ICOT Technical Report: TR-687

TR-687

An Application of Artificial Intelligence
to Prototyping Process in Performance

Design for Real-Time Systems

by
5. Homden, N, Uchihira & K. lich (Toshiba)

Sepiember, 19491

2 1991, 1ICOT

Mita Kokusai Bldg. 21F {03)3456-3191 ~5

l[: DT 4-28 Mita | Chome Telex ICOT 132964

Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

An Application of Artificial Intelligence to Prototyping Process
in Performance Design for Real-Time Systems

Shinichi Honiden! Naoshi Uchihiral Kiyoshi Itoh2

1 Systems and Software Engineering Laboratory, Toshiba Corporation
70 Yanagi-cho, Saiwai-ku, Kawasaki 210, Japan

honiden@ ssel.toshiba.co.jp

2 Faculty of Science and Technology, Sophia University
7-1 Kioi-cho, Chiyoda-ku, Tokyo 102, Japan
itohkiyo@ hoffman.cc.sophia.ac.jp

ABSTRACT

This paper describes an application of artificial intethgence technology to the
implementation of a rapid prototyping method in Object-Oriented Performance
Design (OOPD) for real-time systems. A protolyping process is composed of three
steps: Prototype construction, Prototype execution, and Prototype evaluation. The
authors present the following artificial intelligence based methods and tools to be
applied to each step. In the prototype construction step, a rapid construction
mechanism, using reusable software components, is implemented based on the
planning method. In the prototype execution step, a hybrid inference mechanism is
used to execute the constructed prototype which is described in declarative
knowledge representation. In the prototype evaluation step, an expert system,
which is based on qualitative reasoning, is implemented to detect and diagnose

bottlenecks and generate an improvement plan for them.

1. INTRODUCTION

Object-oriented technology can provide designers with practical, productive ways to develop
software in most of application areas. As for real-time applications, object-oriented technology
has been practically employed in a number of systems. Recently, various multiprocessors have
become commercially available and have been used in many applications. Since stringent
performance requirements are inevitable for real-time applications, it is very important to
predict the target system performance precisely during the design phase, in order to determine
the optimal software and hardware configurations which will satisfy users’ requirements.
However, in some real-time systems on multiprocessors, it is quite difficult to adjust some of
the performance factors, such as load-balance on a given multiprocessor architecture, to satisfy
the performance requirements. In practice, the performance design activities in the object-
oriented design (called Object-Oriented Performance Design: QOPD) process tend 10 be
empirical. because there are few algorithms which can derive the optimal software
configurations that satisfy the performance requirements under a given hardware configuration.
In other words, OOPD activities are usually carmied out on a trial-and-error basis. These
activities may compose a prototyping approach to improving ill-defined problems where only
few algorithms are available. Artificial intelligence technology has been effectively used to
tackle ill-defined problems. Various ill-defined problems are actually seen in the software
engineering field including programming tasks. Several altempts have been made in applying
the artificial intelligence techniques to these ill-defined problems in the software engineering
field. Typical ones are GIST [CohB4, Swa83)], Programmer's Apprenuice [Ric78], ¢p
[Bar82], Glitter [Fic85], Data-Representation Advisor [Kat81], SC [Dow90]. and AFFIRM
[Ger80). These methods seem to be successfully applied to the particular phases or domains.
Individual methods can be used to handle several steps in the software development process,
but none of them can cover the overall development process nor can be used 1o fully implement

the protolyping process.

A prototyping process is defined to be composed of three steps: prototype construction,
prototype execution, and prototype evaluation [[toB9a]. The authors present the following
artificial intelligence based methods and tools to be used in these three steps.

1) In the prototype construction step, a rapid construction mechanism, using reusable software
components, is implemented, based on the planning method.

2) In the prototype execution step, a hybrid inference mechanism is used to execute the
prototype which is described in declarative knowledge representanon.

3) In the prototype evaluation step, an expert system, which is based on qualitative reasoning,
is implemenied to detect and diagnose bottlenecks and generate appropriate improvement plans.

In this paper, Section 2 describes the requirements of the prototyping process for real-time
systems. Section 3 describes the presented method which satisfies the requirements. Section 4
describes QOPD which consists of three prototyping phases with application examples.
Section 5 compares the presented method with related work and Section 6 evaluates it.

2. REQUIREMENTS OF PROTOTYPING PROCESS FOR REAL-TIME
SYSTEMS

This section describes the requirements that should be satisfied for antificial intelligence to be
applied or used to implement a prototyping process for real-time systems. In the previous
section, the authors have mentioned that a prototyping process consists of the prototype
construction, execution, and evaluation steps. as shown in Fig.1. This process may be
repeated until the constructed protolype satisfies all the users’ requirements. Note that, since
rapidness is essential to prototyping, all the three steps need to be accomplished quickly and
the number of iterations should be minimized. The characteristics and requirements of the three
steps vary depending on the target applications. This section describes the fundamental
requirements for implementing the three steps in the performance design for real-time systems.

Generally, a performance design task is composed of the following activities: performance
model construction, performance measurement, performance diagnesis and generation of
improvement plans. The prototype construction step, prototype execution step, and prototype
evaluation step correspond to the performance model construction, the performance
measurement, and the performance diagnosis and generation of improvement plans,

respectively, as shown in Fig.1.

Prototype construction step
(Performance model constructin)

Prototype evaluation step

(Performance diagnosis and Prototype execution step
Improvement plan generation) (Performance measurement)

~ -7

Fig.1 Prototyping process in performance design

2.1 Prototype construction step

Because most of the real-ime systems contain many software modules, it is essential to any
prototyping method to be able to treat large-scale programs, and increased software
productivity during prototyping is required in order to construct prototypes rapidly. Software
reuse methods have been considered as one of the most effective methods for increasing
software productivity, and are employed in several domains [Hon86b, Jon84]. Various finding
mechanisms, such as keyword, case grammar, and formula, have been proposed to retrieve
reusable components. However, these metheds can retrieve only one reusable component,
using one specification statement at a time. The number of the specification statements is then
proportional to the number of desired reusable components. To satisfy the rapidness
requirements in the prolotype construction step, the number of specifications necessary to
retrieve the reusable components must he minimized.

2.2 Prototype execution step

One of the major properties essenlial o prolotyping is executability, meaning that the following
reguirements should be satisfied.

(a) Rapid execution.

{b) Execution without complex preparation.

{c) Visual execution,

(d} Arbitrary interruption and re-starting during execution.

{e) Execution while displaying results which are easy to evaluate.

From the standpoint of performance design, since the execution of simulation usually takes a
long time, it is necessary to produce visual performance data during the execution, and to

collect and evaluate it effectively. For example, during the execution, it is important to display
the queue lengths, as well as dead-lock detection in real-time. Performance statistics factors
including the queue length at each server, the utilization rate and the wait time at each server as
well as the response time are also required to be collected.

2.3 Prototype evaluation step

A prototyping method that does not support rapid prototype evaluation cannot be regarded as a
rapid prototyping method, even if it supports rapid prototype construction and execution. This
15 because an inadequate evaluation may result in a useless repetition of the prototyping cycle
and a time-consuming evaluation may slow down the whole prototyping process. These

factors violate one of the main prototyping property of rapidity. To solve this problem in the
prototype evaluation step, the following requirements should be sausfied.

Rapid detection of a bug which would produce undesired output and

rapid generation of appropriate improvements.
From the viewpoint of performance design, the functions that achieve the above requirements
are indispensable for rapid detection of bottlenecks and rapid generation of performance
improvement plans which include several appropriate performance parameters. At present,
because there are few standard methods which can offer support to satisfy these requirements,
it is time-consuming and difficult for a non-expert designer, who has limited experience and is
not familiar with performance design, to satisfy these requirements. It is necessary 1o automate
this step, for non-experts to accomplish the design tasks accurately, rapidly. and appropriately.
As mentioned previously, using a simulator generally takes a much longer time to accomplish
the prototype execution step. Therefore, the prototyping cost can be lowered by reducing the
iterations in the prototype execution step. Reducing the prototyping cost also depends on the
rapid generation of appropriate improvement plans. In real-time systems on multiprocessors, it
is important to validate the performance of the constructed prototype, which is mapped to given
multiprocessors. The constructed prototype must be evaluated on the given multiprocessors in

the prototype evaluation step.
3. PROTOTYPING PROCESS

This section describes the prototyping process support tools used to satisfy the requirements
described in Section 2.

3.1 Prototype construction and execution steps

In real-time systems, the combination of declarative knowledge description and actor-based
object modeling is considered to be one of the effective methods 1o develop a prototype. The
inter-relationships among objects are described with actor-based object modeling and the inner
behaviors of each object are described using declarative knowledge. The authors adopted
MENDEL as-the executable specification language which provides the above functions.
MENDEL is a Prolog based concurrent object-oriented language [Hon86a, Uch87, Hon89,
Hon90], which can be used as a functional and performance prototype construction tool and a

prototype execution tool.

message pipe

Fig. 2 Interconnection among MENDEL OBJECTs
Method = Production Rule

message

attribute 1 attribute 2

method (| attribute 172X, | attribute 2!%)
Z-X>0 [I[Yis X + 1, write(Y), nl.

Input

- Output
" : Commitment Operator

RHS
LHS

Fig.3 A MENDEL OBJECT

3.1.1 MENDEL object : A concurrent reusable component

Since an OBJECT in MENDEL is a concurrent processing unit, it can be regarded as a task or
a process. Each OBJECT has pipe caps and can transmit messages only through the pipe caps,
as shown in Fig.2. An attribute 1s assigned to each pipe cap and 1s used to identify input/output
messages. Messages are transmitted between OBJECTSs through the transmission pipe
artached 1o the pipe caps. Each OBJECT consists of a block of working-memory and several
METHODs, as shown in Fig.3. Each message consists of an attribute name. an input/output
identifier- "7 or "!", and a variable name. If a message preceded by a "7" is received for a
METHOD's vanable, the METHOD's Prolog clauses are invoked. When the METHOD is
executed, the variable preceded by an "!" will be unified and sent to the other OBJECTs as a
message. Each METHOD is regarded as a production-rule and is used in the forward inference
mechanism. A METHOD consists of a left-hand side (LHS) and a right-hand side (RHS). An
LHS contains input messages and an RHS contains output messages. Both LHS and RHS
contain internal state variables, which are stored in the working-memory. METHOD selection
in a conflict set is non-deterministic. The body part of a METHOD consists of Prolog clauses.
Since the Prolog system can be regarded as a backward inference engine, each METHOD
includes a backward inference engine. The overall architecture is a distributed production
system, in which each OBJECT has inherent working-memory and both forward and
backward inference mechanisms. In MENDEL, a simple synchronization mechanism is
achieved by using a METHOD selection mechanism, similar to Dijkstra’s guarded command.
The OBJECT is suspended, until it receives all required messages.

3.1.2 Planning

The authors extended MENDEL to contribute 1o rapid prototype construction, using reusable
components, by introducing a planning method. One method to satisfy the requirements,
mentioned in Section 2.1, is planning which can generate an action sequence or aclion program
for an agent, such as a robot [Nil82]. Input 1o planning includes the imitial world, a set of
actions which change the world, and the final world. Qutput from plannring is a sequence of
actions which 1s represented by an acyclic-directed graph. As each action can be regarded as a
reusable component and the world can be input and output specifications, the sequence of
actons is a set of reusable components necessary Lo sausfy the input and output specifications.
Each reusable component contains its own specification, called an F-rule [Nil82]. An F-rule
consists of preconditions, add formulas, and delete lists. A precondition is corresponding to an
input data item into the component. an add formula is corresponding to an output data item
from the component, and a delete [ist includes the input data which has not appeared in the add
formula. In an acyclic-directed graph, each node corresponds to a reusable component and
each arc corresponds to the data flow between reusable components. Also, an acyclic-directed

7

graph can be translated into a task graph, which has been used for resource allocation in
multiprocessors [Gon77]. By using the planning method, the designer can retrieve and
interconnect several reusable components at one time, only by giving input and output

specifications.

MENDEL has employed the software reuse approach to increase software productivity. In
MENDEL, the connection between pipe caps is accomplished automatically by the planning
method. The planning method selects the required OBJECTs and connects the transmission
pipes to create the message passing route from input specifications 1o output specifications. It
carries out reusable component retrieval and interconnection by determining the reusable
components which will satisfy the given input-output specifications. An automatic retrieval and
interconnections are accomplished according to the following principies:

(a) A pair of pipe caps, having the same or similar attributes, can be interconnected using a
semantic network, which consist of several attributes.

{b}) All required output specifications must be reachable from given inpul specilicaions through

connected objects and pipes.

The authors explain basic mechanism of the retrieval and interconnection using Fig.2. In
Fig.2, input specification consists of "a" and "b" as external inputs. and output specification is
"¢" as an external output. At first, system retrieves OBJECT "m1”, because OBJECT "m1" has
attribute "a" which corresponds to the external input "a.” Next, system retrieves OBJECT
"m2", because OBJECT "m2" has attributes "a2" and "b" which correspond o "a2" of
OBJECT "m1" and the external input "b." Finally, system retrieves OBJECT "m3," because
OBJECT "m3" has attributes "al”, "b2", and "¢" which correspond to "al"” of OBJECT "m1",
"bi" of OBJECT "m2", and an external output "¢", respectively. In this case, OBJECT "m4”
can also be retrieved. It is assumed that "b2" of OBJECT "m3" is more similar to "b1" of
OBJECT "m2" than "b3" of OBJECT "m4." The similarity is computed by the distance

between nodes on the semantic network.

MENDEL has a hierarchical planning mechanism, similar to [And89). In MENDEL, the
strategy for assigning criticality values o the literals of an F-rule’s precondition is based on the
information from the reusable component generation process of Object-Oriented analysis
(OOA) [Coa90)]. That is, in OOA, artributes in an object are classified into two groups:
attributes which are newly declared in the object and those which are inherited from its upper
objects. In this case, MENDEL assigns a higher value 10 the former attribute and a lower value

10 the latter attribute.

As a prototype execution tool, MENDEL provides visual execution, where an activated object
can be recognized as a blinking one displayed on the screen and message queues and message
contents are displayed in real-time. Interconnected OBJECTs in MENDEL form a queueing
network, in which each OBJECT in MENDEL represents a server and each message in
MENDEL represents a transaction. The statistical data, collected during execution, are passed

1o the prototype evaluation step to be analyzed.
3.2 Prototype evaluation step

In the prototype evaluation step, any bottlenecks should be detected rapidiy and appropriate
performance improvement plans for the bottlenecks should be generated. In particular, the
reduction of prototyping cost depends on the ability to produce improvement plans. In other
words, the prototyping evaluation step should accomplish appropriate parameter tuning to

reduce prototyping cost.

In MENDEL, the parameters to be tuned are as follows:

(1) The distribution of messages among OBJECTs.

Assume that identical OBJECT: are distributed among several processors for load-balancing,
and that a particular OBJECT is busy and the others are not so busy. In this case, a message

sent from an OBJECT to the busy OBJECT can be sent to an alternative OBJECT which is not

so busy.
{2} A reusable component itself, which corresponds to an OBJECT on a particular processor.

Generally, there exist several reusable components in the hibrary to satisfy the functional
requirements. In this case, an alternative reusable component can be selected. Note that the
reusable component having the shortest execution time, does not always satisfy the
performance requirements of the given hardware configuration, and an important factor for
performance is load-balancing. Viewpoint from the queueing network, as shown in Fig.4, the
parameters o be tuned are, "p"s for servers which indicate the OBJECT execution time and
“r"s for entities on branching points which indicate the number of messages among OBJECTs.
Note that "r"s having a functional meaning, such as the message attribute, should not be
changed and that "r"s indicating a load-distmbuted factor can be changed.

In performance design, there are a large number of parameter candidates to be tuned. For non-
experts, in order to select appropriate parameters, the authors adopt a knowledge engineering
technique based on gualitative and gualitative reasonings. These reasoning methods can be
designed by modeling the performance design experts’ reasoning process. On the basis of

g

heuristics and knowledge obtained from evaluation experts, the authors have developed two
knowledge-based expert systems, BDES (Bottleneck Diagnosis Expert System) and BIES
{Bottleneck Improvement Expert System). BDES qualitatively diagnoses or identifies
bottlenecks and their sources, and generates qualitative improvement plan. BIES quantitatively
estimates the effects of the improvement for bottleneck and their sources on the whole
queueing network [lto89b, Ito90]. BDES and BIES are based on "qualitative reasoning” and

"quantitative reasoning,” respectively.
3.2.1 Bottleneck diagnosis expert system (BDES)

BDES diagnoses bortlenecks and their sources by reviewing for the queueing network and all
its parameters. The bottleneck sources are the factors which govern bottlenecks, for example,
low "W"s or high "A"s for servers, high
in the whole queucing network. The servers with the highest "p"s are bottlenecks, i.e., they
are very busy. BDES judges that the servers whose "p"s >= 0.7 are or may be bottlenecks.
0.7 is called a bottleneck landmark (BL) in a gualitative reasoning. Moreaver, BDES detects
one or more alternative improvement plans for one bottleneck. On the basis of gualirative

reasoning, the authors have designed gualitative behavior expressions for a single server, as

a1

r"s on branching points, and their inter-relationships

shown in Fig.4.
\ajinthecaseaf p <BLie, p=-

A i’é t=A {al)for A
- = dp=*e-dl==land pchangein the same diraction.)
p=Alu dt =+<-dJi=%(4and1change in the same direction.)

(a2) for u

{a} caseof A< " d p =F<--dg=+{ gand g change in the reverse direction.)
dt =0<-du=+{although u changes, t does nol change.)

{b)inthecaseof p >BlLje, p=+0rp=0

(b1) for A
é t=pu d p =—«- d A = —{as Adecreases, p decreases.)
E] dt =0<-dA=—{although A decreases, { does not change.)
(b2) for

d p =—<- du=+as pincreases, pdecreases.)
b)caseof A = di =+e<--dg=1(asuincreases, tincreases.)

oq =—<-dp=—(aspdecreases,q decreases.)

d p =—<—dq =-{as qdecreases, pdecreases.)

4 : average arrival rate of entities for a server

4 ; average servicing rate of a server for entities

t : average throughput of entities by a server

p : average utilization rate for a server

q : average queue length of emities in front of a server

Fig. 4 Unit server mode!

14

In order to increase or decrease some parameters of a particular server, all the equations for
servers included in the queneing network must be considered. For example, it is assumed that
the bottleneck server "s4" in Fig.7 is to be improved. In order to decrease "A" of server "s4,”
the designer may decrease "r" from "s2" to "s4” and increase "r" from "s2" to "s5." Increasing
"r'" from "s2" to "s5" may cause "A"s of the servers such as "s5", "s9" and "s10" to be
increased. That is, new other bottlenecks may occur downstream from the change point. All
equations for the servers included in the queveing network are necessary to improve a
particular bottleneck. Since the number of stares and state transitions is big, qualitative
simulation takes much ume, Then, BDES introduces the heuristics on queueing network
substructures, such as loop. joint, branch, and tandem, into gualitative reasoning for effective

qualitative simulation.

Several kinds of the queueing network have been utilized in various applications, Two major
categorics are open and closed types. In each category, typical examples are the synchronized
type of queueing network and the multi-entity type of queueing network. Then, the authors
have also developed BDES-S (BDES for open Synchronized queueing network) [lto91ab] and
BDES-MF (BDES-S for Multi-Flow network).

3.2.2 Bottleneck improvement expert system (BIES)

Based on the qualitative improvement plan produced by BDES, BIES quantitatively improves
the bottleneck and bottleneck sources, i.e., it increases low "p"values, decreases high
"A"values and decreases high "p“values. Moreover, BIES estimates the effects of its
operations on the whole queueing network. The effects are estimated by computing new "A"
and "t" values for servers in the whole queueing network 1o be affected by the improvement.
Based on the flow balancing, BIES forces "p" to decrease to a constant value, called BIF (
Bottleneck Improvement Factor):
Only if a bottleneck server can be improved.,

new "W" = original "A" / BIF.
Otherwise,

new "A" = original "u" / BIF.
The BIF value is varied from 0.7 to 0.6, according to the "q" of the server. When "g" is pretty
high, its BIF is automatically set 10 0.6, on the basis of the experts’ heuristics. After applying
this equation, the "p" and "t" values of the server can be improved so that "p" = BIF and "t"
"A." The new "t" can be transmitted as the "A" of the just downstream servers.

11

The authors have also developed BIES-S (BIES for open Synchronized queueing network)
and BIES-MF (BIES-5 for Multi-Flow netwark).

4. OBJECT-ORIENTED PERFORMANCE DESIGN

4.1 Overview

Thas section describes OOPD which consists of three prototyping phases for real-time systems.
In designing real-time systems, it is important to consider both functional and performance
aspects. This implies that two prototypes exist in designing real-time systems: functional and
performance prototypes. The functional design should be accomplished while satsfying
performance requirements. That is, during the function implementation, the performance
requirements must be satisfied under several constraints. Examples of constraints are the
number of processors and a task configuration. These constraints may affect the real
performance and are determined in accordance with the functional design actually developed.
Therefore, prototyping should be accomplished under the defined constraints at various design

phases.

The prototyping process of QOPD is shown in Fig.5. Each of the three phases has prototyping

processes as follows;

=Phasel>

Prototvpe construction and execution steps

OOPD starts by logical architecture construction. OOPD assumes that all necessary objects for
object design have already been stored in the object library at the object-oriented analysis stage.
In the prototype construction step, the logical architecture, which consists of several objects
that satisfy the functional requirement, is designed and mapped into the physical architecture of
the given multiprocessors. The logical architecture is constructed rapidly using the planning

method. Each object in the logical architecture is specified by MENDEL. In <phase 1>, since
object design is not yet done, only the functional outlines of objects are clarified and the
contents of objects are not refined. Since objects are black boxes here, the processing time for
each object is estimated by its functional outline taken into account. Al the same time, the
number of messages arriving at each object is estimated. This estimation data is used to
perform simulation. The simulation result is used as the input data in the prototype evaluation
step.

Protolype evaluation step

The prototype evaluation step enables the re-estimation of the logical architecture from the
viewpoint of message quantity and processing time for objects. In OOPD, the initial logical
architecture which consists of appropriate objects is very important to minimize corrections in
the subsequent design steps. The estimation of the objects’ structure in terms of their

performance here has much significance.

] OOA phase

OOPD phase

=phasel=

Define abstract Ferformance
functions of object evaluation

-

Prafoty e eonilruetion

Protolype evaluation
and execuion swpe by

Object refinement

=phaseZ=]
Define
synchronization FParformance
among meassages evaluation
Prowoype evaluasion

Protouy pe CONsmrucLion
and execulion siops step

Method refinement

=phasael:=
2
Define massage FRarformance
attributes evaluation

Frolotype comeireciion

Prototype evaluation
and execunion sEps ELEP

OOP phase
Fig.5 OOPD overview

<Phasel>

Prototype construction and xecution steps

In <phase2>, an object obtained in <phasel> is refined by defining input and output of the
methods that com pose the object. With regard to the processing of the methods, the problem of
synchronization of several messages arriving at the methed must be managed. If a method
needs several messages. it must wait until all messages arrive, Generally, the synchronization
that affects the performance of concurrent programs must be examined.

Prototype evaluation step

BDES-S and BIES-S can be used to examine the performance degradation caused by
synchronization. Also, message distribution among objects and method assignment in objects

are checked.

<Phasel>

Prototype construction and execution steps

Each method specified up to <phase2> must be formulated as an algorithm. The algorithm
shows how the methods are executed. Up to <phase 2>, it is assumed that there is only one
type of attribute for messages during the design process. Here in this phase, however, as the

processing of each method is refined, the specific attributes of the messages required for a
method are clarified. Depending on the attributes of the messages, the method execution

process varies and, as a result, the processing time of the object varies. Therefore, message
types must be taken into account for the performance evaluation in this phase.

Prototype evaluation step
BDES-MF and BIES-MF can be used to estimate a method implementation. The performance
of the algorithm of each method is checked. If a bottleneck occurs in a certain object, the

algorithm of the method is should be re-designed.

4.2 Example

The authors adopted the well-known "LIFT Problem” in [IwsB7] as a typical real-time system

example. In <phasel>, each of concurrent reusable components is implemented as an

OBJECT in MENDEL, and the planning method carries out the automatic retrieval and
establishes interconnections among reusable components.

emergency-

calll

*{Jiift-lamp-control

Imotor-control
{up-lamp-control
Hown-lamp-control

Fig. 6 Interconnected MENDEL OBJECTSs which correspond to the functional model

— 14

For this example, by giving the input specification (hall-up-call, hall-down-call. emergency-
call, lifi-call} and the output specification (lift-lamp-control, up-lamp-control, down-lamp-
control, motor-control), several OBJECTS are retrieved and interconnected, as shown in Fig.6.

5
!2 40
0. BD
r=0.3
0.06 —= p. ‘IE
0.31 04

0.108 nng'.‘__.. 0.23][8] <0.147

A 053 0147 036 \
D.068== 0. 19 -

0 068 0.295
b 0.036 0.75 E-‘Lg]

0.58
013\\ 0.189
0.168 - GE?] sa 0.43 |®

040\ E
r=0.9 ::| 0.153

Q.77
Fig. 7 Queueing network mapped from MENDEL OBJECTs in Fig.6

In Fig.6, OBJECTs "ol", "02", "03", "04", "05", "06", "o7" and "08" are retrieved and
interconnected by the planning method. Interconnected objects in MENDEL. form the queueing
network, in which each object in MENDEL corresponds to a server and each message in
MENDEL corresponds to a transaction. It is assumed that each OBJECT is assigned to each
processor in a multiprocessor system which consists of 10 processors, as shown in Fig.7.
OBJECTs "ol”, "02", and "03" are assigned to "s1", "s2", and "s3", respecuvely. OBJECT
“04", including the main lift control, is distributed to three processors "s4”, "s5", and "s6",
because of load-balancing. And, OBJECTs "05", "06", "07", and "08" are assigned to "s7",

"s9", and "s10", respectively. Lift-call, hall-up-call, and hall-down-call correspond to
external inputs 1o "s1", "s2", and "s3" (called ga, gb, and gc), respectively. Figure 7 also
shows the performance data from the simulation. For example, lift-call's arrival rate is 0,06 sec
and "s7"'s utilization rate 15 0.8 which shows a bottleneck. Emergency-call and lift-lamp-
control are omitted from this queueing network, because they are out of statistical
measurement. "r” from “s2” to "s4" and "t from "s2" o "s5" indicate the load-distributed
factor, because the message from "s2" may be sent to either "s4" or "s5." "r" from "s3" to
"s5" and "r" from "s3" to "s6" indicate the load-distributed factors. In a queueing network in
Fig.7, "u"s for all servers. "A"s for the entries into the network, "r"s, and the network

structure are given, from the prototype construction step before the prototype execution. "p"s
and "t"s for all servers and "A"s for all servers can be obtained by the prototype execution.

server with maximm e (s7 .300)
server whose p =2 (.5 none,
server whose p = 0.7

(s6 .770) (s7 .BOO)

Please input the name of server for diagnosis.
.87

BOES shows the results of bottleneck
diagnosis.

Parameter to be improved for decreasing p of
&7,

#plan-1 increase u (s7)

#plan-2 decrease r (52,54
#plan-3 decrease external input, gb
®nplan-4 decrease external input. ga

Fig. & Improvement plans generated by BDES diagnosis

The designer can determine and locate bottlenecks by BDES. Figure 8 shows a list of servers
and their "p"values by BDES. In Fig.8, for example, the designer can select bottleneck "s7."

For improving the bottleneck on "s7", qualitative simulation can be applied. Block 2in Fig.9
shows that only p7 and 4 are used in the loop consisting of "s7" and "s8." Figure 9 shows
the battleneck improvement process for "s7" with these heunstics, in which a dotted line box at
the top represents the goal of gualitative reasoning, i.e., "decrease p7." The other 4 doned line
boxes represent the results from gualitative reasoning, i.e., the improvement plans for
decreasing p7. BDES diagnoses the sources of the bottleneck "s7" and produces 4
improvement plans for bottleneck improvement, which are alternatives for the bottleneck "s7.”
For example, the designer can select Plan 2. BIES quantitatively improves the parameters, as
shown bellow.

r{s2,s5) 0.300 ---> (.780
r{s2,s4) 0.700 ---> 0.220

In order to improve the bottleneck of "s7", BIES can quantitatively modify "r" from "s2" to
"s4." In this case. "r" from "s2" to "s4" can be modified, because this "r" indicates the load-

16

distributed factor and the message from "s2" can be sent to either "s4” or "s3." In MENDEL,
the message from OBJECT can be sent to the same OBJECTS on individual processors. The
designer can accomplish the measurement using new parameters and obtain a new measured
quantity. They can compare the second quantity with the first. Table 1 shows a comparison
between two kinds of "p” values obtained by the first and second measurements, of the tuning
process performed by BDES and BIES. Table 1 shows an appropriate improvement for
bottleneck.

s7s8 |] s/is8
2 [dp/=-+did=-_ | Jldp7=-+dpu7=+
on loop dt8,10=+ «d p 7=4
lan ” on loop
§ [Ty
s1,52,54/ 1 51,82,54
5 [dtd=--dt2 4= | 6 [did=-—dti=— |
s1,52,54—2non!) 51,5254
7 [024=-—dt2=-]| 8|dt24=-—dr2 4= |
on branch lan on branch
external LU | — v External
input Sidplzdr2d=" i input |
10{dt2=-+dgb=- | 11]dt1=-—dga=- |
lan l on entry plan on entry

Fig. 9 Qualitative reasoning process for improving p's value on server "s7"

Table 1. Comparison of p's and queue lengtt
between two measurements

measurement1 improved measurement2
Jol q by BIES p q
s7| 0.80 2.40 0.65 0.58 0.52

In <phase 2>, how the synchronization affects the performance of concurrent programs must
be examined. By refining each object, the designer can find that OBJECT "08" starts only
when it receives messages from both OBJECTs "06" and "07." OBJECT "08" is assigned to

17

"s10" in Fig.7. Then, "s10" can start only when "s10" receives both messages from "s8" and
"s9%, and it may be bottleneck server. BDES-S and BIES-S are able to model such "s10" as a
synchronized server and can generate improvement plan for "s10." In this case, "r" from "s2"
1o "s4” should be modified.

In <phase3>, by refining each method in each object. the designer can find that the types of
messages arriving at OBJECT "o4" from OBJECT “ol" are different from those from
OBJECT "02", and the message processing time is different between them. BDES-MF and
BIES-MF are designed to apply to the queuing network which processes multi-entities. These
expert systems assist the designer to improve the performance of the prototype with the

messages' {ypes taken into account.
5. RELATED WORK

This section compares the method presented in this paper with the related work. The principal
Characteristics of the presented method include those of OOPD, the methodology emploved in
the prototyping process, MENDEL as an execulable specification language and rapid prototype
construction tool, and qualitative reasoning used for the prototype evaluation method.

First, while several tools based on object-oriented design have been presented, few of them
support performance design as does OOPD.

Second, the presented prototyping process has two characteristics; the application domain is
limited to performance design for real-time system on multiprocessor systems, and a special
emphasis is put on the prototype evaluation step. Various prototyping methods for real-time
systems have been proposed [e.g. Luq88]. However, these methods do not support the overall
performance design for statistical features. No prototyping method, which emphasizes the
prototype evaluation step, has been presented. The authors’ method is considered to be
general-purpose and applicable to several other domains, in which the prototype evaluation
step 1s needed for a more complex system.

Third, as for MENDEL, two points, one of which is for executable specification language and
the other is for planning methods, should be discussed. Various executable specification
languages have been presented and experimentally used. They are classified into two groups:
the Operational approach, such as GIST [Coh84) and PAISLey [Zav84], and the Functional
approach, such as MODEL [Pry84] and RPS [Dav82]. MENDEL employs the operational
approach. Concerning the combination of actor-model and declarative knowledge

representation, one of the languages most similar to MENDEL is Orient 84/K [Ish87], which is
an object-onented concurrent programming language. The main difference between MENDEL
and Orient 84/K is that Orient 84/K has several message-scheduling mechanisms and a parallel
control mechanism as a programming language and does not support a hybrid inference
engine. As for planning, MENDEL's planning ability is very simple compared with [And&9].

Fourth, as for gualitative reasoning, the relation to queveing theory and the main difference
from other work should be discussed. General analytical method based on queueing theory
generates "p"s , "t"s and "A"s for all servers, using given "A"s from external, all "u"s and
r"s. On the other hand, BDES&BIES generates some "1"s and some "r"s in order to improve
the boutleneck, using given "p"s , "t"s and "A"s for all servers. Several applications of
gqualitative reasoning to a design process have been proposed [e.g. Wil90)]. The difference
from other work in applying qualitative reasoning to software engineering [e.g. Dow9(]
resides in the prototype evaluation step, where qualitative reasoning is indispensable to
effectively implement a human's heuristics in performance design. Furthermore, no related
work on the queuveing network model has been presented in the gualitative reasoning domain.
BDES&BIES present a combination method for gualitative reasoning and quantitative
reasoning on a queueing network model. BDES selects several parameters to be tuned using
qualitative reasoning, and BIES determines the parameter value using quantitative reasoning.

6. CONCLUSION

This paper describes the role of antificial intelligence in implementing a prototyping process in
performance design for real-time systems. The presented method has several limitations and

assumptions as follows;

(1) Dynamic object creation is not permitted.

(2) Communication cost is not considered.

(3) Closed type gqueueing network is not supported.

(4) When required messages are received, the object execution is started without waiting for
completion of another object execution.

Among above points, (4) may be the most critical limitation from the viewpoint of
applicability. In MENDEL execution, it is assumed that individual objects are assigned to
individual processors in a multiprocessor system. [n practice, several objects may be mapped
to the same processor. Then, the authors are now mmplementing a hierarchical queueing

network version in order to solve this problem.

Ackpnowledgments

The research in Section 3.1 has been partially supported by the Japanese Fifth Generation
Computer Project and its organizing institute ICOT. The authors would like 1o thank Ryuzou
Hasegawa of ICOT for his encouragement and support. The research in Section 3.2 has been
partially supported by the Japanese Ministry of Education, Science and Culture. The authors
are grateful to Seiichi Nishijima and Yutaka Ofude of Systems & Software Engineering
Laboratory, Toshiba Corporation, for providing essential support. The authors also wish to
thank Jun Sawamura and Keisuke Shida, Sophia University, for their helpful cooperation in
developing BDES&BIES.

[And89] J.S.Anderson and S.Fickas : A Proposed Perspective Shift : Viewing Specification
Design as a Planning Problem, Proc. of 5th International Workshop on Saftware Specification

and Design, pp.177-184, 1989

[Bar’2] D.Barstow et al. : An Automatic Programming System to Support an Experimental
Science, Proc. of 6th ICSE, pp.360-366, 1982.

[Coa%0] P.Coad and E.Yourdon : Object-Oriented Analysis, Prentice-Hall, 1990

[Coh84] D.Cohen : A Forward Inference Engine to Aid in Understanding Specifications, Proc.
of AAAI-84, pp.56-60,1984.

[Dav82] A.M.Davis : Rapid Prototyping using Executable Requirements Specifications, ACM
SIGSOFT, Vol.7,No.5. pp.39-44, 1982

[Dowd0] K.Downing and S.Fickas : Specification Criticism via Policy-Directed Envisionment,
CIS-TR-90-05, University of Oregon, 1990

[Fic85] 5.Fickas : Automating the Transformational Development of Software, /[EEE Trans.
Software Eng., Vol.11, No.11, pp.1268-1277, 1985

[Ger80] S.Gerhart et al. : An overview of AFFIRM: A Specification and Verification System,
Inform. Proc., Vol.80, pp-343-347, 1980.

[Gon77] M.).Gonzalez : Deterministic Processor Scheduling, Computing Surveys, Vol.9,
No.3, pp.173-204, 1977

[Hon86a] S.Honiden et al. : MENDEL: Prolog based Concurrent Object Oriented Language,
Proc. of Compcon ‘86, pp.230-234, 19R86.

[Hon86b] 5.Honiden et al. : Software Prototyping with Reusable Components, Journal of
Information Processing, Vol.9, No.3, pp.123-129, 1986, also in IEEE tutorial 'Software

Reuse: The State of the Practice', 1988.

[Hon89] S.Honiden et al. : An Application of Structural Modeling and Automated Reasoning
to Concurrent Program Design, Proc. of HICS5-22, 1989,

[Hon90] S.Honiden et al. : An application of Structural Modeling and Automated Reasoning to
Real-Time Systems Design, The Journal of Real-Time Systems, Vol.1, No.3, Kluwer
Academic Publishers, 1990

[Ish87] Y.lshikawa and M.Tokoro : Orient 84/K : An Object-Oriented Concurrent
Programming Language for Knowledge System, Object Oriented Concurrent Programming
(ed. by Yonezawa and Tokoro), MIT Press, 1987

[1to89a] K.Itoh et al. : Tools for Prototyping for Developing Software, JOHO SHORI,
Vol.30, No.4, pp.387-395, 1989

[1to89b] K.ltoh et al. : Knowledge-based Parameter Tuning for Queueing Network Type
System -A New Application of Qualitative Reasoning, Proc. of [FIP CAPE'89.

[Ito90] K.ltoh et al. : A Method for Diagnosis and Improvement on Bottleneck of Queueing
Network by Qualitative and Quantitative Reasoning, Trans. on JSAl. Vol.5, No.1, 1990.

[Ito91a] K.Itoh et al. : Qualitative Reasoning Based Parameter Tuning on Bottleneck of
Synchronized Queueing Network, Proc. of Compsac 91, 1991

[1to91b] K.Itoh et al. : Parameter Tuning on Bottleneck of Synchronized Queueing Network
by Qualitative Reasoning, Trans. on JSAL, Vol.6, No.6, 1991

[Iws87] Proc. of 4th International Workshop on Software Specification and Design, C5 Press,
Los Alamitos, Calif, 1987.

[Jon84] T.C.Jones : Reusability in Programming: A survey of the State of the An, [EEE
Trans. Software Eng., Vol.SE-9, pp.488-494, 1984,

[Kat81] S.Katz et al. : An Advisory System for Developing Data Representations, Proc. of
7th. IICAI, pp.1030-1036, 1981.

[Lug®8] Lugi et al. : Rapidly Prototyping Real-Time Systems, /EEE Software September,
pp.25-36, 1988,

[Nil82] N.J.Nilson, Principles of Artificial Intelligence, Springer-Verlag, 1982

[Pry84] N.S.Prywers : Automatic Program Generation in Distributed Cooperative
Computanon, [EEE Trans. Syst. Man. Cyber., Vol.14, No.2, pp.275-286, 1984

[Ric78] C.Rich et al. : Initial Report on a LISP Programmer's Apprentice, JEEE Trans.
Software Eng. Vol.4, No.6, 456-467, 1978.

[Swaf3] W.Swartout : The Gist behavior explainer, Proe. of AAAL-83, 1983

[Uch&7] N.Uchihira et al. : Concurrent Program Synthesis with Reusable Component using
Temporal Logic, Proc. of Compsac '87, pp.455-464, 1987.

{Wil90] B.Williams : Interaction-based Invention : Designing Novel Devices from First
Principles, Proc. of AAAL-90, 1990

[Zav84] P.Zave : The Operational versus the Conventional Approach to Software
Development, Comm. ACM, Vol.27, No.2, pp.104-118, 1984

