ICOT Technical Report: TR-684

TR-6H4

Defining Concurrent Processes Constructively

by
Y. Takayama

September, 1991

© 1991, ICOT

Mita Kokusai Bldg. 21F {03)3456-3191 ~5
" :D I 4-28 Mita 1-Chome Telex 1COT 132964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Defining Concurrent Processes
Constructively *

Yukihide Takavama
Kansal Laboratory, OKI Electric Industry Co.. Ltd.
2-27 Shivomi 1-chome, Chuo-ku, Osaka 540, Japan

takayaimakansal.oki.co jp

August 13, 1991

Abstract

This paper proposes 4 constractive logic in which a concurrent svslem can be de-
fined as a proof of & specification. The logic s detined by adding stream types
and several rules for them to an ordinary constructive logic. The unique feature of
the obtained system is in the rule { M PS5T) which is a kind of structural induction
on streams, Aparl from other approaches in treating streams such as largest lixed
point inductions and lazy type systems in tvped functional languages, (M 257 is
formulated as a purely logical rule in the natural deduction formalism which defines
a concurrent process as a Burge's mapstream function. This fornmlation is possible
when stroams are viewed as sequences nol infinite lists. Also, our logic has explicii
nondeterminacy but we da not introduce any extralogical device. Our nondetermi-
nacy rule, | Neos Ded), i actually a defined rule which uses inherent nondeterminacy
in the traditional intuitionistic logic. Several tochniques of defining stream based
COnCUTrent programs arte also presented throngh varions examples.

1 Introduction

Constructive logics give a method for formal development of programs, e.g., [8. 11, Sup-
pose, [or example, the following formula: Yo @ 0.y Dy, Alr,y). This is regarded as a
specification of a function, f, whose domain is [y and the codomain is I); satisfying the
input-output relation. A{z. y). thatis, Ve : Dy Az, f{r)) holds. This functional interpre-
tation of forinulas is realized mechanically. Namely, if a constructive prool of the formula
is given, the function, f, is extracted from the proof with q realizability interpretation

*1'his work was supported by the Institute for New Geoeration Computer Technology as a joint

research progect on Cheorsm proving and its appliratiﬂn.

[1] ar with Curry-Howard correspondence of types and farmulas [13]. This programming
methodology will be referred to as constructive programming in the following.

Although constructive programming has been studied by many researchers, the construc-
tive systems which can handle concurrency are rather few. This is mainly because most of
the constructive logics have heen formalized as intuitionistic logics, and the intuitionism
itself does not have explicit concurrency besides proof normalization corresponding to the
exccution of programs [10]. For example. QJ [3] is an intuitionistic programming logic
for a concurrent language. Quty. However, when we view (QJ as a constructive prograrm-
ming svstem, concurrency only appears in the operational semantics of the programming
language.

Linear Logic [4] gives a new formulation of constructive logic which is not based on
intuitionistn. This is the frst constructive logic which can handle concurrency at the
level of logic. lu Linear Logic, formulas are regarded as processes or resources and every
rule of inference defines the behavior of a concurrent operation. Linear Logic is similar
to Milner’s SCCS (9] in this respect, and the meaning of logical connectives are quite
different from that of intuitionistic logics.

We take intermediate approach between Q) and Linear Logic, not throwing away but
extending intuitionistic logic. The advantage of this approach is that the functional inter
pretation of logical connectives in the traditional constructive programming is preserved.
and that both the sequential and concurrent parts of programs are naturally described as
constructive proofs. To this end. we take the stream based concurrent programming model
2. 3). We introduce streain types and quantification over stream tvpes. A formula is re-
garded as a specification of a process when it is a universal or an existeniial formula over
stream fypes, and otherwise it represcnts a spocification of a sequential function. proper-
ties of processes or linkage relation between processes. A typical process, VX IV A(XY
where X and ¥ are stream variables, is regarded as a siream transformer. Most of the
riles of inference are those of ordinary constructive prograniming systems, but rules for
notdeterminacy and for stream types arc also introduced. Among them, a kind of strue-
tural indnction on stream tvpes called (M ST} is the hart of our extended system: With
(M PST). stream transformers can be defined as Burge's mapstream [unctions [14].

lReasoning ahont stream transformer can be handled by P. Dybjer and H. P. Sander [7]
with a largest fixed point induction. However. their system is designed as a program ver-
ification system not as a program derivation system {constructive programming system),
and even if 1t 15 modified 1o a program derivation svstem, the largest fixed point induc-
tion diminishes the advantage of constructive programming, namely, control mechanism
in programs can be described as natural deduction stvle reasoning such as the structural
induction for defining recursive call programs. T, Hagino [12] gave a clear categorical
formalization of stream types (infinite list types or lazy types) whose canonical elements
are given by a schema of mapstream functions, but relation between his formulation and
logic is not investigated. N. Mendler and others [6] introduced lazy types and the rules
for themn into a constructive tvpe theory., Their lazy tvpes have a categorical semantics
theory very similar to llagino's one. However, Curry-Howard correspondence between
types and formulas does not hold for the lazy types and their system is more like a lazy

funetional programiuing system than a constructive programming system. On the other
hand. { M PST) is formulated as a purely logical rule in natural deduction which is possible
when we view sireams as scquences, not infinite lists,

Section 2 explains how a concurrent system is specified in logic. A process is specified by
the %o 3y . Alz, u) tvpe formula as in the traditional constructive programining. The rest
of the sections focus on the problem of defining processes which meet the specifications.
Section 3 formulates streams and stream types. Streams are viewed as infinite lists or
programs which generate infinite lists at the level of underlving programrmng language.
AL the logical reasoning level, streams are sequences, namely. total functions on natural
numbers. This two level formulation of streams enables to introduce a natural deduc-
tion style structural induction rule on streams, (M PST), which will be given in section
1. Section 5 presents the rest of the formalism of the whole system. The realizability
interpretation which gives the program extraction algorithm from proofs will be defined.
Several exatnples will be given in section 6 to demonstrate how stream based concurrent
progranuning is performed m onr system.

Notational preliminary: We assume first order intuitionistic natural deduction. Equalities
of terms. 1yping relations (M : 7). and T (true) are atomic formulas. The domain of the
quantification is often omitted when it is clear from the context. Scquences of variables are
denoted as T or X. M, N] denotes substitution of .V to the variable, r. occurring freely
in M. Mz|N] denotes simultaneous substitution. FV({M} is the set of free vanables in
M. () denotes the {infinite) list constructor. Function application is denoted ap{ M, N
or M{N),

2 Specifying Concurrent Systems in Logic

Tlhie model of concurrent svstems in this paper is as [ollows: A concurrent system consists
of processes linked with strearns. A process interacts with other processes only through
input and output streams. The configuration of processes in a concurrent system is
basically static and finite, but in some cases, which will be explained later, infinitely
many new processes may he created by an already existing process. A process is regarded
as a transformer (stream transformer) of input streams w an output stream, and it s
speciliod by the following type of formula:

VX iy e, 3Y 0 AXLY)

where [, . i an abbreviation of [<o 1, T and Y are input and output streams,
and A(N.Y) is the relation definition of input and output streams. [, is the type of
streams over the Lype o, but its definition will be given later,

The combination of two processes, ¥ X.3Y. A(X. Y} and ¥P.3Q. B(P.Q), is described hy

the following proof procedure:

¥,
YX3Y. AXLY)
VE
I ALY WE
Y30 A(N.0) & Bla,Y))

YX.Y. Fe ALY 0) & Ble,Y)

(3£

where 11 = [ALX. Y1 [Bly. @) o
o AN,V & BYLQ) (&1
vP3Q. BP.Q) Jo. AlX.0) & Bla.Q')
30. BYLO) Wdw A(X.a) & Bla.Y)
C W3 AX.e) & Blo.Y)

(47)

(47

(3E)#

and X, and ¥, are the definition of process WX 3Y. A(X. Y) and VP.IQ. B F. ().

This is a typical proof style to define a composition of two functions. Thus, a concurrent
systern is also specified by Y X 3Y, A(X. YY) type formula. X and ¥ are input and output
streams of the whole concurrent svstem, and o is an internal stream. The internal streams
of a concurrent system can be hidden by using the checked existential quantifier. 3.
introduced by the author and S. Havashi [16] or Havashi's ¢ operator [I1].

In the following, we focus on the problem of how to define a process (stream translormer)
as a constructive proof.

3 Formulation of Streams

As explained in the previous section, a formula vX : £, .JY : LL.A[X,Y) can be regarded
as i specification of a stream transformer but we have not yet given the definition of
stream tvpes, [, nor the rules for them. We must make clear what is the definition of

the stream Ly e [oand the semantics of qualit.i{'ical,lun over [,.

3.1 Two Level Stream Types

A stream can be viewed at least in three ways: an infinite list, an infinite pracess, and an
output sequence of an intinite process, namely, a total function on natural numbers. The
formal theories of lazy functional programming such as [6] and [12] can be regarded as the
theories of concurrent programming based on the first two points of view on streams. Our
system uses a lazy tvped lambda calculus as the underling programming langnages and has
lazy tvpes as compulalional stream types. Computational stream types are only used as
the type system for Lthe underlying typed programming language. In proving specifications
of streamn trausformers, we use logical stream types which is based on the third point of
view on streams. o other words, we have two kinds of streams: compntational streams
at the programming language level, and logical streams at the logical reasoning level. We
denote a compulational stream type €, and a logical stream type [,. The following is
the basic rules for computational stream types which are actnally almost like those listed

i [6]. We confuse the meaning of the infinite list constructor, (::), and will use this as an
infinite cartesian product constructor.

A

-M:o I'tS:C,
PE{M S0,

I'tM=Nine 'FS=Tin(,
'E(MaS)=(N:T)in (',

(M5 =N mC,
''s-M=Ningo

P iMaeS)=(NuT)m(,
FES=TmC,

M=, F M-,
Fw2 MO,

v is the fixed point operator only used for describing a stream as an infinite process
(infinite loop program). The tvping rules for ¢ are defined as expected.

= A0, ' M:, 'k nat
' hdi M) : e I'Ftin(M):
= X:0,

TE XN = (hd{ X} thi X)) in (.,

[l (M=S) -0, b (MeS) 0,
U+ hd((M = S)=Mino TEHIM = 8)) = 8 in €
P s el 400 S) ?i?i r.; :,:(F: =1 o™ x f'vﬂ{E.¥TE}1
I'.n:nat b f;fi{_:i:;}‘ :{ﬁfﬁfrf“t?'ﬂ T EXTE),
r-— __:'!,f: = Nolz] in O (INTE)

s pe, M= e, N i O

Before giving the definition of logical stream tvpes, note that the tvpe, nat — o, is
1somorphic O, namely,

Froposition 1: Let o be any type, then Lel ¢ @ (nat — o) — (O be 2(M) =
aplvz.An. (M(n) © 2(n+1)),0) for arbitrary M : nal — o, and let v(N) = An. hd(tI"{N))

3

for arbitrary N : (.. Then, the following holds:
(1) For arbitrary M 1 nat — a. (M) : C, and (M) = M in [,;
(2} For arbitrary N - O (N} I, and o{(N)) = N in O, where = is the extensional

equality.
A logical stream tvpe, [, is defined to be nat —+ o, and is regarded as a subtype of €,

through the somorphism.

' M:nat — o '~ M1,
FreM: I, 'k M:ngt —o

This means that any (total] function on the natural number type nat definable in the
underlying programming language is regarded as a stream. A similar idea is formulated

with regard to formulas:

F'FYn o onat dr o Aln,r) oT
'=3Y 1, 0 nat. Afn Y 1:”]][.]

The equality between streams is extensional. That is

F'=X:f, Yl ¥ninal X(n)=Y(n)
I'-X=%Y inl,

The following rule characterizes a kind of continmty of stream transformers and is used
for justifying (M PST) rule given later.

re el e, =Ly py, I'F LA Loy T s nial. Aln, FIX)) = Aln + LX) CON
TEYX oL, ¥nonat, AL E (X)) = A(n. X (CON)

where A{n, X'} is a rank 0 formulall1].
A logical stream also has, hd, and (i), which simulate those accompanied with €,

Nioy for X ¢ 1,

A X(m+n) for X0 1,
M

Sl forn =0

hd{ X'}
X
(M 55
(M = S)n)

IE 1E uE 1E

Note that X (n) = hd{#I"(X)) for arbitrary X : I, and » : nat. All the rules for hd. ¢ and
{::) in computational streams also hold for these defined functions and the constructor for

logical streams.

3.2 Quantification over Logical Stream Types

1'here is a diffienlty in defining the meaning of quantification over {logical) stream types.
The standard intuitionistic interpretation of, say, existential gquantification over a type,
. dr - o A{r) is that “we can explicitly give the object, a, of type o such that Ala)
holds”. However. as a stream is a partial object we can only give an approximation of the
complete ohject at any moment. Therefore we need to extend the faiiliar interpretation of
guantification over types. In fact. Brouwer's theory of choice sequences [1] in intuitionism
provides us with the meaning of quantification over infinite sequences. As we defined
the logical streams as sequences, we can borrow the Brouwer’s theory for the meaning of

guantification.

There are two principles in Bronwer’s theory, the principle of open data and the principle
of function continuity.

The principle of open data, which informally states that [or independent sequences any
property which can be asserted must depend on initial segments of those sequences only,
gives the meaning of the quantification of type, ¥.X. 3y A(X, y). That is. for an arbitrary
sequenice, X, there is a suitable initial finite segment, X,. of X sueh that 3y A{Xo, 1)
holels.

The principle of Tunction continuity gives the meaning of the quantification of type,
VX AY ALY Y Assume the case of natural number streams (total funciions hetween
natural nurher types), The function continuity is stated as follows:

YALIY, ALXY) = 3 RLYXL ALY Y

. el :
where flY =) oy, Fir o X) = Y(r) and R is the class of neighborhood functions
which take mitial finite semment of the input sequences and return the values, This means
that every element of } 15 determined with a suitable nitial finite segment of X

This semantics meets our intuition on functions of streams and stream transformer quite
well. Y X - [, Jy: ro AL Xy} represents a function on streams over 7, hut we would hardly
ever try to define a function which returus a value after taking oll the elements of an input
streamn. Also. we would expect a stream transformer, ¥X @ 3% 0 L A{X. V), calculate
the elements of the output stream, Y. gradually by taking finitely many elements of the
input stream. X. at any step of the calenlation.

Note that this semantics also meets the proof method used 1 (2] To prove a property
PN jon astream X, we first prove P for an initial finite subsequence. Xy, of X (F P(Xy))
and define = P{X) to be imy,—x 7 Xy).

4 Structural Induction on Logical Streams

As streams can be regarded as infinite lists, we would expeet to extend the familiar struc
tural induction on (finite] lists to streams. However, a naive extension of the structural
induction on finite lists does not work well. If we allow the rule below.

[AHIX)}
ALX) e
L S SR Y
VX 1, AX)
the following wrong theorein can be proved:

WrangTheorem: WX : L, BIX) where B(X) 30 nat. XNin} = 100.
Proof- By (S1) on X : L. Assume B(H(X)). Then, there is a natural number k such
that H{ X)(k) = X(k+ 1) =100, Then B{X),

T'his proof would correspond to the following meaningless prograu:
foo = AX. fooltl(X))

This is because the naive extension of the structural rule on finite lists does not maintain
the continuity of the function on streams. On the other hand, as suggested by Hagino
[12], an infinite list type can be obtained as the dual of a finite list tvpe, and the dual of
the structural induction on finite lists is formulated as a coinduction rule. Iowever, as
opposed Lo category theory, dual notions are rather difficult to formulate in the natural
deduction formalism. We can formulate a coinduction as the axiom of the largest fixed-
point induction as in [T]. but the meaning of the rule is rather difficult. Therefore. we will
take differenl approach.

4.1 Mapstream Functions as Stream Transformers

Recall that the motivation of pursuing a kind of structural induction on streams s to
detine stream transformers as proofs. and stream transformers can be realized as Burge's
mapstream functions. A schema of mapstream functions is described in tvped lambda

caleulus as follows:
P=AM 7" AN A’ (IM a) = (((PM)NVIN 2)))

If we give the procedures M and N, we obtan a mapstream function. Mote that these
procedures can be interpreted as follows:
v { Fetch initial segment, Xq, of the input stream. X, to }
’ grnerale Lhe [irst element of the output stream.

Prepare for fetching next elements from the input
stream interleaving, if necessary, other stream
transformer between the original input stream and
the mput port.

N o—

This suggests that if a way to define M, N, and P as prool procedures is given. one can
define stream transformers as constructive proofs.

4.2 A Problem of Empty Stream

Refore giving the rule of inference for defining streamn transformers, a little more observa.
tion of stream based programming is needed. Assume a filer program on natural number
streams realized as a mapstream function:

flt, = AX. S (alhd{ X)) then I (H0XY) else (RAX) o FHLHTXDD)
AN(CM X)) (((F M) NINX))
where {a/ hd{ X']) is true when hd{ X'} can be divided by a (a natural number) and

M = AX if (alhd| X)) then M X)) else hdi X)
N o= AXof (a|lhd(X)) then NHHLX)) else tH{X)

4t

For example, flG005 3 = 5 a0 o .00} 1s an emply sequence. This s because o
the execution of flts((5 5 = ...)) M(3 =533 ...) does not terminate. This
contradicts the principle of open data explained in the previous subsection. To handle
such a case, we introduce the notion of complete stream. The idea is to regard fits, for
example, alwavs generating some elements even if the input stream is (3 5 2.0 0).

Def. 1: Complete types
Let @ be any tvpe other than a stream tvpe, then o, denotes a type 7 together with the
bottom element L, {often denoted just L) and it is called a complete type.

Def. 2: Complete stream tvpes
A stream tvpe, [. or (4, s called complete when o is a complete type.

Flte s easilv modified to a function from O to O L and then fH5((5 <5) will
bee (Lo L) wheeh 1w practically a empty stream.

4.3 The (MPST) rule

Based on the observations in the previous sections, we introduce a rule (M PST) for
defining stream transformers. The role is formulated in natoral deduction styvle, but the
formunla. AL in the specification of a stream transformer. YX.JY. A(X, YY), is restricted. In
spite of the restriction. the rule can handle a fairly large elass of specilications of stream
transformers as will be demonstrated fater

The rule s as follows:

fa) WX o 0, de v M X u)
(WX L Ve VS L (M X a)= A0, X (ax 8)))
{ey 3f [, — 1., 9N LYY o [vn o nal,
(Aln, X)L HY) = Aln+ 1, X Y))
YX o L3Y s Lvncnat. Aln, X, Y)

(MPST)

where M is a suitable predicate and A{n, X. Y} must be a rank 0 formula [11]. We do
not give the definition of rank 0 formulas, but the intention is that we should not expect

4

ta extract any computational meaning from A{n, X. Y} part. This restriction comes from
purely technical reason. but does not degenerate the expressive power of the rule from
the practical point of view because we usnally need only to define a stream transfoner
program but not the verification code corresponding to A{n. X. V) part. We can easily
extend the rule to the multi input stream version.

The intuitive meaning of { M PST) is as follows. As explained in 1.1, a mapstream function
is defined when M and ¥ procedure are given. (o) is the specification of the M procedure,
far. and {b) means that [y actually generates the right elements of the output stream.
The N procedure, fx. is defined as the value of existentially quantified variable, f,in (c).
{¢) together with (b) intuitively means the following: for X' : L. {input stream}and ¥ : [
{output stream). let us call a pair, (fE{X LY) the wth fy-descendant of (XY)
lhen. for arbitrary n : nat, Ain, X,Y) speaks about uth fy descendant of (X.}). and
Alw, fy[X)L, HY)) actually speaks about n + 1th fy descendant of { X, })

If fw is a stream transformer, this means that the process [stream transformer) defined
by (M FST) generates another processes dynamically.

Note that, as we mnst give a suitable formmla. M. to prove the conclusion. (M PST) is
essentiallv a second order tule.

5 The Formal System

This section presents the rest of the formal account of our system briefiv. First of all.
the non-deterministic A-caleulus is defined as the underlving programming language. The
calculus has a special constant called coin flipper, to simulate nondeterminacy, and compu-
tational stream tvpes, Secondly, several rules of inference which have not been explained
will be presented. Finally, the realizability interpretation of the system is defined, and
this gives the program extraction algorithm from proots.

5.1 Non-deterministic A-calculus

The non-deterministic A-caleulus is a typed concurrent calculus based on parallel reduc-
tion. The core part is almosi the same as that given in [15]. It has natural numbers,
booleans (T and F), L and R as constants. [ndividual variables, lambda abstractions.
application. sequences of terms (M. ... M,) where M, arc terms). 7 f then-else. and a
fixed point operator () are nsed as terms and program constructs. The parallel reduc-
tion rules for terms are defined as expected, and if a term, M. 15 reducible to a term. N,
then M and N are regarded as equal. Also, several primitive functions are provided for
arithmetic operations and for the handling of sequences of terms such as projection of
elements or subsequences from a sequence of terms. The type structure of the caleulus is
almost that of simply typed A-calculi. naf (natural number type), bool (boolean types),
and 2 (tvpe of L and [f) are primitive tvpes and = {cartesian product) and — {arrow)
are nsed as type constructors. The type inference rules for this fragment of the calculus

10

are defined as expected. In addition to them, computational stream tvpes and a special
term called cotn flipper s introduced 1o deseribe concurrent computation of streams.

The coin flipper iz a device for simulating nondeterminacy. It is & term, o, whose compu-
tational rmeaning 15 given by the following reduction rule:

e[or K

That iz, e is 1. or & in a nondeterministic way when it is executed. This is like (lipping
a coin. or can he regarded as hiding some particular decision procediure whose execution
may not always be explained by the reduction mechanism.

¢ 1= regarded as an element of 2%, a super tvpe of 2. The elements of 2 have been used to
describe the decision procedure of i f-then-else programs in the program extraction from
constructive proofs in [15] as if 1'= L then M else N. Nondeterminacy arises when 1’
15 replared by o, The intentional semantics of e is undefined. The type 2° will be used
instead of 2 in this paper with the following typing rules:

L.2 Ho27 . 27

5.2 Rules of Inference

(1} Logical Rules

The rules for logical connectives and quantifiers are those of first order intuitionistic
natural deduction with mathematical induction. See [I16] for the complete aceonnt of the
logical rules,

(2) Rules for Nondeterminacy
A A
o =[Ve=FH —a A Nonlht)

(New Det)12 actnally a derived rule: This 1s obtained by proving 4 by divide and conguer
on |V L {VenDet) means that if two distinet proof of A are given. one of them will
he chosen in a nondeterministic way., T'his is the well known nondeterminacy both in
classical and intuitionistic natural deduction.

(3 Auxabary Hules

-’I-f:ﬂ--—t{f a e o et f:r_‘rl—c-rl gy — T3

carp
apl M a) e (czp) fxg:im=xa =71 xm

k1

5.3 Realizability Interpretation

The realizability defined in this section is a variant of q-realizability, and s obtained by
modifving the realizability given in [15].

A new class of lormulas called realizability relations is introduced to define g-realizability,

Def. 3: Realizability relation
A realizability relation is an expression in the form of @ q A, where A is a formula defined

and a is a finite sequence of variables which does not oceur in A, @ is called a realizing
variables of A. For a term. M. M q A. which reads “a term. M. realizes a formula, 47,
denotes (@ q A)z[V], and W is called a realizer of AL

In the following. a formula means one other than realizability relation. A type 1s assigned

for each formula.

Def. 4: type(A)
Let A be a formula. Then, a tvpe of AL fypcf A s detined as follows:

1. type(A) is empty, if A is rank 0

typel A & B)E typo(A} < type(B:

3o typel A R def gt Fupc [A) = fype(B
fypel A = 1) e typei A} — type(B):
fype (Ve mo A) - Fped A
tupe{dr . A} el Fype (A

b

S

Proposition 2: Let A be a formula with a free variable oo Then, typel A) = Lype{ A [M])
for anyv term M of the same tvpe as .

Def. 5: g-realizability
1. If A s a rank 0 formula. then () g 4 % A:
2aqA s B b tgpe(A) (AL bg A= albl g B);
3(abigIrio A a0k Afa] &5 q Aal;
1. ag¥r.o A Yo lalz} q Al
S (@b qAVBY =Lk Ak aqALhtypel BV s = R & H&bgltka:
typel 4)) provided that 4 and B are distinct or 4 = B with A and B not rank 0
. e g Av A 4f 4 if A is rank 0:
T lablgAk BEaqAlbqh

Proposition 8: Let A be anv formula. 107 q A, then @ : lype A).
Theorem: Sounduess of realizability:

Assume that A 15 a formla, 1T A s proved, then there s a e, T, such that T q A can
be proved aud FV(T) C FViA].

12

The proof of the theorem gives the algorithm of program extraction from constructive
proofs. The program extracted from (NonDet) is of o = L then M else N where M
and N are the program extracted [rom the subproofs of Lwo premises. From a proof
bv { M PST), the program AX Amap{ far, [H1X])) is extracted where fyy and fy are as
explained i section 4.3.

6 Examples

The basic programming technigue with (M PST) is demonstrated in this section. In the
following. we write X, Tor X{n} when X s o strewn.

6.1 Simple Examples

A process which doubles each element of the input natural number stream is defined as
fullows:

SPEC T 9w - L0 dY e e oonatl Y, =20 N

Proof: The prool 1= continued by {MFPST) Let MY a) ded hd(X}, and (a) and

(b} are easily proved. {¢] 1= proved by lettmg = AN, H{X)

The program extracted from the proof = A X Ao 2 BdiH™ (X)) which is. by the isomor
phism oo extensionally equal to v XX (22 A4 2 2(H{X)))

A process which takes two elements at once [rom the input stream and ontputs the some
of ther s delined as lollows:

SPEC 2 %N £,3Y - % cnab Yy = Nom | Npe,

Proof: By (MPST). Let M{X.a) o= fd [X)+ Rd{HTX) and (o) and (b) are easily
proved. (¢} is proved by letiing f X, XY

The program extracted from the proofl s AX A A (HP™(X)) + Rd(tPP™ Y X)) which is
extensionally equal to vz AN, (hd{ X) + Rd{H{ X)) =2 z(¢P(X 1))

6.2 Parameterized Processes and Complete Stream Types

A filter process defined below removes all the elements of the input stream, X, which
can be divided by a fixed natural number p. This process is an example of parameterized
processes. The definition uses the complete stream tvpe and the rank 0 formula technique.

13

SPEC 3: 9p:nat.¥X @ L Y : Ly Wnonat. QA(p.n, XY
where A{pon, XU V) Y i{pX)& Y, =1)v (={plA &Y, = X,

Proof: Let p : nat be arbitrary, and ¥.X JY . ¥n. CA{p.n, XY) will be proved by [M PST').
Let M(X.a) ™ ((plhd(X)) & a = 1) v {(=(phd(X)) & a = Kl X)), (a) is proved by
divide and conguer with regard to (plhd{ X)} v —(phdl X 1), [h) is proved easilv, and (¢)
is proved by letting f — AN H{X)

The program extracted from the proof is Ap. AN Am. apl fy. f¥ (X)) where
oo AN F (plhdi X)) then L else hd(X) and fy = AX. 10X). Preciselv. (plhd{X})

should he a decision procedure for {plhd{ X)),

6.3 Dynamic Invocation of Processes

The following exaraple. a program which extracts only prime numbers in the input stream.
is one of the tvpical examples of dvnamie creation of new processes,

SPEC YA L 3 oL e el SAle XUY)

ahef

where o, XY = (PRIN VLY, =X 0w (-PRIX LY, = L)

el . ;
and PRmY = Yaoonat, (2 <n < moz o 3d et mo=d-n)).

Prool: By (MPSTh Let Mi{X.u) g (PRBXN VL a = hd(X)) v (mPRBXN) & o =
Lo (a) s proved by divide and conguer with regard to PRAA X)) v - PR{E X)) (b
15 proved easilv, The prool of (¢} s a little comples,

Let f= AN of PRGN) then fIABAIN)X) else tHY) where flt(p, X) is the filter
process developed in the previous subsection. Then, for arbitrary X : [or, and n: nat
the following hold: L. FPR{fIN,} = PROON))2 -PRIJIN)) = PREX),):
3o FROIN), = [N, = HiN),. These can be proved by divide and conquer
on PRBAN DY PRGNS Then, as Ajn, AN LY = (PRJINLY R Yo =
NIV (2PRUAIN LN Yo = L) Aln =+ 1L XY holds, Then, (¢) is proved. 4

The program extracted from this proof is AX Am. ap{ fi. fi'{ X)) where

For E AN if PR{RA(X)) then hd(X) else L

and fx = AX. if PR{Ad(X)) then fU{hd(X), H{X)) else X},

This program performs load distribution is the following way. When a prime number, p,
1= found in the input stream. X, this program invokes a filter process, flt, making X as
the input stream of flf, and take the outpur stream of flf, as the new input stream.

6.4 Nondeterminacy

The stream merge operation is a typical example of nondeterminacy which can also be
defined by (M PST) However. becauze of the condition (¢} on A(n (X, V), Z), our

I1

specification is weaker than that of the merge operation. It specifies that all the elements
of the output stream come from the input streams and nothing else. The rest of the
criteria for a merge operation, namely, all the elements of the input streams cccur in the
oulput stream without repetition and loss, depends on how the formula M is delined in
{a) and how [is defined for (c] in the premises of (M PST).

SPEC 5 WX, Y):1,,3Z - L.¥n:naf. SAn, (X V). Z)
where Aln (XYL 7) def (dmnat. Z, =X, 0v (A nat. Z,=1Y)

Proof: By (MPST). Let M{{X.Y),a) ¥ a = hd{X). then the proofs of {a) and (b)
are stralghtforward. (¢} is proved as follows: Let (X,Y) : L,,. 7 : I, and n : nat he
arbitrary. Then, A(n. (({X)L YL H(Z)) & (Tm. {2}, = X)) v (3L Z), = V) &
(Fm, Zoysy = X V3L Z 4 = Y0 Hence, if A{n (1Y), Y)L HZ)), then (3m'. Z, 4, =
Noawvidl Zoer =Y = Aln 1 10X,V Z) holds, Sionlarly, A(n (Y, (X)), H(Z)) =
Ain+ LIX,Y),Z) s proved. Then, two distinet proofs of (¢) are given. Then, by
{(Non Dl (v} is proved. g

The program extracted from this proof is AN Y] @ [dm. apl far. f[T{XN.Y)) where
Fu AN RN and Sy NN Y if @ — Lothen (XY else (Y HX)).

7 Conclusion and Future Works

A extension of constroctive programming to stream based concurrenl programming was
proposed! in this paper. The svstem has lazy types at the level of programming language
and logical stream tvpes, which are types of sequences viewed as streams, at the level
of logic. This two level formulation of streams enables to formulate a purely natural
deduction stvle of stroctural induction on streams { M PST) in which concurrent processes
(streamt transformers) are defined as proofs. Also, nondeterminacy was introduced at the
lovel of logic using the wherent. nondeterminaey of proof normalization in intuitionistic
logic.

For the uture work. as seen in the example of a merger process, the side condition for
(M PSTY should be relaxed to handle larger varieties of concurrent processes.

References

(] A, S Troelstra and D van Dalen. Constractivism in Mathematies, An Introduction.
Studies in Logic and the Foundation of Mathematics 121 and 123, North-llalland,

1938,

[2] (. Kahn and). B. MacQueen. The Semantics of a Simple Langnage for Parallel
Programming. ln [F{1 Congress 74 Noth-Holland, 1974

3] G. Kahn and D. B. MacQueen. Coroutine and Networks of Parallel Processes. In

Information Processing 77, pages 993 - 995, Noth-Holland, 1977,

{41 J.-Y. Girard. Linear logic, Theorctical Compuler Seience, 50, 1957, Nerth-Holland.

(5] M. Sato. Quiv: A Concurrent Langusge Based on Logic and Function, In Feurth

18]

[9]
[10]

[11]

[12]

(13

(11]

[15]

[16]

Iternational Conference on Logic Programming, pages 1034 -1056. The MIT Press.
1987,

N. Mendler. P. Panangaden and R. L. Constable. Infinite Objects in Tvpe Theory.
In Sympostum on Logie in Compuler Seienes 560 1936,

P. Dyhjer and H. P. Sander. A Functional Programming Approach to the Specifica-
tion and Vertfication of Concurrent Svstems. Formal Aspects of Computing, 1:303 -
4149, 19549,

R. L. Constable ¢t al. Iinplementing Mathematics with the NuPrl Proof Development
System. Prentice Hall, 1986,

R. Milner. Communication and Concurrency. Prentice Hall, 1939,

5. Goto. Concurrency in proof normalization and logie programming. In Infernn-
troenal Joint Conference on Artificial Intelligenee "85, 1985,

5. Hayashi and H. Nakano, PX A Compatalional Logic. The MI'T Press, 1985,

1. Hagino. A Typed Lambda Caleulus with Categorical Tvpe Constructors. ln
Category Theory and Compuler Science. LNCS 253, 1987,

W. A. Howard, The formulas-as-types notion of construction. In Essays on Combi-
natory Logic, Lambda Calewlus and Formalism. eds. J. P. Seldin and J. B, Hindley.
Academic Press, 1930,

W. H. Burge. Recursive Programming Teehnigues, Addison- Wesley, 1975,

Y. Takayuma. QPC*: A Second Order Logic for Higher Order Programming. TR
339, 1COT, April 1990,

Y. Takavama and 5. Havashi. Extended Projection Method and Realizability Inter-
pretation. TR 373, 1CO0T, July 1990,

Appendix 1: Proof of Proposition |

Proposition : Let o be any type. then Let @ : (nal — o) — (, be p(M) =
ap{vzAn. (M{n) = z(n +1)),0) for arbitrary M : nal — @, and let p{N) = An. hd(tI"(N))
for arbitrary N : (',. Then, the following holds:

(1} For arbitrary M : nat — o, (M) . and Yip(M)) = M in I,:

(2} For arbitrary N O 0{N) - I, and l¢(N)) = N in (', where = is the extensional
equalilv.

Proof: (1) Let M : nat — o be arbitrary. vl M) = wiaplrz.dn(Min) o z(n +
115.0)) = Anhd{tl*(ap(1..0)}) where L el s An(Min) = z{n+ 1)) Then, by the lemma
helow. the last term in the equality is equal to An.hd{ap{L.n]). As ap{L.n) = (Min) =
L{n 4+ 1)), this is equal to An.M{n). So by the p-conversion, vi{p(M) = M.

Lemma: ¥n.ti™(ap{L.0)) = ap{L.n)

Proof of lemma: By mathematical induction on n. Base casc is trivial. Assume Lin) =
HO(L{0)) As Lin) = (Min) = Lin 4+ 1)) and tF(L{0}) = (hed(HPLLION) = HEHL L0,
Lin+ 1) =tI" N L{0)). u

(2 Let N3) be arbitrary, p{a{N)) = aplp = An.(apl Mo hd (M {N))0 z(n |). 0).
Let L % oo Nafap{m hd{H™(NY).n) == =(n +1]). Then, we will prove L0} = N by
(EXTE)s As Lin) = (hdllI"(N)) 2 Lin + 1)). it sufhces to prove the [ollowing:

W Lin) = tI"(L))
We prove this by mathematical induction on n. The base case is trivial. Assume

that L(n) = t0L(0)). Then, as Lin) = (Rl (" THN)) = Lin + 1)) and M L{0)) =
(hd (0 (L{OY)) = e+ LL00)), Lin + 1) = HEFY L0 a

17

Appendix 2: Soundness Proof of the Realizability Interpretation

Theorem: Assume that A is a formula. If A is proved, then there is a term. T, such that

T q A can he proved and FV(T) C FV{A).

Proof: By induction on the construction of the proof of A. We prove here for the cases
that the last rules in the proofs are (ST} . (NonDel) and (M PST). The remainder part
of the proof is rather standard,

Case (5T): Assutne that the following proof is given:

kM
L

"fnﬂ.r. .4[1.1..:1'} (ST)
Y. vn. A{n, Yin))

Then, by the induction hypothesis, there is a term, M. such that the following proof can
be constructed from :

LS
L

Mg v dr. Aln.r)

By the definition of g-reahzability and equality rules.

Mqvndr. Aln.r) = Vo, Min) g e Alne)
T taegi Min)) q Aln. pal Minih)
Wr. aplAn. tsegl M(n))ont g Alvapl Ao, pyl Min)jnll
An dseqiMin)y g ¥ Aln,aplAn. pyl Mind).nll
{An. polM(n)), An. tsegi M{n))) q 3Y Y. Aln.Y{n))
A, Min) g 3Y.¥n. Aln, Y ()

I

where pg s the Oth projection function and fseq{{ry. oy - o,)b = Lo)
By y-rule, An. M{n) = M. Therefore,
:n'
M q 3V ¥u Aln.Y(r))
Clase [Non Det): Assume that A is proved as [ollows:
&1 LI

Li-_li{ Nonlet)

As (NonDet) is a derived rule, this can be translated to the following proof:

) T (7]
Ll (v]) D I
Tw T —--d—{‘-.f'E']

A

By the induction hypothesis, the lollowing proofs can be constructed:

18

v

1 =2

MgA NgAa

Then, let T % if 1= e then M else N, and the following proof can be constructed:

o= 1] s = R)
Ta)9 ¥ A
T=M A\ T=N NqAd \
S Yo Nadp
e=LvVve=FR TqgA I'q A (VF)
TagA

Case {MPST): Assume that there s a proof by (MPST), Let Xy, Xy and X denote
the subproofs of the premises (a), (6) and (). Then by the induction hy pothesis, there are
proofs, T, and £ of fir g VX .Za. M{X.a}and fv q ILYXVY 0 (Aln, FIX)H(Y]) =
Aln+1.X,Y)) for some [y and fo. As A{n. X, V) iz a rank 0 formmla. EEE] = By Also,
Fag o d = (7 = type{ M{ X a})) by proposition 3. By the definition of g-realizability.
frvq 29X WY (Al FIX LY = Aln+ 1.X,Y7))

= favidy = L EVNVY Nu, (Al (XL YY) = Al + 1, X, V). Using them, the
conchsion of (M FPST} can be proved withoot [M PST) as follows:

ne
(X X)UETH [omw s, A0 fRX DY (m) S|
En =7
Y m VS A0 R X)L (Y im) o &) Y. A(n. X Y} BEPEYEY
IVvn. Ain. X.Y) TR -
VXYV Al XY)
Yy E
X e [l LX) M (X)}
f{u[_-'&] ':.-'_‘.,:l{’l_ .‘Jth-ﬂ-l{vb.:l 1:“‘-'
Ja. M{fR{X).a) S ¥S. A, FRX0) (a o S)) ()
Ja. WS, A0, fRN) (a2 S)) (1))
Y da VS A0 FFIN) (a2 S)) (ST
IV m S A X)L (Y (m) e §))
ASRRINEITE
Cow
o def [MUFN)] MUfFIX) a) = AW, fEIX). (a2 5)) o
B A S¥ (X (u ifﬂl_{w}[“ =

] WS A0 (X)), (a:: S))
Ja. %S, A fR{X) (a: 5))

El

19

[___lc']l”[m]”]j}\: {ﬂ|{4] s

o a JRY) TP 1519 VX Va VS, (M(X,a) = A0, X, (o : DY vE)
=00 M{fE(X).a) = A0, f[RIX),(a = S))
(XY]
MmN A0, fR X)), (Ym) e S)))e (XY@
Eo) S : .
L, A0, fR(X), (1)) _AOYX) V) = A XYY g
_ARAY) e
(Y] Wn. Ajn, X, Y) (31
Y0 A(n, X,Y) :
i = .
(V1 [y [y
[© e RO) [VmYS. AQ X, (Y m) = SN
Heo o AQ0, FR(X). (¥ (n) = t+1(Y))) = E)
A(D, FR(XA Y)
where
[T
110 % PO Il % e

= Yin) = hd(t"(Y)) (Y} = (hd(H{Y)) = LI 1(Y)

I tl
Iaoctl VXYY Vi (Aln, fulX) tl{Y) = Aln + LA Y))
(X [¥]2)[n] VXYYV (A0, RN 1Y) = An, X, Y))
AL, FRIX L HHY)) = A(n. XY

(R)

(VE)

By the induction hypothesis. there is a term., T'. such that a proofofl T q v X .3¥.¥n. A(n, X, Y)
can be constructed from the proof, II. The term. . s AX Am. polap(far, FE(X))). 0

0

