are quite different. For instance, in Example 3.5,
the extended logic program obtained from T'U H by using the transformation
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in Kowalski and Sadri's system,
T U { Flies(z) + Bird(z), not ~Fhes(z) }

has the unique answer set that is identical to the extension base of K. The
reason why the translation works is that the exceptional clause

—~Flies(Tweety) «— Penguin(T'weety)

cancels the normal default rule
Flies(Tweety) — Bird(Tweety), not ~Flies(Tweety).

The limitation of [19] is that clauses are automatically divided into two (those
having positive literals as heads and those having negative literals as heads)
so that negative literals are always exceptions of the positive ones with the
same predicates. Kowalski and Sadri, however, claim that their techniques
can be extended to deal with exceptions with individual clauses rather than
entire clauses and with exceptions having positive conclusions. But if we
allow these mixed exceptions at the same time, then we have to take care of
the semantics for each exception individually because the original answer sct
semantics of (8] is changed in [19]. Therefore, the techniques proposed in this
paper are more flexible. Qur framework has also much richer expressive power
than [19] because any extended logic program can be a set of assumptions.

Moreover, our notion of extension bases are not restricted to dealing
only with exceptions, but can be applied to other types of default reason-
ing where exceptions may not be given explicitly for defaults. For instance,
both Example 3.7 and Example 3.8 cannot be dealt with by [19]. In Exam-
ple 3.7, there is no exception of the default whose head is § haves(Jun,z)
(~Shaves(Ken, Ken) is not an exception of the default conclusion), and
therefore the default cannot be translated in the same way as Example 3.5.
In the case of the CWA, since assumptions are inherently expressed by nor-
mal defaults, the translation does not change the meaning of the original
program which may cause incoherency.

6.3 Inconsistency Resolution

We can compare our method to the TMS-style computation. According to
Elkan [5], a set of justificatious for Doyle's TMS [3] can be identified with
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a general logic program with integrity constraints, and the TMS computes
a consistent stable model of the program by a bottom-up manner. Classical
negation is not incorporated in the TMS.

However, inconsistency resolution by our framework is different from the
TMS-style contradiction resolution [3, 11, 5. When a contradiction occurs,
the TMS imposes a new clause in order to believe a literal that has not
been believed. As a result of contradiction resolution, the TMS may fail
to output a stable model of the original program. Elkan [5] claims that
when the TMS finds an inconsistent stable model, it should choose another
stable model of the program if there exists. However, such a strategy is
not tolerant of incoherent programs because if the program has no consistent
stable model then it does not output anything. On the other hand, Giordano
and Martelli [11] consider all possible models which the TMS may output by
contradiction resolution (called dependency-directed backtracking). Although
their method reflects an incremental use of the TMS, its model theory is no
longer stable model semantics in the sense that contrapositives of original
clauses are interpreted to be valid and that literals interpreted to be false
by negation as failure in the original program can be believed through those
contrapositive clauses. This kind of semantics may throw us into confusion
at the representation level. We consider that this confusion comes from the
fact that the TMS does not deal with retractable assumptions.

Becanse our system represents assumptions explicitly, assumptions alone
are invalidated; other clauses are not affected. In this scnse, our knowledge
system can be considered as a generalization of nonmonotonic ATMSs [4, 15,
which deal with general logic program with integrity constraints and atomic
assumptions.

DBesides the TMSs, therc are some proposals for contradiction resolution
in nonmonotonic reasoning [22, 12], To resolve incoherencies in autoepistemic
logic, Morris [22] proposes stable closures when there is no stable expansion.
His proposal is motivated by dependency-directed backtracking in the TMS
and therefore some formulas are believed to remove inconsistencies. Again,
we do not add any new formulas but remove a minimal set of hypotheses
for default reasoning. On the other hand, Guerreiro, Casanova and Hemerly
[12] propose an alternative definition for default logic extensions. Although
their definitions are quite different from ours, their idea is similar because
defaults are allowed to be ignored in their extensions to keep consistency but
no default rule can be dispensed with unless it is necessary to do so. We
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consider such defeasible defaults for some distinguished clauses rather than
entire defaults.

6.4 Pereia et al.

Recent work by Percia, Aparicie and Alferes [23] independently concerns
how to represent knowledge for default reasoning by using extended logic
programs. Priorities among defaults can be formulated in the theory itself
by their framework. Therefore, their goal is similar to our proposals described
in Section 4. The differences between [23] and ours are as follows.

First, [23] uses an extension of well founded semantics to classical nega-
tion, which provides “cautious” conclusions rather than alternative solutions.
On the other hand, answer set semantics on which our framework is based is
very suitable for determining what holds in single extensions. In particular,
viewing each extension as a theory is indispensable for abduction.

Second, they use both naming defaults (which we described in Section 4.2)
and the cancellation technique similar to Kowalski and Sadri [19] (adding
not Lg in the body of a rule whose head is Ly). This is more complicated than
our translation because we do not require both of them. In our framework, it
turns out that the cancellation technique is less useful than naming defaults.
This is because the cancellation does not change clauses if they represent the
CWA and because exceptions have to be explicitly listed for the cancellation
to work. We can thus deal easily with contradiction resolution and abduction
as well as default reasoning within the same framework.

Third, & central concern of [23] is to “hack” programs so as to deal with
finer issues in default reasoning. We define the framework meta-theoretically
by separating the theory into two: those concrete knowledge and those hy-
pothetical knowledge. Using H-maximality for K = (T', i) enables us to
represent defaulls in a more concise and understandable form. Qur transla-
tion is just to show our theory formation framework can be represented in a
single program for computation, and the resulting program is not intended
at all to be the user-provided representation of knowledge.

6.5 Priority

The last question is how to divide theories into the factual or background
theories and default assumptions. As every clause in extended logic programs
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can be identified with Reiter's default rules, we have to classify two types
of rules for a knowledge system. One easy way is, for a knowledge system
K = (T, H), to associate integrity constraints in the sense of Reiter [30] with
T and other theories with H X, Then, integrity constraints must be satisfied
by every extension base and all other clauses can be ignored as minimally as
possible.

A more natural and widely acceptable view of knowledge systems is to
divide the program into subprograms (categories) in accordance with the de-
grees of credibility of defaults, where the priority is determined depending on
the problem domain. This view of hypothetical reasoning is exactly the same
idea as Rescher [31]. There may be more than two categories for a problem.
If these categories can be totally ordered, then we can have an extended
knowledge system like K = (Hy, H,,... , H,). An extended framework for
hypothetical reasoning based on first-order logic is considered by Brewka (2]
as an extension of Poole's framework [24]. It may be possible to extend our
framework in the same way as [2].

7 Conclusion

We expanded the idea of Gelfond and Lifschitz and presented methods to deal
with broader classes of commonsense knowledge. Like Poole’s framework,
default knowledge H is dealt with as a parl of knowledge distinct from a
theory T' about the world, and defaults are used to augment the theory and
to predict what we expect to be true.

One of the main tasks of a knowledge system is to find a maximal (with
respect to set inclusion) subset £ of I such that there is a consistent answer
set of the extended logic program T U E. I adding assumptions causes
inconsistencies, then a minimal set of assumptions can be ignored to remove
inconsistencies. This framework can also be used for abduction. Compared
with Poole's system which uses the first-order predicate calculus, abduction

UNote that Reiter considers a database as a set of first-order sentences and defines
integrity constraints as a set of epistemic formulas (cailed KFOPCE) [30]. In our case, both
databases and integrity constraints can be any extended logic programs that are identified
with default rules. This is an extension of (monotonic) databases to (nonmonotonic)
knowledge bases, whose semantics can be partially given by using Levesque’s autoepistemic
logic [20]. The exact epistemic semantics of default logic and extended logic programs are
considered in [14].
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and default reasoning cannot be related elegantly in our {ramework, but some
commonsense knowledge may be represented more easily.

We also proposed the translation of a knowledge system K to an extended
logic program K* such that each answer set of K~ corresponds to an answer
set of a consistent theory from K, and vice versa.

The proposed framework can handle any extended logic program as a set
of assumptions. Therefore, the presented methods of naming defaults and
inconsistency resolution may also contribute to giving the basis of general-
izations of (nonmonotonic) ATMSs.
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