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Abstract

This paper describes an efficient diagnostic mechanism which utilizes
hierarchical models of a device, Model-based diagnosis is a general
approach for diagnosing devices using the behavioral specification of a
device. Although model-based systems are more robust than heuristic-
based expert systems, they require more computation time. In order
to develop an efficient model-based diagnostic system, it is important
to utilize the information about hierarchical structure of a device. In
general, a diagnosis using detailed level model is expensive. Therefore,
in order to select an appropriate level to use, we must resolve the trade-
off between the diagnosis cost and the diagnosis precision. This paper
introduces the model diagnosability criterion to estimate how detailed
diagnosis can be achieved with a model. This criterion enables to select
an appropriate level to use. The techniques described in this paper is
adaptive to several kinds of situations, such as, the required diagnosis
precision, the given computation power, the observation cost, and the
phase of a diagnosis.



1 Introduction

Model-based diagnosis is a general approach for diagnosing devices using the behavioral
specification of devices [1, 3, 5, 9]. Although model-based systems are more robust than
heuristic-based expert systems, they require more computation time. In general, the
computational complexity of a model-based diagnosis grows rapidly with the complexity
of a device model. In this paper we propose an efficient diagnostic mechanism which
utilizes hierarchical models of a device.

In order to diagnose a device efficiently, several techniques have been investigated.
One approach is to use probabilistic information. For instance, the minimum entropy
technique (GDE [3], Sherlock [4]) and.the focusing technique [2! are essential for practical
use. Another approach is to utilize hierarchical models of a device. XDE [6] adopted a
hierarchical model representation, which can represent the device at multiple levels of
abstraction. In the carly stage of a diagnosis, the system uses an abstract level model
to eliminate portions of the device from consideration. In the later stage, it utilize a
detailed level model. In general, a diagnostic computation at more detailed level 1s more
complex and more expensive. Therefore, in order to select an appropriate level to use,
we must resolve the trade-ofl belween the diagnosis cost aud the diagnosis precision.

In the trade-off resolution process, a diagnostic system must consider the situation,
eapecially the required diagnosis precision and the diagnosis cost. Consider that an
clectronic device which is composed of several boards, and that each board has several
chips. In some situation, the diagnostic requirement may be to find a broken chip.
However, in another situation, a repairman may want to know which board should be
replaced. In the latter case, a diagnostic systemn does not necessary to pinpoint a broken
chip. Hence, a diagnostic system should have adaptability to the required diagnosis
precision. On the other hand, a diagnostic system should reduce the total diagnosis
cost, i.e. the sum of the observation cost and the computation cost. The observation
cost, however, depends on the situation. For example, it is costly to capture a digital
signal at particular point of a device using a logic analyzer manually. However, an
electron-beam tester can observe a signal at an arbitrary point in an LS] immediately.
In the former case, the number of required observations greatly affects the total diagnosis
cost. On the other hand, in the latter case, the total cost is mainly determined by the
computation cost. Therefore, in order to reduce the total diagnosis cost, a diagnostic
system should be adaptive to the observation cost. Moreover, the computlation cost
depends on the given computation power. Hence, a diagnostic system should also adapt
to its computational environment.,

Conventional systems [1, 6] adopted a simple technique to resolve the trade-off be-



tween the diagnosis cost and the diagnosis precision. They are not flexible, because they
assume the observation costs are always costly, and they always descend (expand) the
physical component hierarchy at most one level at a time. This paper presents a so-
phisticated way to select an appropriate model adaptively. First, we introduce a model
diagnosability criterion to estimate how much information could be gained by using a
model in a given situation. Then we propose an adaptive diagnosis mechanism with
hierarchical models.

This paper is organized as follows. In the next section, we discuss about a model-
based diagnosis with hierarchical models, especially the relationship between the re-
quired diagnosis precision and the entropy is considered. In section 3, we introduce a
model diagnosability criterion to estimate how detailed diagnosis can be achieved with
a model. An adaptive diagnosis mechanism is presented in section 4. The last section
discusses the utility of the approach and the future work.



2 Diagnosis with Hierarchical Models

Most of the conventional hierarchical model-based approaches [1, €, the structure
of a device is represented as a physical hierarchy and a logical (functional) hierarchy.
Usually, a required diagnosis precision is represented as a level in the physical hierarchy,

for example, gate-level or chip-level, as shown in Fig. 2-1 (a).
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Figure 2—-1 Hierarchical structure

In general, a physical hierarchy and a logical hierarchy have different structures
{e.g. Fig. 2-1 (b)). In this paper, to simplify the discussion, we assume that the
two hierarchies have a same structure, and also assume that there 1s only single fault in
a target device. However, the proposed techniques can easily be extended to the general
case.

Here, we consider an example of a hierarchical model as shown in Fig, 2-2. A {full
adder is composed of 5 subcomponents, and 8 full adders construct a 8-bit ripple carry
adder.
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Figure 2-2 Example of Hierarchical Models

It is possible to generate several varieties of models for 8-bit ripple carry adder. Model
X in Fig. 2-3 is the most abstract level model, and model Z is the most detailed one.
Model Y is one of the intermediate models. In general, a diagnosis with more detailed
level model is more expensive though it is more effective. Hence, it is important to
select an appropriate level of model in the varieties. In the selection process, we must
consider how much information can be gained by using each model. The information
gain, however, depends on the required diagnosis precision. In the following section, we
present a method to estimate the information gain.
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Figure 2-3 Varieties of Models for 8-bit Ripple Carry Adder



2.1 Diagnostic Precision and Entropy

Several conventional systems [3, 4, 6, 7] make good use of the entropy of a set of sus-
pected components in order to estimate the expected information needed to complele a
diagnosis. However, in general, the expected information depends on the required diag-
nosis precision. The intuitions can be illusirated with the faully 2-bit ripple carry adder
shown in Fig. 2-4. Here we consider two varieties of models, i.e. a function-level model
and a gate-level model, as shown in the figure. The hatched components are suspected,
and the fault probability P{C') for each suspected component C is also shown in the
figure. The figure shows the changes of the diagnostic status after getting observation
A or B.

F1 S . F1

Observation A

GGz GaGe G11GEz
GGG GricaGas GGG
e . LN A
P(F)) = P(F) = 0.5 P(F) = 1.0
PGyl =010G=12;= 1,2,3,4,5) P(Gy) = 025(;7 = 1,3,4,5)
(a)
F i r Y
J- F1 Fz . Fi Fz
Chservation B
) GGz GG
G1aG14Gas L GraGaGEs J
P(F,) = P(F) = 05 P(F,) =033 P(F,) =067
PI::GUJ = 0.1 {t - }.,2 _]1 _ 1,2,3,‘1,’5} P{Glﬁ,] - P{GZI) = P{ng] = 0.33

(b)

Figure 2-4 Changes of Diagnostic Status



First, we consider that the required precision is the function-level. Here, if we get
observation A (Fig. 2-4(a)), then we can complete the diagnosis because Fy turns oul
to be normal. On the other hand, if we get observation B (Fig. 2-4(b)}, the components
F, and F; are still suspected. Therefore, observation A seems to be more informative
than observation B.

Next, we assume that the required precision is the gate-level. If we get observation A,
then four components (731, Gas, Gz, Gag) are suspected with the same probability (1/4).
On the ather hand, in the case of observation B, three components (G5, Gay, Gpz) are
suspected with the same probability (1/3). Therefore, in this case, observation B seems
to be more informative.

In order to estimate the informatidn gain appropriately, we introduce the entropy for
cach level in the physical hierarchy. For instance, in the above example, the entropy for
function-level {£F) and for gate-level (E) are defined as follows:

Br = ZP(F] log P(F;)

Be = -3 P(Gi;)log P(Gy,)

In Fig. 2- 5, we illustrate the changes of each entropy of the above example. If observa-
tion A is given, the function-level entropy, Lr, gains 1{bit), while observation B gives
only 0.08(bit). Hence, observation A gives more entropy gain than B. On the other
hand, the gate-level entropy gain by observation A and B are 1.32(bit) and 1.74(bil),
respectively.

These results show the entropy gain for required precision (i.e. the level in a physical
hierarchy) agrees with our intuition.

Entropy (EF) Entropy (Eg)
1.0 0. 3.32 0,
 gain | gan
Obs. A | > 1.00 Obs, A b= P1.32
Obs.B b~ 0.08 Obs. B ;......,...;,.. 1.74
Functign-| Gate-level

Figure 2-5 Changes of Entropy



3 Model Diagnosability Criterion

In this section we introduce a model diagnosability criterion to estimate how detailed
diagnosis can be achieved with a model.

Consider three models for a 2-bit ripple carry adder as shown in Fig. 3-1. Here,
we assume that the required diagnosis precision is the gate level, and that each of the
10 components in gate level has the same fault probability 0.1 (therefore, the fault
probability for each function-level component, F;, is 0.5).
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Figure 3-1 Models for a 2-bit Ripple Carry Adder

First, we consider a diagnosis with model A in the figure. In this case, the diagnosis
can pinpoint which component in the function-level is faulty, if enough observations are
given, However, it can not pinpoint which component in the gate level is faulty. For
example, if the fault component is (};, the system pinpoints the faulty component to
be Gy, Gy, Gh3, (14, and Gy with probability 0.2 for each, and no more information
can be gained. In other words, the gate-level entropy can not be reduced to less than
5:(—02log0.2) = 2.32 as far as using model A. That is, no matter how much
observations are given, the system still can not gain 2.32-bit informalion (in average)
to complete the diagnosis.



Next, we consider a diagnosis with model B. If the faulty component is Gy (1 =
1,2,3,4,5), then the system can conclude that the faulty component with probability
1.0, if enough observations are given. In this case, the gate-level entropy is reduced to
0. However, if the faulty component is Gy; (i =1, 2, 3, 4, §), then the system can not
decide which component in {31, Gy, -+, G5} is faulty, that is, the entropy can not be
reduced to less than 5. (—0.2log0.2) = 2.32. Therefore, the expected lower bound for
the entropy reduction is as follows (because 3_; P(Gy) = & P(Gu) = 0.5):

0.5-2.32 + 05-0 = 1.16

Finally, if we use model C and enough observations are given, we can always pinpoint
the fanlty gate, Heuce, the expected lower bound for the entropy reduction is 0.

In order to estimate how detailed diagnosis can be performed with a model, we define
the model diagnosability D(M) for a model M.

current entropy — expected lower bound for the entropy reduction with model M

D(M) =

current eotropy

The ‘current entropy’ expresses the expected information needed to complete a diag-
nosis. The numerator indicates how much information can be gained at most by using
model M.

In the above example, current entropy is 10:(—0.1log 0.1) = 3.32, at the initial stage
of a diagnosis (Fig.3-2(a)). Therefore, the D{M) for each model is calculated as follows:

3.32 - 232

D(modeld) = ~—"= = 030
3.32 - 1.18

D(modelB) = —3# — 065

D(modelC) = y%_a—f'm = 1.00

Fig. 3-2(b) illustrates this result. It is shown that a diagnosis with model A can gain
at most 30% of necessary information. On the other hand, model C is powerful enough
to gain all the necessary information.
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Figure 3-2 Model Diagnosability in the Initial Stage
Next we assume that the current diagnostic state has been changed by getting some

observations (Fig. 3-3(a)), then current entropy is 5 - (—0.2log0.2) = 2.32. Therefore
the D(M) for cach model becomes as follows:

D(model 4) = %ﬁl = 0.00
D(modelR) = 22-220 = 1 oo
D{medelC) = %;}UI}U = 1.00

In this case, the result shows that no information can he gained by a diagnosis with
model A (Fig. 3-3(b)). However, model B and C have an ability to gain the whole
information needed to pinpoint a faulty gate.
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Figure 3—-3 Model Diagnosability in the Later Stage



4 Adaptive Diagnosis Mechanism

In the previous section, we introduced the model diagnosability eriterion. This section
presents an adaptive diagnostic mechanism that selects an appropriate model at each
stage of a diagnosis.

Here, let D(M) be the diagnosability for model M, and let C be an average observation
cost (required time). Because a diagnostic task is composed of several ohservation-
computation cycle, T{M)+C is an expected cost for a cycle, where T(M) is the expected
computation time for a diagnostic cycle with model M. Here, we assume that T(M) can
be estimated empirically or analytically, and that C is a (model independent) constant.
In order to select an appropriate model, we evaluate each model by using the following
criterion, E{(M}.

: ~ D{M)
EM) = s+ C

In each diagnostic cycle, the best model, i.e. a model with maximum £{M ), is selected.

This diagnostic mechanism has three kinds of adaptability. First, it adapts to the
phase of a diagnosis. Second, it selects a model suitable for the given diagnosis precision.
Finally, it adapts to the observation cost and computation cost. In the remainder of
this section we illustrate some examples to show the advantages.

Example 1 Consider previously introduces three models of 8-bit ripple carry adder
in Fig. 2-3. Here we assume that the required diagnosis precision is the gate-level, and
that the expected computation time for model Y(Z) is about 1.5(5.0) times as large as
T(model X), respectively. That is:

T(model Y)

T(model Z) _
m =~ 1.5 and ——————— 5.0

T(model X)

Moreover, in order to simplify the discussion, we assume that C < T{M) for each
model M. Therefore, E(M) can be approximated as:

DM)

E(M) == (M)

[Case 1] As shown in Fig. 4-1(a), if all gates are suspected with the same
probability(1/20), model X is selected by the proposed criterion because there is a
possibility that a diagnosis with model X can gain about 56% of the necessary
information with low cost. E(M) for each model is shown in Fig. 4-1(c).
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[Case 2] On the other hand, Fig. 4-1(b) shows another stage of a diagnosis. In this
case, the suspected components have been narrowed down by some observations.
Then, model Y is selected because it has the best D(M) per cost in the three models
(Fig. 4-1(c)). That is, a diagnosis with model X can gain at most only 30% of

necessary information, and model 7 is costly.

The example shows the ability to select a model suitable for each diagnostic stage.

R R T R

(a) Case 1
(b) Case 2
Casa 1 Casa 2
Modal DM} | Cost | E[M)=D{MyCost Model D(M) | Cost | E{M)=D{M)/Cost
Model X G.56 1.0 056 Modal X 0.30 1.0 0.30
Modal Y 062 1.5 .41 Model ¥ 0.B5 15 0.43 i
Model Z 1.00 50 0.20 Modal Z 1.00 &0 0.20

(¢} E(M) for Each Model

Figure 4-1 Example 1



Example 2 Here, we assume that the required diagnosis precision is the function-level,
in the above example. In the early stage (Casc 1" in Fig. 4-2}, 8 components (full
adders) are suspected. As shown in Fig. 4-2(c), D(M) for each model is 1.0, which is
the maximal value. Thereflore, model X is selecied because it has the least cost among
the three. _

Next we consider a diagnosis in the later stage (Case 2" n Fig. 4-2). Here, model X
is precise enough to determine which full adder iz broken. On the other hand, model
Y and 7 are so precise that they cost too much. Therefore, model X is also selected in

this case.

L U

(a) Case 1’

] |

R

|
—1

{b) Case 2'
Case 7' Case 2
Modet DiM) | Cost | E(M)-D(M)yCosn Madel DM} | Cost | E(Mi=D(MyCost
MedalX { 100 | 1.0 .00 J Mmm x 1::u:r 1.0
Model ¥ 1.00 1.5 Q.67 . Modael ¥ 1.00 1.2 Q87
Model Z 100 | 50 0.20 Modal Z 1.00 | 50 0.20

{c) E(M) for Each Model

Figure 4-2 Example 2



Example 3 Consider that the observation cost is much larger than the computation
cost, i.e. T(M) « C for each model M. Then, the diagnosis cost is hardly affected
by the computation cost, T(M). For example, here, we assume that & = 100.0,
in Example 1. The diagnosis cost, that is the sum of the observation cost and the
computation cost, for model X, Y and Z are 101.0, 101.5, 105.0, respectively. Therefore,
in both case, that is initial stage (Case 1") and later stage (Case 27 ), model Z is selected
because of its high diagnosability (Fig. 4-3).

This example shows that the proposed mechanism has an ability to adapt to the
observation cost. The mechanisin is also adaptive to the computation cost, which de-
pends on the computation power. I'or example, a 1-MIPS computer requires great deal
of computation time in comparison with a 100-MIPS machine. Because the proposed

mechanism considers such a factor, it can select an appropriate diagnostic strategy.

Case 1" Cage 2"

Modsl | DIM) | Gost | E{M}-D(M)cCost Model | D) | Cost | E(M)-DMyCost
Model X 0.55 i01.0 0.0055 Model X 0.30 101.0 0.0030
Model ¥ 062 inls 0.0081 Modeal ¥ 0.65 101.5 0.0064
Model £ 1.00 105.0 0.0095 Model £ 1.00 108.0 D.0085

Figure 4-~3 Example 3



5 Discussion

The technique described in this paper is adaptive to several kinds of situation, such as
the required precision, the given computation power, the observation cost, and the phase
of a diagnosis. Although we assumed severa! restrictions to the diagnosis problem, the
proposed mechanism is general and can naturally be extended to more general cases.
First, the diagnosis precision can be specified more flexibly, instead of specifying some
level in a physical hierarchy. For example, chip-level precision may be required for certain
part of the target device, and board-level precision may be required for the others.
Such a situation often occurs depending on the spare parts availability. Second, the
physical hierarchy and the logical hietarchy are not necessary to he identical. Third, the
observation cost may depend on a model, while we assumed that 1t is model independcnt.
For instance, an output signal of a board may be easily observed, however it may require
more cosl Lo observe an outpul signal of a chip.

Tn order to apply the proposed techniques to a practical system, we must consider
following problems. First, the computation for model selection must not be expensive,
therefore, we should not evalnate all of the possible models. Hence, we must focus on
several promising models heuristically. Second, in some domain, it may be preferable
to improve the model diagnosability criterion because it does not estimate the number
of required observations. For example, even if D{m) = 0.9 for a certain model m, a
diagnosis with the model may require dozens of observations to gain the 90% of the
necessary information. This means the criterion does not always estimate the diag-
nosability exactly. Finally, it 1s important to estimate the computation cost and the
fault probability for each component appropriately. Inductive learning techniques[8| or
analytical methods should be included.
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