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ABSTRACT

Thiz paper discusses several requirements 1o pul formal
sprecifications inte pracical use in real-time systems, and
awn imtegration environment called MENDELS ZONE 1o
sarisfy them. The integration eavirgament includes
afgebraic specification. temporal logic, real-lime
Structured Analvais and Qbject-Oriented Design. [t also
defines a specification process that assists a designer in
iranslating o specification developed with the real-rime
Strucipred Analysis method into an Olject Crienied
Design specification, and thar finafly geaccates Ada tasks.
The specification process is defined 1o consist of several
specificagion steps and several mermediare products. In
arder to validate the activity for each specification siep,
each imtermediare product i described by two formal
gpecification methods: algebraic specification and
emporal logic,

1. Introduction

Of the various sefrware specification methods, formal
methods are widely recognized as the methods having the
miost potential o cnhance the guality and the reliability of
software. For real-time systems, however, formal
methods are not used very muoch in the indwstrial
environment at present. To pul them inle practical use,
the following five requirements should be fulfilled:

1} it should be possible to combine several formal
methods 1o describe various aspects of the system
requested by the wser, This is becavse it is very difficult
o do so with only a single formal method.

23 It should be possible wo refine abstract specifications
it derailed specificanons by using formal methods. The
refining process can also be regarded as a design
methodology to assist formal methods. The process is
neecded for the following reasons:

ay It erables even inexperienced users 1o develap desired
syslems eastly by rafining formal specificarions.

b} Becoming Familiar with forimal descriptions requires a
relatively hard taiming and much time.

c) If several persons are given the same abstract
specification, they showld be able to produce similar

intermediate specifications as well as compatible final
sofiware products.

3} It should be possible to use a simple mechanical
method o verify formal descripiions. Also, a means is
neaded to easily find errors in the specifications.

4) It shoubd be possible o provide 2 means by which
develapers can understand the whole, when the size of the
desired software system is large, even though formal
methods tend to cause designers to focus on details.

5} b should be possible to naterally or inevitably generate
& program from a specification described with a formal
method, Even if a specification is sirictly described. if it
does not correspond directly 1o a program, its practical use
i5 not casy.

A number of studies have beer made in the past to
satisfy the requirements given abave. Regarding methoads
to aeffectively combine several formal specifications
(requirement !}, a number of proposals have been made
(e.g. [Vautherind7], [Kramerd7]). Howevesr, it cannol be
caid that these praposals satisfy requirements 2-5. This
paper discusses how to satisfy these requirements for a
real-time system having concurrent processes. It also
deseribes an intzgration environment called MENDELS
ZONE, which aims at satisfying these requirements.

In order tw address regquirement |, a8 combination of
algebraic and emporal logic methods is adopied. The
alpebraie method deseribes the characteristics of functions
and data which have static aspects, and the temporal logic
describes the characteristics of concurrency,
synchronization, and cxclusive control, which are
dynamic aspects. In order to address requirement 2, the
real-time Structured Analysis (SA) method [Hatley34,
Waurd36], widely wsed Tor real-time systems, s adopled as
the methedology, In real-tume SA, the algebraie method
15 used (o describe bubbles in the Data Flow Diagrams
(DFDs), and the temporal logic s wsed o describe the
execution control specification. Applying the algebraic
method to bubble descriptions in the DFD enables the
functional refinement eriteria for bubbles e be made
clearer, and allows a derailed design process 1o be defined.
Az a result, differences between individuals can be made
fewer when several persons waork topether to develop a
particular software system. As for the third requirement,
although there are various metheds for the algebraic
approach and temparal logie, our system is limited o an



automatically verifiable subser. Also, the specifications
described in the algebraic method are ranslated into DFD
descriptions as much as possible, allawing a visual
validation. This is because, depending on the
specifications to be verified, visual checks are ofien mare
efficient than mechanical, automatic verification.
Regarding the fourth requirement, the whole specification
cen be surveved by traversing withowtl any restrictions
between superior DFDs and inferior DFDs according to
the hierarchical relationship. In order o address
requirernant 5, the concept of the Object Oriented Design
(O0D) [BoochBG] is adopred. Specifically, a store
appearing ir a higher-level DFD corresponds to internal
state data held in an object. Each bubble around the siore
is functionally refined into lower-level DFDs, allowing
isolation of metheds for that object. That is, methads
required for data are extracted to construct the object. In
addition, the execution order relation among methoeds is
expressed as a state transition diagram. The diagram is
generated by a theorem prover, using propositional
temporal logie. Concurrent programs are generated from
data store definitions, methods, and state transition
diagrarm.

2. Architecture for specification process
support in MENDELS ZONE

This section gives an outline of MENDELS ZONE
and describes the fundamental techniques 1o support iL

The method propased in this paper consists of the
following five phases [Fig. 1]:

<phasels
Generaling object specifications by DFD decompositian

<phaseds
Dgscribing chiects 8t the implgmentalion ewel
P

detaled ohject phaseds
C:E_i-:—]i Veritying object speciicatans

E by the termn rewriting systam
----------- seeeeseieny
opfiased »

Generating the contrel speciication
far obiecis via lemporal logic

cphase5»

Ganerating Ada 1asks irom objec! specilicationg

Ada taske
Figure 1 System averview

<Phase 1=

First, the context diazgram for the given specification is
defined, The diagram comesponds w a single bubble. 1/Q
data that defines the interface between the target system
and the outside world is defined wvia an algebraic
specification. MNext, the context diagram is decomposed
into DFD descriptions. At this point, individual bubble’s
operatians are described using algebraic specifications.
Figure 2 gives extended BNF for the syntax of bubble
specifications,

<pbjesi=i= objecii<object name>
gorm:<sor name Hgrs
opas:<oplist>
eqns:<eqlists

<bubbles::= bubble:<bubbie name>
inSorl<sor, name st
outSor:<sorl name Jesi>
lacSorn:<sort name lisi>
aphs:<oplisi>
tgns <eglist>

iﬁb}etl NAMES  =<RAme>

<bubble names:=<pame=

<8071 name fisi»ecmame list>

<oplisix:-w{zname lisc[<name linz] -= apames)t

{L‘q”:“}‘.ZS[‘G'.lEﬂTLP-QIL'TII?:I"-

cname listzre(<names, | <names
Figure 2 Object and huhble syntax

The signature or equation from algebraic specifications
can be ranslated into DFD fonm and validated visually.
In addition, each bubble in a DFD description is
decomposed according to the decomposilion rules until
the terminarion condition is satisfied. Our method defines
the decomposition rules and the rermination condition as
follows:

(Decomposition Ruole 1)

A bubble is decomposed 0 as 10 make one operation
correspond to one output data item. Generally, as an
algebraic specification defines the operation in the form of
a3 function giving no side cffect, data retumned as a value is
limited o one type. Therefore, to describe an algebraie
specification, a bubble is decomposed so as to generate
only one gutput data type.

{Decomposition Rule 2)

Decomposition is accomplished based on the description
in the right hand part of the equation. The characteristics
of a bubble’s operation are expressed with an equation. It
is assumed that the expression in the right hand pan of an
equation expresses how the operation works, and at the
same Hme, expresses the decomposition of the operation,
For example. equation A(x, y)=D{B{x),C(y)} indicates that
A is decomposed into a combination of three operations
B, C. D, and means that B processes input data x, C
processes input data v, and the processing results are used
as input data to I,

(Decomposition Rule 3)

A dawa store corresponds 1o an object, Figure 2 also
shows the syntax for an object. Data cormesponding to an
internal state of the system and the operations on the data
such as read and update are grouped in the form of objects.



Decomposition on such operations is distinguished from
other decompositions,

{Decomposition Rule 4}

A bubble is decomposed so that €ach bubble accesses
only one data store, When the functional decomposition
is completed down to the lowest layer, the operations
accessing the daia siore direetly are grouped o form an
object. According to Decompesition Rule 4, each
operation accesses just one dara store, 5o the object 1o be
formed is uniquely derermined,

(Termination Condition)

When the right hand part of an eguation in a bubble
consists of primitive operations or recursive function
form, decemposition for the bubble is terminuled. A
recursive function is not decomposed snymore because it
cannot be represented via an ordinary DFD. From our
experience, a recursive function vsually appears in a
lower-level DFD. This means that a recursive function is
already fully decomposed.

During Phase 1, functional decomposition on DFDs is
repeated according to the above decomposition mules until
the termination condition is sarisfied, the objects are
extracted based on the concept of OOD, and the skeleton
of Ada asks is generated as the fing! cuiput. Figure 3
shows the basic format for an Ada task.

lask specification;;=
lagk <lagk facies | 14
[ =eniry declasaton> |
end | <iesk names | |;
tashk bodyz=
123k body <1ask names is
| adeclarations |
begin
loap
select
wizlect aliemalives
jer
=szlect ahematives §
end selecr:
end loop;
end § <lask names J;
<select allemalives:o=
[ when <condition> =3 ]
<acuepl stalement>
<condilion=>::=
<svide fo. variables = Ziniegers
<FCeept slalemenl>;=
ICCRp <y names [(<expeessions)][ <formal
paramesler>] [do
cenruence of STacmentss
{L:pd:].'ln atatement far node no. variahles
end [<emry name>|]:

Figore 3 Dasic formar for an Ada task
The procedurs for OOD is given below. The
specification process for O0OD is ranghly divided into the
following steps:
(1) Exrracting objects.
(2) Defining the ahject attributes,
(3) Defining the object methods.
(4} Defining the messages berween the objects.

Typically, Steps (2) and (3) are not done consecutively:
instead they are actually done concurrently or alternately,
These steps are detailed below.

(1} Objects are defined based on the data stores appearing
in a DFD according to Decomposition Rule 3, The
desired Ada tasks are genersted based on those objects.

{2}, {2) The bubblcs around 2 darta store are functionally
decemposed o exract the operations closely related 1o the
data store (operations correspond 1o bubbles in the DFD
and methods in OOD). That is, the operations which
directly access the data store are exiracted. At the same
time, the data required for operation extraction is also
identified {data corresponds to the sorts in the algebraic
specificalion and the auributes in O0D), I an equation
directly accesses the data declared in an object (for read,
write, ar update), it iz avtomatically registered in the
corresponding object by the system as a data access
operation. In this way, the operations related o the data
defined for an object are specified. When the funcrional
decomposition is completed down to the lowest layer, the
operations accessing the data store directly are grouped to
form an object, According to Decomposition Rule 4,
since each cperanon accesses just one data storg, the
object 1w be formed 15 vniquely determined. However, the
operations that do not directly accoess any data store do not
belong to any object, and must be assigned o the objeat
in winch there 15 the operation that transfers the data.

(4) The imerface between two objects corresponds o the
data transfer betwesn operations "a” and "b" which belong
to objects A and B respectvely. Information on the data
transfer berween operations “a” and "b" is obtained from a
DFD generated by a funciional decomposition, because
the operations here correspond o bubbles and the DFD
represents the data flaw between apsrations,

<Phase 1=

At Phase 1, 3 DFD was decomposed to create objects,
Operations assigned to an object generated at Phase 1 do
not specify physical data structures or information on
implementation. This is because those operations describe
data from cutside the object and can also be regarded as
the operations for abstract data types. Accordingly, at
Phase 2, objects are described in detail using equations
representing the physical data structure. At Phase 2, the
physteal data structure is determined first for data
contained in the object. In this case, the larget application
environment needs 10 be concerned, The descriptions
from Phase 1 are the external specifications for
operations, while those generated during Phase 2 are the
internal specifications for operations.

<Phase 3=

The specification, given in detail using ¢quations at
Phase 2. 15 not often validared visually, The reason is that
detailed eguations may consist of recursive functions and
this form can not be translated into an ordinary DFD.
Therefore, some other validation or verification method is
required. The verification requires semantics to be given



to the descriptions. The term rewriting system is a model
in which operational semantics is given to the
specifications described wsing equations and compuration
is performed using the equations as rewriting rules from
the left hand part to the right hand part. The term
rewriting system provides a completion procedure 1o
generate new rewriting rules, 50 that the set of erm
rewriting rules provided satisfies termination and
confleence properties. Two major points exist for
verification here. One is to ensuré lermination and
confluence properties by using the completion procedure
in the term rewriting system. The other is 1o closely
examine whether the descriptions (equations) for the
object satisfy any verification points given by the user. In
both cases, if the completion procedure does not
terminate, verification is impossible. Therefore,
verification is Hmited to the range where the completion
procedure terminates.

<Phase 4=

A wverified object can handle muliple-accesses from
several operations. The task mechanism in Ada can
suspend the execution of one operation during the
execution of anather aperation. However, this mechanism
cannot handle the exclusive control among operations (for
example. after an execution of operalion "a", operation "¢"
must not be execoted until operation “b” is executed). A
craph is generated. which can be regarded as a state
ransition diagram. Hence, the execution sequence among
operations is specified in a state ransition diagram which
represents the contral specification. The control flaw in
real-time SA is represented with the state transition
diagram. As a state transition diagram 15 usually manually
prepared. its validity is not ensured. Our method emplaoys
the method proposed by Wolper [Welper83]. Walper's
method is based on the tableas method. In the tableay
methed, to decide the satisfiability for the given formula,
a madel graph, which 15 a state transition diagram, is
constructed. The diagram indicatez that the logical
expression on an arc is true ar its staning node. Therefore,
the interpretation of the diagram depends on what is
assigned o the logical expression. Here, a data access
operation is assigned o the Jogical expression. In this
case, the diagram indicates the execution sequence for
cperations. That is, the access sequence for the operations
to an internal data in Ada is generated from the
specification described with 1emperal logic. by using the
theorem prover. In a real-time system. (iming constraints
must be specified in addition to the contrel flow, which
corresponds 1o an execution sequence for operations.
Hence, RT-PTL(Real-time Propositional Temporal Logic)
is adepted for the tming constraint [HonidenS0].

=Phase 5=

A task is generated in Ada from the data defined in the
object, its associated operations, and the state transition
diagram created a Phase 4. A data siore in a DFD
becomes the internal data hidden by the 1ask, and gach

aperatian for the data store becomes an ACCEPT
statement in the task. That is, it takes the form of
condinional ACCEPT statements waiting for several
entry calls from ouweside. A numerical dizgit written in a
conditional expression following a WHEN statement
indicates a node number in a state transition diagram. An
update siziement for the node number according o the
state transition diagram is added to the end of this
ACCEPT statement. Also, the equations are translated
inte fumctions in Ada.

3. Example

This section describes the specification process for the
lift eontral problem [Problem87] by using the procedure
mentioned in Section 2. Phase 1 includes from Step 1 to
Srep 13, and Phase 2, Phase 3, Phase 4, and Phasze 5
correspond Lo Step 14, Step 15, Siep 16, and Step 17,
respectively. Figure 4 and Appendix A show a detailed
specification process.

G4 i Algebraic specification & temparal logic

mochihes OF 2

Figure 4 A detailed specification process

The description process is described below,
Step 1 Dama /O berween LIFTControlSystem and its
outside world 15 vsed o specify a context diagram [Fig.

3l

Step 2: The bubble for LIFTControlSystem is described
1Fig. 51

Step 3: The input data items associated with each output
data item in LIFTControlSystem are listed. Each 1O pair
is assigned a name, and the name is entered in the opns
entry [Fig. 6]. For input data items not directly associated
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Ceeraen Figure 9 Bubble description
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Figure 8 Decomposilion process

for bubble with two cutput data
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with equation for setLIFTstop
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LIFT Mo,
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UFTLampConra,
Fre-BumanlampCentral_
Oiparabon
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Figure 7 Modified bubble description
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Figure 10 LIFTstate object deseription
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LIFT Baamr o,

Cmake

Operation Queye
—_—

Flesar Bullan Flor Buiion Lasg Coneol

Figure 11 Objects example



with ouiput data items, intermediate dara ilems are
created. At this point, LIFTstate for the locSors entry is
introduced.

Step 4: Each of the four operations in Fig. § is
associated with each bubble in the DFD, to generate a
diagram uging an [0 a: a data flow [Fig. &) by the
system. In addition, the object for LIFTstate is generated.
Step 5: The diagram in Fig. & is examined. The data
flaw with the asterisk mark shown in Fig. 7 is added.
Step 6: The correction for the diagram is reflecied in the
bubble descripion [Fig, 7] by the sysiem. {In this figure,
the comrected part is indicated with bold lewers.)

Step 7: The decomposed bubbles are specified from the
bubble in Fig. 7, which consists of four operations,

Step §: For the two bubbles; that is, LIFTMove Indicate
and FloorMovelndicare, for which several ouwpet data
items result from the correction made in Step 6, the
procedure given in Step 3 is wsed again to accomplish
funcuonal decomposition. In Fig. 8, for appropriate
bubbles, LIFTMovelndicate is decomposed into two
operations: s2tLIFTsiop and makeMove. Figure § shows
the decamposed DFD. For each bubble having ane autput
after decomposition, a bubble description is specified.
Step % Of the newly defined bubbles. the relation
between the input data and output data for setl.IFTstop i
described in Fig, 9, Here, LIFTNo.state {5 introduced as a
new data item, and several new operations: setLIFT,
writeStopFloor, and getl1FT are defined to construct
selLIFTsop,

Step 10: Figure 9 shows the DFD based on the
equanions for setLIFTsiop.

Step 11: setLIFTstop 15 an operation for LIFTsme, so
it is entered by the system as a consuauing element in an
object called LIFTstate, By decomposing each individeal
bubble around LIFTstate, operations which directly access
LiFTstate are extracted,

Step 12: If all operations for the LIFTstate object are
extracted as shown in Figure 10, go to Step 13

Step 13 Figure 11 shows the relation among the
LiFTstate obpect and other objects.

selLIFTsopl LN BA 55 )=cet LIFT{write SiopFloor BN, peiLIFT(LN 55
JLLMNSS)Y
wrileStopFlaor BN "NIL)='NIL"
writeStopFloon[BNLS(FS.Remib=il eqiBN gotBunoaNo{FS)) then
‘L5 (setButtonSlate STOPF F5 L Rem)
clse
"LEYFS. writeSiwopFloor{ BN, Rem )}
readSopFloon LN BN 55i=readSiopFloar{ BN, gel IFT{LN 551)
read StopFloor BN, NIL ="Buton™NoEmer
readSiopFloor BN, LS (FS.Rem)i=il eg{BN getBulltonM¥o(F5)) then
perBunonSiaelFS)
eise
readSopFloar{BM_Rem))
setLIFT{MLE LN, NIL )="NIL"
oot IFT(MES LN S8YLS Rem =il eq(LN. goLifiNo(LS)) Lthen
SR el WLE LS) Rem)
elie
"33 1LS sedL IFT{NLE,LN Rem})

Figure 12 Detailed description for setLIFTswop in the
LIFTstate ohject

Step 14: In this step, detailed descriptions are developed
with the physical data structures in LIFTstate taken into
account. A pant of description is shown in Fig. 12, Before
describing the specifications, the structure for LIFT (how
many ftoors does the building have, how many lifis are
there in the building. and how is LIFTs1ate expressed) is
determined and reflecied.

ﬂtep 15: The dtscriplin‘m developed in Stcp 14 is
verified using the term rewriting system. Figure 13
shows the meanings for verification poims and their
descriptions.

readStopFloor{L.F setLIFTstop(LF,51="s10p’
where  L: LIFTNa.
F: LIFTBunanNa.
5: LIFTsnate
(When & request button is pushed for any foor in any 1, the
requested floor is added in the list indicating the flocr at
which the fift stops)

Figure 13 Verification point example

Step 16: For objects which have been verified using the
term rewsiting system, it 15 assumed that the order
relation among operations is correctly specified. However,
requests from outside LIFTstate can occur at random,
Therefore, for example, the fellowing contrel is required:
If selLIFTstop is executed, setDirection must not be
executed before executing getDirection. As shown in Fig.
14, a request for such a control is described using the
propasitional temperal logic, The state ransihon diagram
shovwen in Fip, 14 is penerated vsing the theorem prover
for the propositional temporal Jogic,

O(setLIFTstep 2 (77 58t Direciion U get Direction ))
[ (set Floor stop 2 7 sat Directicn 1) get Diraction ))
[ (set LIFT stop 2 © < get Direction
[ {set Floor stop =& O % get Direction )

set Direction sai Direction

get Direction

Figure 14 Temporal logic specification and penerated state
transition disgram

Step 17: As shown in Fig. 15, the LIFTsiste object is
generated a3 an Ada sk, At this point, from the stae
wansition diagram generated in Step 16, the conditional
statements associated with ACCEPT statements are
created using numerical digits, Each individual operation



expressed a3 an egquaton is translated into an Ada
function.

1ask LIFTstawe is

entry sellLIFTaep (Lo in LIFTNO; Bin LIFTButtonNo..S: in

LEFTsiate; 5. out LIFTsiate);
eniry selFloostop (-
entry gelDirection  (F
eniry seiDirection [k
end LIFTstale,

sk biwdy LIFTs1a1e o5
Noimlegers=1; --pogde variable m slae ransition diagram
NE: LIFTHo.siae;
Begin
loop
select
when N=1 =
accept sellIFTstop fL: in LIFTNo.: B in
LIFTSuwionNe.: 5: an LIFTsawe; 52 out LIFTstae)
dao

N3:=gellIFTIL.3%

W3 =writeS1opFloor BN

So=3elLIFT (NS L)

Nimd:  --update node varisble
end setLIFTswop;

un
e =1 ==
accep setFloorston (--) do

Mi=3.
end selFlsarsiop:

end sebect;
end loop:
end LIFTsane,

Figure 15 Quipwt example in Ada task

4, Related work

We have adopled an inegration method for formal
approaches. Several integration methods for formal
approaches have been presented [Vaotherin7) [Kramer87]
[Hankley90] [Meiling87) [Folkjar80). Each method vses
VDM and algebraic specification for data description and
uses temporal logic, Petri-nets, CCS5, or CSP for the
deseriprion of synchronization and concurrency. However
the venfication method cannot always be said to be well
integrated For these approaches. Although LOTOS [Iso89)
supports the above two types of description in terms of
language, the verification system has problems to be
settled in the future. Our method utilizes the algebraic
specification method for data description and temporal
logic for the description of synchronization. Since our
objective is (o implement it as a soflware system, the
descriptive power of the sysiem is limited 1o the range in
which analysis is possible, that is, a mechanically
verifiable range. Hence, propositional emporal logic is
adopied. The alpebraic specification method limits the
descriptions to the range which can be verified using the
term rewriting system. Also, 1o improve the readability
of the formal specification, DFD is adopted as a visusl

validation method. The DFT also enables the user 1o
perform visual validation on complex algebraic
descripteons. [Docker89] combines equational logic and
DFDs. Our method differs from [Docker89) in that the
specification process is defined by combining the
algebraic specification and DFD. P. Ward discussed the
relation berween real-ume SA and OO0 [Ward89], He
sugpested  that 00D can be supported within the
framewnrk of the desizn methodology for real-time SA.
That is, a datza store is defined as the internal data in the
DFD at the lowest layer, and bubbles around the data
store are taken as operations, thus data and its associated
operations are regarded as objects, This 15 similar 1o our
methed, but the difference is that in our method
operations are extracted by repeating functional
decomposition systematically and operations are included
in the object uniquely and automatically.

Rezarding support tools for formal specificaiions,
there have heen a number of approaches based on use of
syntax  editors, speciflication libraries, debugger,
verification tests generation systems, and direct execution
systems. OF the support 1eols provided by our method,
there are (wo twools that are not provided by the other
methods, One 15 the bidirectional consistency support
ool between the algebraic specification and DFD. The
other is the navigator for the functional decomposition
via DFDs,

5. Conclusion

Cur method has the following consmaints;
1} Bubbles must have only one output item.
2) The control specification must be reswicted to the order
relation for the operalions in the Ada fask,
3) As a constraint for the verification system, verifiable
sange 15 hroted.

MENDELS ZONE is now being implemented. It has a
window digplaying a DFD and a window through which
an algebraic specification is described. Information in
these two windows is consistent; if the user modifies the
informatien in one of the windows, the sysiem
automatically modifies the information in the other
window. In addition, there is one more window for
describing the details of data stores, intermediate data, and
/0 data from the outside world. Regarding the description
using equations obtained by decomposing the bubbles
around a daa store, the operations which directly access
the data store are automatically entered in that additional
window by the system. To apply formal specification
methods in practice so that designers really use them, a
support environment must be prepared. In our sysiem, the
supporl enviromnment navigates the detailed specification
process. Also, using formal specification methods
together with the diagrammatic specification method is
effective for the designer.
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Appendix A. Specification process in Phase ]

Step 1. /O data between the target system and its
outside world 1s specified (o write a context diagram.

Step 2: The bubble expression is specified for the arget
system. Input and output dara for the outside world are
described in the inferi entry and purSerr entry
respectively.

Step 3 According 1o Decomposition Rule 1, one output
data item for the bubble is selected, and all input daa
items that are expected to have effects on that data irem
are picked oot An operation having those input data
iterns in its domatn and having the outpu data in its
range is described by giving it a name in the opns entry
for the bubble. In this case, if an introduction of
intermediate data 15 required, 1t is assigned an adequate
name and desenbed in a locSert entry.

Step 4: A DFD is creaed, in which each operation is
used 25 a bubble subprocess and the 1JO for each operation
is used as the data flow. In this case, if any data store
exists in the diagram, according to Decomposition Rule
3, it is imentionally described as an object. and all the
subsequent aperalions that directly access the data store are
elefined in the object.

Step 5: The DFD is examined; if there is any part
missing from i, it is fixed in the diggram. 1f not, proceed
1o Seep 7.

Step 6: The corrections made in the diagram in Slep 5
are reflected into the bubble descrption.

Step 7: The decomposed bubbles are creawed from
original bubble's operation.

Step 8: If the correction made in Siep 6 causes several
outpul data items 1o be generated, get back to Step 3 and
carry out the functional decompasition again. IF every
bubble {operation) hus one output (in the apas entry) and
no more cormection is reguired, go to Step 9.

Step 9: Regarding each object, the relation that exists
between the input data and output data for each operation
is examined. At this poini, the function for each
operation is defined in the egns entry in the form of
eguation.

Step 10: If the equation in the eqns entry for the
operation having the name of the bubble itself is
expressed in a recursive function, the bubble is not
decomposed any more, If the equation is expressed in nan-
recursive function, according to Decompaosition Rule 2, a
DFD is created.

Step 11: If the equation described in the egns entry
directly accesses the data declared in a object, the system
registers the equation In the object as a data access
operation. Thus, the operations on the data defined in the
object are exoacted.

Step 12: If all operations other than the primitives are
already defined in the egns entry and there are not any
mare bubbles 1o be decomposed. go w Step 14, In other
cases, po to Step 5.

Step 13: Every operation is joined o the appropriate
abjacts,



