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Abstract

Since linear resolution with clause ordering is not complete for
consequence-finding, it has been used mainly for proof-finding. In this
paper, we re-evaluate consequence-finding based on ordered-linear res-
olution. Firstly, consequence-finding is generalized to the preblem in
which only interesting clauses having a certain property (called char-
acteristic clauses) should be [ound. Then, we show how adding a skip
rule to ordered linear resolution makes it complete for consequence-
finding in this general sense. The important feature of the proposed
method is that it constructs such a subset of consequences directly
without testing each generated clause for Lthe required property. This
feature is very effective for computing abduoction and nonmonotonic
reasoning.

Keywords: consequence-finding, lincar resolution, prime implicates, abduction

*This is a revised and extended version of a paper [14] that is to appear in Proceedings
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1 Introduction

It is well known in automalted deduction thatl while resolution [38] is complete
for proof-finding {(called refutation complete), that is, it can deduce false
from every unsatisfiable set of formulas, it is not deductively complete for
finding every logical consequence of a given satisfiable set of formulas. For
example, resolution cannot derive the formula ¢ V r from a sel of [ormulas
Y. = {p.-pV g} although ¥ | ¢V r. Lee [21] addresses himself to this
problem and defines the consequence-finding problem, which is expressed in
the following form:

Given a set of formulas ¥ and a resclution procedure P, for any
logical consequence 1" of ¥, can P derive a logical consequence S
of ¥ such that S subsumes 17

If a resolution procedure is complete for consequence-finding, then it is nseful
in spite of lacking deductive completeness because in general the logical con-
sequences nol deducible from the theory are neither interesting nor useflul.
Namely, such a formula s subsumed by some formula deducible from the
theory and thus it is weak and redundant.

Historically, consequence-finding had been investigated intensively since
Robinson invented the resolution principle [38] for proof-finding. Lee’s com-
pleteness theorem [21] was proved for the original resolntion principle. Slagle,
Chang and Lee [43] extended the result to various kinds of semantic resolution
(including I-semantic resolution, hyperresolution, Pl-resolution). However,
after Minicozzi and Reiter [26] extended these results to some linear reso-
lution strategies in the early 70z, consequence-finding was once abandoned
in research of antomated theorem proving and attention has been directed
towards only proof-finding '. It appears that there are three reasons for this
discouragement:

1. The results presented by [26] are in some sense negative.

e Linear resolution involving A-ordering (a tolal ordering of all the
ground atomic formulas of the theory [19, 36]) is complete for
consequence-finding only if all possible A-ordering must be tried

'One can sce that textbooks of resolution-based theorem proving, such as [2, 24], have
nor sections for comsequence-finding.



to generate all possible target theorems. This result is far from
obtaining a practical strategy.

e Linear resolution involving C-erdering (literals are ordered in each
clause in the theory [24, 36]), such as Model Elimination [24] and
its variants [20, 2, 41, 27|, which is the most familiar and efh-
cient class of resolution procedures because it contains many re-
striction strategies, is unfortunately incomplete for consequence-
finding. Thus, the completeness result that we would most like to
obtain does not hold.

2. Even if a resolution procedure is complete for consequence-finding, it
is neither practical nor useful to find all of the theorems in general.
Previous methods generate all theorems first by using consequence-
finding procedures, and then filter them by some given eriteria. There
has not been an intellectual method which direcily searches for only
interesting consequences without “generate-and-test” manners.

3. As opposed to proof-finding which can be used, for instance, in plan-
ning and synthesis problems where answer extraction techniques are
available to obtain useful information, consequence-finding has lacked
useful applications in AL

In this paper, we re-evaluate consequence-finding and give new perspec-
tives. The proposals are motivated by the following recent investigations
which appear to relate to the above three problems:

1. Finger gives complete procedures based on set-of-support resolution for
generating formulas {called ramification) derivable from a theory and a
newly added formula as an initial set of support {8, the RGC procedure]
as well as for finding residues [8, resolution residue]. However, these
procedures do not utilize C-ordering. Finger also gives another proce-
dure based on C-ordered set-of support resolution [8, ordered residue],
but it can be used only for llorn clause theories.

2. Bossu and Siegel [1] propose a complete algorithm for finding the set of
positive clanses derivable from a groundable theory (called character-
istic clauses) by using their saturation algorithm based on A-ordering.
Recently, Siegel [42] redefined the notion of characteristic clauses much



more generally for propositional theories, and proposed a complete al-
gorithm for finding them by adding one rule called skip operation to
C-ordered linear resolution. This algorithm is, although propositional,
much more efficient than Bossu and Siepel’s saturation algorithm, and
achieves the demand on direct search for characteristic clauses,

Resolution-hased procedures for abduction [32, 3, 8, 31, 45] generate
explanations of queries, and they actually produces formulas other than
the empty clause. In other words, such abductive procedures can utilize
eonsequent-finding procedures [13]. In particular, for the propositional
case, Reiter and de Kleer [37] show that an algorilhm to compute prime
implicants /implicates (35, 46] can be utilized for the clause managemnent
system (CMS) that is a generalization of the ATMS [4]. On the other
hand, Przymusinski [34] defines MILO-resolution, which outputs a kind
of characteristic clauses to be nsed in a query answering procedure
for circumscription of ground theories. MILO-resolution can also be
characterized as an instance of (-ordered linear resolution with skip

operation [15].

These recenl progress will be [urther expanded in this paper. We will
thus give satisfactory solutions to the above three problems:

1.

We provide SOL-resolution, C-ordered linear resolution with the skip
rule, which lift Siegel's procedure [42] for the general case, and its com-
pleteness result for consequence-finding. Compared with set-of-support
resolution, on which Finger’s procedures [8] are based, SOT.-resolution
contains more restriction strategies and generates fewer clauses to find
characteristic clauses.

. We show that easy modifications of SQOL-resolution, where one of oper-

ations is preferred than others so as to reduce the search space, can be
shown to be applied to broad, more efficient variations of consequence-

finding.

We show how SOL-resolution can be well applied to generate interesting
formulas for abductive and nonmonotonic reasoning. Consequently, the
importance of the results presented lies in their applicability to a wide
class of AI problems, including diagnosis, design, and planning. In

[ ]



other words, the methods shed some light on better understanding and
implementation of many Al techniques.

Among other possibilities, abduction can be regarded as one of the most
important applications of SOL-resolution. Although most of first-order ab-
ductive procedures [32, 3, 31, 45, 30] are based on C-ordered linear resolu-
tion, no completeness results have been obtained for abductive explanations
generated by them. We can get the completeness result for an abductive
procedure, by characterizing abduction as characteristic-clause-finding for
which SOL-resolution is complete. The abductive completeness is very im-
portant and crucial for some applications of abduction. For example, to
compute circumscription we can use an abductive procedure, but we require
that the procedure has to generate every desired cxplanation. More recently,
Demolombe and Farinas del Cerro (7] independently provided a complete
procedure for a special kind of abduction, where every literal can be hypoth-
esized. However, it uses more primitive style of resolution calculus so that 1t
15 hard to connect it with those previous abductive procedures.

An earlier version of this paper has been announced without proof in [14].
Applications of earlier versions of S0L-resolution to computing circumscrip-
tion and to the CMS/ATMS have been demonstrated in [15, 13].

The present paper is organized as follows. The next section characterizes
consequence-finding in a general way, and shows how various Al problems
can be well defined by using this notion of characteristic clauses. Section 3
presents the basic procedure which is sound and complete for characteristic-
clause-finding, based on C-ordered linear resolution. Efficient but incomplete
variations of the basic procedure and their properties are provided in Sec
tion 4, where computational complexity is also taken into account.

2 Characterizing Consequence-Finding

We define a theory as a set of clauses, which can be identificd with a conjunc-
tive normal form (CNF) formula. A clause is a disjunction (possibly written
as a set) of literals, each of which is a possibly negated atomic formula. Fach
variable in a clause is assumed to be universally quantified. For a method
converting a formula to this form of theory, see [24]. If ¥ is a set of clanses,
we mean by ¥ the set formed by taking the negation of each clause in T
For example, when £ = {p, =gV r, sV -t}, ¥ ={-p,gA-r,sAt}. The
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empty clause is denoted by 0. I €' and D are two clauses, (' — D) denotes
a clause whose literals are those in the difference of C and D). For example,
when C =avbvVecand D=5bvd, C—=D =aVve A cause C is said to
subsume a clause D if there is a substitution # such that €8 C D and C has
no more literals than D % For a set of clauses &, by ¥ or u[E] we mean
the set of clauses of ¥ not subsumed by any other clause of £, Notice that
p[pE] = pE. T is closed under subsumption if it satisfies £ = pE. A clause
(' 15 a theorem, or a (legical) consequence of £ if £ = €. The set of theorems
of ¥ is denoted by Th(¥).

2.1 Characteristic Clauses

We use the notion of characteristic clauses, which is a generalized notion
of logical consequences and helps to analyze computational aspects of many
of Al problems. The idea of charactenistic clauses was introduced by Bossu
and Siegel [1] for evaluating a kind of closed-world reasoning and was later
redefined by Siegel [42] for propositional logic. Inoue [13] investigated the
properties extensively. 'T'he description below is more general than [1, 42, 13]
in the sense that the notion is not limited to sumne special purposes and that
it deals with gencral cases instead of just proposilional cases. Also, these
notions are independent of implementation; we do not assume any parlic-
ular resolution procedure in this section. Informally speaking, characteris-
tic clauses are intended to represent “interesting” clauses to solve a certain
problem, and are constructed over a sub-vocabulary of the representation
language called a produclion field.

Definition 2.1 (1) We denote by R the set of all predicate symbols in
the language. For B C R, we denote by R* (R~) the positive (nega-
tive) occurrences of predicates from R in the language. The set of all
atomic formulas is denoted as 4 (= R7Y), and the set of literals is denoted
L(=AUA=RY*UR").

(2) A production field P is represented by a pair, { Lp,Cond), where Lp

*This definition of subsumption is called #-subsumption in [24]. Unlike in the propo-
sitional case, the second condition is necessary if the deletion strategy of subsumption is
incorporated in the definition of linear deductions {like Hule 4 in Definition 3.1 in Sec-
tiom 3.1} becanse a clanse implies its factor, For example, p{y)v p(f(2)) 2 p[f(z)) is valid
but g(f{z)) ehould not be deleted in deduction sequences.



(called the characteristic literals) is a subset of £, and Cond is a certain
condition to be satisfied. When Cond is not specified, P is just denoted as
{Lg ). The production field { £} is denoted Pp.

(3) A clause C is said to belong to a production field P = { Lp,Cond) if
every literal in (' belongs to Ly and C satisfies Cond. The set of theorems
of ¥ belonging to P is denoted by The(X).

(4) A production field P is stable if for any two clauses ' and [ such that
C subsumes D, it holds that if I} belongs to P, then C also belongs to P.

Example 2.2 The following are examples of stable production fields.

(1) Py =Pz The, (L) is equivalent to Th(Z).

(2) Py ={A): Thp,(X]) is the set of positive clanses implied by .

(3) Pa = (A, size is less than k) where A € A Thyp, (%) is the set of
negative clauses implied by £ containing less than k literals all of which
belong to A.

Example 2.3 P; = (A, size is more than k) Is not a stable production
field. For example, if £ = 2 and p(a), ¢(b),r(e) € A, then D) = p{a) V ¢(b)
subsumes [}y = p(a) V ¢(b) V r(c), and 5 belongs to Py while D, does not.

Definition 2.4 (Characteristic Clauses) Let £ be a sel of clauses, and
P a production field. The characieristic clauses of ¥ with respect to P are:

Care(E,P) = pThe(E).

Clare{X, P) contains all the unsubsumed theorems of £ belonging to a
production field P and is closed under subsumption. To see why this notion
is a generalization of consequence-finding, let P be P, From the definition
of consequence-finding, for any clause D) € Th(ZL), a complete procedure P
can derive a clause C € Th(X) such that € subsumes D. Therefore, P can
derive every clause C' € p Th(E) because C' is not subsumed by any other
theorem of I. Hence, Care(Z, Pc) = p Th(E) have to be contained in the
theorems derivable from E by using P. Note also that the empty clause O
belongs to every stable production field P, and that if ¥ is unsatisfiable, then
Care(X,P) contains only 0. This means that proof-finding is a special case
of consequence-finding. Next is a summarizing proposition.



Proposition 2.5 Let T be a theory, P a stable production field. A clause
[} is a theorem of & belonging to P if and only if there is a clause (7 in
Care(X, P) such that € subsumes D. In particular, ¥ is unsatisfiable if and
only if Care(E,P}={0}. O

As we will see later, when new information is added to the theory, it is
often necessary to compute newly derivable consequences cansed by this new
information. For this purpose, consequence-finding is extended to look for
such ramificaiion of new informalion.

Definition 2.6 (New Characteristic Clauses) Let I be a set of clauses,
P a production field, and F a formula. The new characleristic clauses of F
with respect to ¥ and P arc:

Newearce(X, ¥, P) = u[Thp(ZU{F}) - Th(E)].
In other words, (' € Newcare(E, F,P) if:

1. (i) BU{F}=C, (i} C belongs o P, (i) X C, and

2. No other clause subsuming C satisfies the above three.

The next three propositions show the connections between the character-
istic clauses and the new characteristic clauses. Firstly, Newecarc(X, F,P)
can be represented by the set difference of two sets of characteristic clauses.

Proposition 2.7 A clause is a new characteristic clause of F' with respect
to ¥ and P if and only if it is a characteristic clanse of £ U {F'} but is not &
characteristic clause of Y. Namely,

NewearelD, F,P) = Care( LU {F}, P) - Care(E, P).

Proof: By Definition 2.6, Newcare(X, F,P) = p[Thp(EX U
{F}) = Th(Z)]. Since Thp(Z U {F}) contains only clauses be-

longing to P, the definition can be rewritten as:
Neweare(E, F,P) = u[The(E U {F}) - The(X)].

Now, let X = The(X¥ U {F}) and ¥ = Thp(E). Notice that
¥ C X. We will prove that g[X — Y] = pX — p¥.

9



Let ' be a clause belonging to P such that €' € u[X —Y]. Then
abviously C € X =Y and thus € € X. Now assume that C' & pX.
Then there exists & clanse I) in pX other than ' such that D
subsumes ', Since C is not subsumed by any other clause in
X -V, it holds that D € ¥. By the fact that D) subsumes (',
€' € V., contradiction. Therefare C' € pX. Clearly, by ' & Y,
' & uY. Hence, C € pX — p¥.

Conversely, assume that € € pX — pV. Firstly we must prove
that C € X — Y. Suppose to the contrary that ¢ € V. Since
€' ¢ pY, there exists in uY a clause [ other than ' such that
[} subsumes (. However, as ¥ C X, ) € X, contradicting the
fact that C € pX. Therefore, C € X — Y. Now assume that
€' & plX = Y]. Then, there exists in X — YV a clause [ other
than € such that [’ subsumes C, again contradicting the fact
that C' € puX. Hence, C € p[X - V]. O

When F is a CNF formula, Neweare(Z, F, P) can be decomposed into a
series of primitive Newcare operations each of whose added new formula is
just a single clause,

Proposition 2.8 Let FF = C; A+ AC,, be a CNF formula. Then,

‘&femec[E1 F_"P} =pu [ U Nﬂwmrﬂ{gﬁ r:'” 'P:I ] *

=1

where ¥, = ¥, and &, = 5, U{C,},fori=1,...,m— 1.

Proof: Notice that in the following proof, for sets, X, ¥, and
Zysuchthat ZCY C X, X —Z=(X-Y)u(Y — Z) holds.

Neweare(E, F, P}
= u[Thp(EU{C,...,C}) = Th(B) ] (by Definition 2.6)
= W[ Thp(SU{Ch-..,Cn}) - Thyp(S) |
= p{(The(EU{Cy,...,Cn}) = Thp(ZU{Cy,...,Crzy))
U U(Thp(EU{C1}) — The(E)) ]
= p[(Thp(Emst) — Thp(Bn))U---
- U(Thp(E2) = The(E4) )]

10



it [ ,U'[ T-ﬁ?{EmH_} - Th?{Em}] U-e-

- U p[The(Es) — The(Z4)]]

4 [ Neweare(Ea, Cm, P)U -+ U Newcare(Zy,C1, P) |
= p|lJ Neweare(Z;,Ci, P) .

1=1

.|

Finally, the characteristic clauses Clare(E, P) can be expressed by con-
structively using primitive Newcarc operations. Notice that for any atomic
formula p, if £ ¥ p, & § —p, and p V —p belongs to some stable production
field P, then p v —p belongs to Care( ¥, P).

Proposition 2.9 (Incremental Construction of the Characteristic
Clauses) Let ¥ be a set of clauses, C a clause.

Care(8,P) = {pV-p|peAand pV-p belongsto P},
Care(EU{C},P) = p[Care(E,P)U Newcare(E,C,P)].

Proof:  The first equation follows immediately from Defini-
tion 2.4, Naw,

Care(E U {C},P)
= uThe(ZU{C})
— u[The(SU{C}HUThp(Z)]
ppThe(BU{CH U pThe(Z)] (#)
= pl[Care(E,P)U Care(B U {C},P)]
= p[Care(Z,P)U({Care(ZU {C},P) — Care(E,P)) |
p| Care(Z, P)U Neweare(X,C, P)]| (by Proposition 2.7)

Notice that at (+), for two sets, X and ¥V, p[ XUY ] = p[pXUpY]
holds. &

Implementation of computation of these consequences depends heavily on
which operation belween Care and Newcare is chosen as the basis: Care
can be taken up as the basic operation in Proposition 2.7, while primitive

11



Newcare can be used for Propositions 2.8 and 2.9. The former approach
can be seen in Bossu and Siegel’s [1] saturation procedure. To derive the
new positive theorems, their method should first deduce all the Care(E, )
prior to giving Care(X U {F},P), where Lp are fixed to the ground atoms
(see Example 2.2 (2)). On the other hand, Siegel [42] demonstrates that the
latter approach outperforms the former to compute the new characteristic
clauses. We will discuss this issue later in Section 3.2.

2.2 Applications

We illustrate how the use of the (new) characteristic clauses enables elegant
definition and precise understanding of many Al problems.

2.2.1 Propositional Case

In the propositional case, A4 is reduced to the set of propositional symbals
in the language. The subsumption relation is now very simple: a clause O
subsumes D if C C D. A theorem of ¥ is called an implicate of £, and the
prime implicates [35, 46, 18] of ¥ can be defined as:

PI(E) = p Th(E).

The characteristic clanses of ¥ with respect to P are the prime implicates of
¥ belonging to P. When 7 = Pg, it holds that Care(X, P) = PI{X) %

The notion of prime implicants /implicates was originally investigated for
uzes in minimizing Boolean functions on switching circuits [35]. Computing
prime implicates is also an essential task in the ATMS [4] and in its gen-
eralization called the clause management system (CMS) [37]. The CMS is
responsible for finding minimal supports for the queries:

Definition 2.10 [37] Let £ be a set of clauses and C' a clause. A clause S
is a support for O with respect to X if: (1) ¥ = S0, and (ii) L ¥ S.

A support 5 for C with respect to ¥ 1 minimal if there iz no other support
&' for € which subsumes 5. The set of minimal supports for O with respect
to £ is written MS(E, ).

3T|m pr.l'mz tmphcun!a of a d'l.r.juuc,ﬁ'luﬂe normal form formula can be defined in the same
manner Il the duality of A and ¥ is taken into account.

12



The above definition can be easily extended to handle any formula instead
of a clause as a query. Setting the production field to Pz we see that:

Proposition 2.11 [13] Let I be any formula.
MS(E, F) = Neweare(E, ~F, Pc).

When we choose the primitive Newecarc operation as a basic computa-
tional task, the above proposition does not require computation of Pf(X).
On the other hand, the compiled approach [37] takes PI(X) as input to find
MS(E,C) for any clause C easily as:

Proposition 2.12 [37] Let C be a clause.

MS(E,C)=pu{P-C|PePIZ)and PNC # 0}.

In de Kleer's versions of ATMSsz [4, 5], there iz a distinguished set of
assumplions A € £, An ATMS can be defined as a system responsible for
finding the negations of all minimal supports for the queries consisting of only
literals from A [37, 13]. Therefore, the ATMS label of a formula F' relative
to a given theory ¥ and A is characterized as

L(F,A %) = Newcare(E,-F,P), where P={A).

In the ATMS, a set of assumptions inconsistent with X is called nogood. Since
¥ E =& holds for nogood £, the set of minimal nogoods is characterized as

NG(A,X) = Care(E,P), where P =(A4).

Inoue [13] gives various sound and complete methods for both generating
and updating the labels of querics relative to a non-Horn theory and literal
‘assumptions.

13



2.2.2 Abductive and Nonmonotenic Reasoning

As Reiter and de Kleer [37] pointed out, the task of the CMS/ATMS can
be viewed as propositional ebduction. The abductive characterization of the
CMS/ATMS can also be scen in [22, 40, 13]. For general cases, there are
many proposals for a logical account of abduction [32, 3, 8, 31, 29, 45, 7],
whose task is defined as generation of explanations of a query.

Definition 2.13 Let ¥ be a theory, H C £ (called the hypotheses), and 7 a
closed formula. A conjunction E of ground instances of H is an erxplanation

of G from (5, H) if *
I. SU{E)} = G, and
2. UL} is consistent.

An explanation E of & is minimal if no proper sub-conjunction £' of E
salisfies E U {E'} = G.

An exlension of (I, H) s the set of logical consequences of £ U {M} where
M is a maximal conjunction of ground instances of H such that £ U { M} is
consistent.

The computation of explanations is based on the observation that X, (7
and E verily

1. SU{-G} & =E, and

2, N k.

Explanations can thus be obtained by computing the set Th(X U {=F}) -
Th(E) that belong to the characteristic literals H. The hypotheses H have
their sign changed because we look for the negations of £'s. The next propo-
sition characterizes abduction by using the new characteristic clauses.

Proposition 2.14 [15] Tet &, H and G be the same as Definition 2.13.
Let P = ( H ). The set of all minimal explanations of G from (E, H) is

Neweare( L, ~{, P).

#This definition is based on Theorist (31, 29], an abductive reasoning system, and deals
with ground explanations. To get universally quantified explanations, we need to apply
the reverse Skolemization algorithm [3).

14



There i3 an extension of (X, H) in which & holds if and only if

Newcare(¥, ~G, P) £ 0.

Another important problem is to predict formulas that hold in all ex-
tensions. When the theory is function-free, this problem iz known to be
essentially equivalent to circumscription [25, 23] under the unigue-names
assumption (UNA) and the domain-closure assumption (DCA) [9, 10]. Tn
circumscription, the predicate symbols of a theary E are divided into three
disjuint sets: P, minimized predicates; Z, variables; and (), fixed predicates.
Let Clircum(®; F; Z) be the circumscription of F in ¥ with Z. Then, for
any formula £, Circum(¥; P; Z) & I if and only if I is satisfied by every
(F, Z)-minimal model M of 1" [23].

Proving a formula holds in a circumscriptive theory [34, 10], as well
as other proof methods for nonmonotonic reasoning formalisms (including
explanation-based argument systems [29] and variations of closed-world as-
sumptions [1, 27, 9]), are based on finding cxplanations of the query, and
showing that these explanations cannol be refuted.

Proposition 2.15 [15] Sct P = (PTUQT L Q).

(1) [9] Let F be a formula not containing literals rom Z.

Circurn( 5 Pr Z) | F il and only if Neweare(Z, F, Priseam ) = 0. O

(2) [9, 10; Let F be any formula.

Cireum{¥; P; Z) = F if and only if there is a conjunction (7 of clauses from
Neweare(X, =F, Py ) such that Neweare(E, =G, Pyym) = 0. O

Example 2.16 Let the theory ¥ contain two clauses:

—bird(x) V ab(z) v flies(z),

—ostrich(z) V ab(z).
In this well-known example, the predicates are divided into P = {ab}, 7 =
{flies}, and ) = {bird, ostrich}. Let P be { PTUQTUQ ™), that is, positive
accirrences of ab, or any occurrence of bird and ostrich. Then,

Care(Z,P) = { ~ostrich(z) V ab(z) }.

13



Let us consider the first query,
Fy = bird(tweety) O flies(tweety).
Adding - F = ird{tweely) A = flies(tweety) to B gives
Newecare(E, - F;, P) = { bird(tweety), abltweety) }.

Since adding to X the negation of the conjunction of these two unit clauses,
—hird(iweety) V —ab{tweely), gives a new characteristic clause,

=lird(lweely) V —estrich(tweely)

it holds that
Cireumn(X; P, Z) = Fy .

Now consider the second query:
Fy = ird(sam) A —ostrich{sam) D flics(sam).
Adding the negation of the query to £ gives
Neweare(X, ~F;, P) = { bird(sam), =ostrich{sam), ab{sam) }.

Adding the negation of the conjunction of these three clauses to ¥ produces
no new characteristic clauses, showing that

Cireum(E; P Z) = F;.

When a query in abduction or circumscription contains existentially quan-
tified variables, it is sometimes desirable to know for what instances of these
variables the query holds. This answer extraction problem is considered in
[11], where the characteristic clauses of circumscriptive theories play an im-
portant role for computation.

2.2.3 Other Al theories

Since we have characterized the prime implicates, the CMS/ATMS, abduc-
tion and circumscription, any application area of these techniques can be
directly characterized by using the notion of the (new) characteristic clauses:
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for instance, constraint satisfaction problems [5], principles of diagnosis [6],
synthesis [8, 12] (plan recognition, prediction, design), natural language un-
derstanding [45], finding first-order proofs for ereating dependency networks
[17]. and generation of conditional answers in deductive databases [7]. Also,
some advanced inference mechanisms such as inductive and analogical rea-
soning may also take abductive forms of representation [28].

Example 2.17 Here is an illustration of what plan synthesis looks like. To
satisfy a goal G, we look for a sequence A of actions that can perform this
goal. This problem is in essence the same as abduction: we can compute it
by negating each clause in Neweare{X, =G, P), where ¥ is the background
theory and Lp is the action vocabulary. Then, the obtained plan A should
be added to the theory to check whether an unintended effect is caused. For
example, to clear block{a) from the table, ¥z elear(x) would perform this
goal, but this plan will cause unintended side effects. This ramification can
be found from Newcare(Z, A, P'), where Lps is the event vocabulary.

3 Skipping Ordered-Linear Resolution

In this section, we show the basic procedure for implementing the primitive
Neweare aperation by using an extension of C-ordered linear resolution. By
the term C-ordered linear resolution, we mean the family of linear resolution
using ordered clauses and the information of literals resolved upon. Exam-
ples of C-ordered linear resolution are Model Elimination [24], SL-resolution
[20], OL-resolution [2], SLI-resolution [27], and the GC procedure [41]. This
family is recognized to be one of the most familiar and efficient classes of
resolution for non-Horn theories because it contains several restriction strate:
gies, and has become important in theorem proving for it can be viewed as a
predecessor of Prolog’s SLD(NF)-resolution. PTTP [44] is a notable Model
Elimination theorem prover and is extremely fast.

The important feature of the procedure presented in Section 3.1 is that
it is direet, namely it is both sensitive to the given added clause to the
theory and restricted to searching only characteristic clauses. While both
Newcare(Z, F,P) for a CNF-formula F and Carc(E,P) can be computed
by using primitive Newcare operations as seen in Propositions 2.8 and 2.9,
we will show in Sections 3.2 and 3.3 that these can also be computed directly
by using the basic procedure.
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3.1 SOL-Resolution

Given a theory X, a stable production field P and a clause ', we show a
procedure to compute Newcare(X, C', P), which is an extension of C-ordered
lincar resolution. There are two reasons why C-ordered linear resolution is,
among olher strategics, uscful for computing the new characteristic clauses:

l. A newly added single clause ' can be treated as the top clause of a
linear deduction. This is a desirable feature for consequence-finding
since the procedure can directly derive the theorems relevant to the

added information.

2. It iz easy to achieve the requirement that the procedure should foeus on
producing only those theorems that belong to P. This is implemented
by allowing the procedure to skip the selected literals helonging to P
in a linear deduction. The computational superiority of the proposed
technique compared to set-of-support resolution that is used by Fin-
ger's resolution residue [8], apart from the fact that C-ordered linear
resolution contains more restriction strategies in natural ways, comes
from this relevancy notion of directing search to P.

Some procedures are known to perform this computation for restricted theo-
ries. For propositional theories, Siegel [42] proposes a complete algorithm by
adding skip operation to SL-resolution [20]. For ground theories with a par-
ticular production field for circumscription (described in Proposition 2.15),
Inoue and Helft [15] point out that Przymusinski’s MILO-resolution [34], an
extension of Chang and Lee's [2] OL-resolution, can be viewed as C-ordered
linear resolution with skip operation.

The following proposed inference system called SOL (Skipping Ordered
Linear) resolution is a kind of generalization of [34, 42], again in the sense
that produced clauses are not limited to some special purposes and that it
deals with general cases. The description below is mainly based on termi-
nology of OL-resolution [2], but the result is not restricted to its extension ®.
An ordered clanse is a sequence of literals possibly containing framed literals
which represents literals that have been resolved upon: from a clause C' an

b Hiatorically, OL-resolution was derived from the Model Elimination procedure, most
fully described in [24]. The description of OL-resclution in [2] contains an error for the
non-ground case discussed later.
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ordered clause € is obtained just by ordering the elements of C; conversely,
from an ordered clause C a clause C is obtained by removing the framed
literals and converting the remainder to the set. We assume throughout this
paper that literals are ordered from left to right in each clause. A structured
clause { P, Q \ is a pair of a clause P and an ordered clause Q, whose clausal

meaning is P U Q.

Definition 3.1 ({SOL-Deduction) Given a theory I, a clause C, and
a production field P, an SOL-deduction of a clause SfromE 4 C and P

consists of a sequence of structured clauses, Do, Dy, ..., Dy, such that:
1. Dg={0, C).
2. D, =5 2).
3. For each Dy = ( P, @;}, P;U@; is not a tautology.
4, For Eafh D= (P, Cf-",,}._ ¢); is not subsumed by any ¢J;, where D; =
{ P;, ;) is a previous structured clause, 7 < i.
5. Digy = { Pear, Qiyy ) is generated from D; = (P, @;) according to

the following steps:

(a) Let I be the left-most literal of Q:. Piyy and R.., are obtained by
applying either of the rules:

1.

es
1.

(Skip) If £ U {I} belongs to P, then Figq = P;U{l} and Rigr

is the ordered clausc obtained by removing [ from ..

(Resolve) If there is a clause B; in ¥ such that =k € 5; and

I and k are unifiable with mgu 0, then Fiy, = Ff and R-g+1

is an ordered clause obtained by concatenating Fif and Q*

framing 18, and removing —k#§.

(Reduce) If either

A. (factoring) F; or (J; contains an unframed literal k either
different from [ or another occurrence of I, or

B. (ancestry) (j,_- contains a framed literal

and [ and k are unifiable with mgu &, then Piy; = P and

R.., is obtained from ;0 by deleting [6.
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(b) (i+1 is obtained from Rii1 by deleting every framed literal not
preceded by an unframed literal in the remainder (truncation).

Remarks. (1) At Rule 5a, we can choose the selected literal | with more
liberty like SL-resolution [20} or SLI-resolution [27].

(2) Rule 4 is included for efficiency. 1t does not affect the completeness
described below. This strategy of deleting subsumed clauses can be par-
tially implemented by the following restriction rule: when @ can be resolved
against an ordered clause B; from ¥ with mgu @, if B;0 contains a literal kf
that appears in Q,f as a framed literal at the right of the literal resolved
upon, then this resolution can be avoided, as Resolve in such a case wonld
result in a clause subsumed by some previous clause in the deduction. The
corresponding deletion rule for proof-finding is overlooked in the definition of
OL-deduction [2] (and so is in MILO-resolution [34]), butl is clearly present
in Model Elimination [24] (and in Siegel’s algorithm [42]).

(3) When the given preduction field P is in the form of { Lp }, factoring
(5{a)iiiA) can be omitted in intermediate deduction steps like Weak Model
Elimination [24]. In this case, Rules 3 and 4 are omitted, and factoring is
performed at the final step, namely it is taken into account only for F; in a
structured clause of the form ( P, O).

(4) At Rule 5a, the selection of rules 5(a)i, 5(a)ii and 5(a)iii must be non-
deterministic; for | € Ly any rule may be applied. Thiz is not a straightfor-
ward gencralization of MILO-resolution or Siegel’s algorithm, because they
do not deal with Reduce as an alternative choice of other two rules, but
malke (J;,, as the reduced ordered clause of the ardered factor of R::'_i that is
obtained by Skip or Resolve ®. Both Przymusinski and Siegel claim that the
lifting lemma should work for their procedures. Unfortunately, their claims
are wrong: this simpler treatment violates the completeness described below.
Furthermore, even if we don’t consider consequence-finding, OL-resolution
[2], which also handles the ancestry rule as a subsequent rule of Resolve, is
incomplete for proof-finding. For example, when the theory is given as

L={ pla}Vplz)V-q(z), (1)
"F'{b)'r (2}
q(b) (3) 1,

S Furthermore, MILO-resolution prefers Skip to Resolve. See also Section 4.2.
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it is easy to see that © = pla). However, there is no OL-refutation from
Y+ =pla):

(4} =pla) given top clause
(3) plx) v —glz) v|-pla)}| resolution with (1)
(6) —qla)V|-pla) reduction

Here, each underlined literal denotes a selected literal in the next step. The
clause {6) is the dead-end of the OL-deduction. Hence, unless the substi-
tution # is empty, i.e., the literal [ and the ancestor goal =k arc exactly
complementary (merge), the reduction rule must be an alternative choice to
other rules 7. Model Flimination and SL-resolution deal with the reduction
rule as an alternative.

The Skip rule (5(a)i) reflects the following operational interpretation of
a slable production field P. By Definition 2.1 (4), assuming that a clause C
subsumes a clause D, if ) belongs to P, then so does €. In other waords, if ©
does not belong to P, then 1) does not belong to P either. Now, consider an
SOL-deduction, £y, ..., D,. Foreach I = ( F,, Q‘;} (0 <1< n—1)and for
any L; = (I, ;) (i < j), we sce that F, subsumes P; (because F, has no
more literal than F,, and P, contains an instance of P; as its subdisjuncts).
This implies that if P, does not belong to P, neither does P;. That is why the
condition that F,LJ{{} belongs to P is contained in the Skip rule. This simple
condition centributes to reducing Lhe scarch space as follows. If no rule can
be applied to the selected literal | of a structured clause 1, the branch is
immediately pruned; if Skip was applied nevertheless, any resultant sequence
would not succeed, thus making unuccessary computation ®.

In addition to the ahove advantage by using the information on the pro-
duction field P against the selected literal al Rule ja, (C-ordering itself is very
important for reducing the search space. For a very simple example, suppose
{hat we are to deal with the structured clause { F, ), where ¢} = aVbv---Ve

"The incompleteness of MILO-resolution for first-order theories leads to the unsound-
ness as well as the lwcompleteness of the query-answering algorithin for circumscription.
This observation has been reported in [18].

BWe should also mention that the Skip rule can be applied to other, superior ver-
sions of Crordered linear resolution, such as Shostak's GO procedure [41], and further
improvernents on these methods ean be used o improve efficiency still more.
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and P U {a} does not belong to P. If the selected literal a can be neither
reduced nor resolved upon against clauses of the theory in such a way that
the result of the deduction produces a clause belonging to P, SOL-deduction
will never try to examine the next literal b On the other hand, the set-of-
support strategy conventionally does not use C-ordering that gives priority
to a over b and therefore will try all the possible operations on b as well,
making unnecessary computation. This kind of case will happen in many
situations.

We call the process of finding SOL-deductions SOL-resolution. For SOL-
resolution, the following theorem can be shown to hold.

Theorem 3.2 (Soundness and Completeness of SOL-Resolution)
(1) Soundness: If a clause § is derived using an SOL-deduction [rom £ + ¢
and P, then § belongs to L'hp(Z U {C'}).

(2) Completeness: If a clause T does nol belong to Thp(L), but belongs to
Thp(ZU{C}), then there is an SOL-deduction of a clause S from £+ and
P such that 5 subsumes 7'

Proof: See Appendix for the proof. O

The soundness theorem guarantees that every produced clause belongs
to the given production field so that we can avoid “generate-and-test” man-
ners. Recall that C-ordered linear resolution is refuiation-complete as shown,
for example, by [24], but is incomplete for consequence-finding [26]. Theo-
rem 3.2 (2) says that SOL-resolution is complete for characteristic-clanse-
finding, and thus complete for consequence-finding when P is P because it
includes the additional skipping operation,

Example 3.3 Suppose that the theory ¥ and the clanse C are given by
E={ =eV-a (1),

eV =b (2) },
= aWVh.
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There is no OL-deduction of —¢ from ¥ + 7, but —c is derived using an
SOL-deduction from ¥ 4 O and Py as:

{3) (O, avhj given top clause

{4y (3, =evla]vh} resolution with (1)
(5) {—e, [#fVh) skip and truncation
(6) (-c, —ev[b]) resolution with (2)
(7} (—e, @ } merge and truncation

Note that an Ol-deduction would stop at (1).

3.2 Computing New Characteristic Clauses

We now show how exactly Newcare(E, F, P) for a formula F' can be com-
puted by using SOL-resolution. In contrast to incremental saturation proce-
dures (such as Bossu and Siegel [1]), onr approach is not a naive implemen-
tation of Definitivn 2.6 or Proposition 2.7 that consiructs the both saturated
sets, Care(, P) and Care(T U {C'}, P). Firstly, we define a set of clauses
derivable by SOL resolution, The following definition is similar to definitions
of MILO-derivatives [34] and supports for negation [27].

Definition 3.4 Given a set of clanses ¥, a clause €, and a stable production
field P, let us denote by A(Z,C,P) the clauses deduced by using SOL-
deductions from © + ¢ and P, that is,

A(S,C,P)={ 5|5 iz derived using an SOL-deduction from L+C and P}
The production from £ 1 ' and P is:
FProd(E,0,P) = p A(E,C.P).

Note that Neweare(¥,C, P) may contain au infinite number of clauses.
To compute them practically, we have to restrict theorics to decidable subset
of first-order logic and limit ourselves to finite domains.

The next proposition shows how the primitive Newcarc(X, €', P) for a sin-
gle clause (7 can be computed, by checking for each clause § € FProd(E,C.P),
only whether & |= S or not. Typically, Pred(E,C,P) contains much less
clauses than Care(Z U {C},P) so that the approach outperforms incremen-
tal saturation procedures.
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Proposition 3.5 Let (' be a clause.
Newcarce(Z,C,P) = Prod(E,C,P) — The(E).
Proof: By Theorem 3.2 (1}, it is easy to see that
FProd(E,C,P) C The(EU{C}).

Assume that I" € Newcare(¥,C,P). Then, T € p[The(E U
{C}) = The(E)]. By Theorem 3.2 (2), there iz a clause S in
Prod(E,C,P) such that S subsumes 7". Since T' iz not subsumed
by any other such a clause, T = §. Therefore, T' € Prod(E,C,P).

Hence,
Neweare(X,C,P) C Prod(X,C,P).

It remains to show that Prod(E,C,P) — Neweare(E,C,P) C
The(E). Suppose to the contrary, for § € Pred(E,0,P) —
The(Z), that S € Newecare(X,C,P). As § & Thp(X), S5 ¢
Care(%,P). Because § € Prod(X,C,P), it must be that § €
The(Z U {C}). Since § g Care(X U {C},P) by the suppo-
sition and Proposition 2.7, there is a clause 5" other than §
in Care(¥ U {C},P) such that 5 subsumes §. By the stabil-
ity of P, clearly &' € The(X) as 5 subsumes 5. Thus, §' €
Thp(L U{C}) — The(X). By Theorem 3.2 (2), there must be a
clause 5" in Frod(¥, O, P) such that 5" subsumes 5'. However,
by Definition 3.4, Frod(X,C,P) is closed under subswmption,
contradiction. Ilence, § € Neweare(X,C,P). O

Proposition 3.5 says the primitive Newecare(X,C, P) is contained in the
production from X + ' and P. To remove the clauses in the production
derivable from X, we have to test whether a clause 5, produced from ¥ + (7
and P, belongs to Thp(X) or not. This test is a counterpart of checking
consistency of hypotheses with a theory in abduction and is undecidable
in general. The question is how effectively this consistency checking can be
performed in decidable cases. We already know that S belongs to P. A direct
implementation is to use proof-finding property provided by Proposition 2.5:
Y | 5 if and only if Prod(X,—5,P) = {O}". ln this case, since the only

"Here, we assume that T is satisfiable. Each variable {universally quantified) in 5 is
replaced by a new constant in =5 {Skolemization).
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target clause produced from ¥ + -5 is O, the production field P can be
replaced with {#) so that Skip (Rule 5(a)i) will never be applied: there
s a C-ordered linear refutation from ¥ U {=S} if and only if there is an
SO L-deduction from £ + =5 and (@) (see Corollary A.4).

However, there is another way for consistency checking. When the charac-
Loristic literals Ly is smmall compared with the whole literals £, the computa-
tion of Care(E, P) can be performed better as the search focuses on P. Hav-
ing Care(Z, P}, consistency checking is much easier because the check can be
reduced to subsumption tests on Care(E, P) by Proposition 2.5: § € Thp(E)
il and only if there is a clause T € Carc(Z, P) such that T subsumes 5 10,
We thus propose an intermediate approach between incremental saturation
procedures based on Proposition 2.7 and an interpreted computation given
by Proposition 3.5. It does not compute the saturated sel Care(XU {C},P),
bul computes and keeps another smaller saturated set Carc(Z, P) for con-
sistency checking. This checking can be embedded into an SOL-deduction
by adding the following rule into Definition 3.1 1%

4*, Fureach 1); = { I, @.), P, is not subsumed by any clause of Care(Z, P).

Let us denote by A, (X, C,P) the clauses deduced by using SOL-deductions
from % +¢ and P in which Rule 47 is incorporated. The +-production from
Y A4 and P is defined as:

Prod, (L,C,P) = p Ay (X,C,F).

Proposition 3.6 Prod.(¥,C,P) = Neweare(Z,C,P).

Proof: As we have mentioned earlier, for an SOL-deduction,
Dy,..., Dy, for any D; = (B, @V (0<i<n-1)and D; =
(P, @) (i < j), it holds that P; subsumes Fj. Therefore,
if a clause T € Care(X, P) subsumes P, then T subsumes Fj.

WThe role of Carc(%, P) in this case is similar to the minimal nogoods in the ATMS [4].

1 This rile enables SOL-resolution 1o check deducibility from I of each partial clanse
P, consisting of literals skipped so far. Instead of using the “compiled” approach [37], ie.,
checking with Care{E,P), the check can be carried out in a demand driven manner. For
P, such that © | I, if { is skipped and added to Py, we may check whether E = Fiu{l} or
not by failing to find a proof of [ from EuU{-F}. For Theorist [31], Poole [30] uses a Prolog
meta-interpreter for incremental consistency checking, and Satter, Goodwin and Guoebel
[50] utilize nogoods that have been found in previous failures of consisteney checking.
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The incorporation of Rule 4* into SOL-resolution thus prevents
S0OL-deductions producing clauses subsumed by some clauses in
Care(X,P), but it does not affect the completeness result given
in Theorem 3.2 (2) (since the completeness is not concerned with
clauses belonging to The(X)). Hence, by Proposition 3.5, the
proposition follows. O

Example 3.7 Let us consider label computation for a non-Horn ATMS.
Suppose that the assumptions arc H = { , -y }, and the theory is

E={ —av-bve,
W -bhVa,
yVbVe }-

In this case, Care(¥, { H)) = 0. The following finds s lahel {zA-y):

(0, o¢) top clause
(0, 2gV-bv ) resolution
(O, =axVvHpV[za]v -bv[=¢]) resolulion and merge
(=z, [Fd]V bV ) skip and truncation
(—x, yvi vi=blv[=e]) resolution and ancestry
{(—-xvy, uﬂ v ) skip and truncation

For a CNF formula F, Newcare(E, F, P) can be computed incrementally
by using a series of 50L-deductions as follows.

Proposition 3.8 Let F = C) A--- A C,, be a CNF formula. Then,

Neweare(L, F,P) = ul U Prod(L,,C,,P) | — The(Z),

i=1
where ¥, = ¥, and ¥,, =E, U {C},fori=1,...,m =1

Proof: By Proposition 2.8,

Newcare(X, F,P) = p| U Neweare(%;,C;,P) .

i=1
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Take any union of two successive primitive Newcarc operations
in the above equation. By applying Proposition 3.5, we get the
following equation for such a unjon (1 <k <m —1).

Neweare{Egyq, Cir, P) U Neweare( Ly, Ci, P)
= (Prod(ZyU{Ci},Co1, P} — Thp(Ex U {Ci}))
U( Prod(Sx, i, P) — Thp(Es))
— (Prod(SsU{Cs}, Cerr,P) U Prod(Es, Ci, P))
—(Thp(Ep U {Cy}) — Prod(Ei,C, P) )
—(The(Zs) — Prod(Z: U {Ci}, Cit1,P))
—{Thp(Ex W {C}) N Thp(Ek) )
= (Prod(Ser,Ces1,P) U Prod(Si, Ciy P) ) — 0
= (The(Zs) — Prod{Ze U [Chk}, Chsr. P) ) — Thp(Ei)
= (Prod(Xess, Ciats P) U Prod(Sy, O P)) — Tho(Dy).

The above equation can be used successively and extended to
prove the Propasition. O

As in the case of Proposition 3.6 for the primitive Newcarc operation,
the consistency checking for the new characteristic clauses of a CNF formula
in Proposition 3.8 can be embedded into SOT.-deductions by adding Rule 4%.

Corullary 8.9 Let F =) A --- A (U, bea CNI' formula. Then,
Newecare(S, F,P) = p[ | ) Prodi(E:;,C;, P) ],
1=1

where 8, =X, and ¥;,, =5, U{C;},fori=1,...,.m—-1. O

3.3 Computing Characteristic Clauses

For computing the characteristic clavses Care(E,P), it is not necessary to
check whether the clauses produced by using SOTL-deduction are not theorems
of ¥ unlike in cascs of Propositions 3.5 or 3.8.



Proposition 3.10 The characteristic clauses with respect to P can be gen-
erated as 1%

Carc(@,P) = {pV-p|peAand pV -p belongs to P},
Care(Z U{CHLP) = p[Care(E,P)U Prod(E,C,P}].
Proof: The first equation is the same as Proposition 2.9. Now,
Care(2 U {C}, P)
= p[Care(E,P) U Neweare(E, C,P)] by Proposition 2.9)
= u|Care(E,P)U (Prod(L,C,P) - The(Z))]
{by Proposition 3.5)

= p[Care(Z,P)U Pred(X,C,P)].

0

If the given theory is propositional, the prime implicates can be incre-
mentally constructed nsing every clause as a top clause as follows.

Proposition 3.11 [13] Given PI(X) and a clause O, PI{X U {C'}) can be
found incrementally:

PID) =
PIRU{C}) =

{pv-p|lpeA}, and
p[PI(SVU Prod(PI(¥),C,Pc)] .

The computation of all prime implicates of £ by Proposition 3.11 is much
more eflicient than the brute-force way of resolution proposed by Reiter and
de Kleer [37], which makes every possible resclution until no more unsub-
sumed clauses are produced. The computational superiority of the proposed
technique as compared with a brute-force, saturation algorithm comes from
the restriction of resolution, as the key problem here is to generate as few as
possible subsumed clanses together with making as few as possible subsump-
tion tests. Also, ours uses C-ordered linear resolution, and as discussed in
Section 3.1, it has naturally more restriction strategies than set-of-support

g practice, no tautolegy will take part in any deduction; tautologies decrease mono-
tonically (sve Delinition 3.1).



resolution that is used in Kean and Tsiknis’s [18] extension of the consensus
method [46] for generating prime implicates.

This difference becomes larger when there are some distinguished literals
representing assumptions in ATMS cases. The most important difference lies
in the fact that the formulations by Ileiter and de Kleer [37] and by Kean
and Tskinis [18] require the computation of all prime implicates whereas ours
only needs characteristic clauses that are a subset of the prime implicates
constructed from P, again aveiding “generate-and-test” manners (see [13]
fur details).

4 Variations

In the basic procedure in Section 3.1, two rules Skip (Rule 5(a)i) and Re-
solve (Rule 3(a)ii) are Lrealed as alternatives in Step 5a of an SOL-deduction
{Definition 3.1). This treatment is necessary to guarantee the completencss
of SOL-resohition. In this section, we violate this requirement, and show
properties of efficient variations of SOL-resolution and their applications to
Al problems. Note that the Reduce rule (Rule 5(a)iii) still remains as an
alternative choice of other two rules (see Remark (4) of Definition 3.1).

4.1 Preferring Resolution

The first varialion, called SOL-I deduction, makes Resolve precede Skip,
namely Skip is tried to be applied only when Resolve cannot be applied.

In a special case of SOL-IL deductions, where the literals are not distin-
guished, thal is, the production field is fixed to P, Skip is always applied
whenever Resolve cannot be applied for any selected literal in a deduction.
In abduction, the resullant procedure in this case “hypothesizes whatcver
cannot be proven”. Many resolution-based abductive systems applied to di-
agnosis have favored this sort of most-specific explanations [45]. This is also
called dead-end abduction, which is first proposed by Pople [32] in his ab-
ductive procedure based on SL-resolution [20] **. The criterion is also used
by Cox and Pietrzykowski [3].

Bpople's synthesis operation performs “factor-and-gkip”.
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4.2 Preferring Skip

In the next variation, called SOI-§ deduction, Skip and Resolve are placed
in Step Sa of SOL-deductions in the reverse order of SOL-R deductions. That
15, when the selected literal belongs to Ly, only Skip is applied by ignoring
the possibility of Resolve:
S{a)i-Bla)ii=. (Skip & Cut)
If ;U {l} belongs to P, then P,yy = P;U{l} and Ri., is the
ordered clause obtained by removing I from ;.
Otherwise, if there is a clause B in ¥ such that —k € B; and
{ and k are unifiable with mgu 0, then P, = F# and %11
is an ordered clause obtained by concatenating B.# and .0,
framing 18, and removing —k#f.
Hla)ilix. (Reduce) the same as Rule 5(a)ii.

This skip-preference has the following nice properties. Firstly, this en-
ables the procedure to prune the branch of the search tree that would have
resulted from the literal being resolved upon. Secondly, SOL-S deductions are
correct model-thearetically. Let us divide the set of clauses A (= A(E, 0, P))
produced by using SOL-deductions from T +C' and P, not necessarily closed
under subsumption, into two sets, say A; and A,, such that

A=AUA; and ZUA; | A;.

Recall that Newcare(Z,C,P) C Prod(Z,C,P) = uA (by Theorem 3.2),
Then adding A; to A, does not change the models of ¥ U A;:

Mod(ZU A, )= Mod(ZUA) = Mod( % U Prod(¥,C,P)),

where Mod(T) is the first-order models of 7. Thus only A; needs to be
computed model-theoretically, The next theorem shows SOL-S deductions
produce precisely such a A,

Theorem 4.1 If a clause 1" is derived by an SOL-deduction from ¥ + ¢
and P, then there is a set § of clauses each of which is derived by an SOL-§
deduction from ¥ + €' and P such that TU§ = T.

Proof: See Appendix for the proof. O
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Let us denote by Ag(Z,C,P) the clauses deduced by using SOL-5 de-
ductions from I + C and P. The S-production from £+ C and P is defined

- Prods(¥,C,P) = p As(E,C, P).
Corollary 4.2 S U Proeds(X,C,P) |= Pred(E,C,P).
Proof: It is obvious to see from Theorem 4.1 that
TUAS(E.C,P)EAECP).
The corollary follows from the facts that
pAg(E,C,P) E As(S,C,P) and pA(E,C,P)C A(E,C,P).
0

Notice that Prodg(%,(,P) is not always a subset of Prod(E,C,P) al
though Ag(L,C, P) € A(%,C,P) holds. Thus a clause in the S-production

may not be a new characteristic clause.
Example 4.3 Suppose that the theory is
Y={sDg tDg, sVt},
and that P = ({-s, =t} }. In this case,
Prodg(E,-g,P) = {-s, ~t}.
However, if SOL-resolution is used, we sce that
Prod(%Z,-g,P) = {O}.

The empty clause cannot be produced by SOL-§ deductions, but Theorem 4.1

is verified:
YUl -s, ot} ED.
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When SOL-S deductions are applied to abduction especially for natural
langnage understanding, it is sometimes called least-specific abduction [45].
In abduction, recall that for a clause § € A and H = Ty, -5 is an explana-
tion of =C' from (X, H) if £ ¢ S. Thus, the explanations A, are the weakest
in the sense that for any clause 55 € Ay, there exists a conjunction of clauses
1‘5'1 C Ay such that ¥ & {_".Sz} |= _"51 holds.

In circumscription, this is particularly desirable since we want to an-
swer whether a query holds in every minimal model or not; the purpose of
using explanation-based procedures is purely model-theoretic. One of advan-
tages of Przymusinski’s procedure [34] lies in the fact that MILO-resolution
performs a kind of SOL-S deductions [15]. Similarly, SLIN[-resolution [27]
prefers Skip tp Resolve in deriving ground clauses from the axioms and the
top clause.

Example 4.4 [15] Consider circumscription of P in £ with Z, where the
theory is
S={pV-p, pV-ps, mVz},

the minimized predicates are P = {py, ps, ps}, and the variables are Z = {z}.
The characteristic litcrals are Lp = P* = {p,, p;, ps}*. The query is z.

Now, by adding -z to X, an SOL-S deduction provides ps. Since this
litcral belongs to P, the procedure skips it and stops. Then adding —ps to X
generates no new characteristic clause. According to Proposition 2.15, z is a
theorem of the circumscriptive theory.

If the procedure would examine the remaining choice, resolving ps with
the clause p; V —pa, it would produce p;, and a [urther step would produce
pi. This is exactly what SOTL-resolution may do, and the production from
2+ =z and P can provide:

Neweare(X, -2, P) = {pa, p2, ;1 } -

The negation of the CNF formula is —py V =p; V —p;, which provides no
new characteristic clauses with respect Lo I, verifying the result of the above
computation. The SOL-S deduction did not need to gemerate two extra
clauses because they arc consequences of £ with p.:

Tu{pleEpap.
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4.3 DBetween Skipping and Resolving

We can consider another interesting procedure that offers an intermediate
alternative to the SOL-R and SOT.-§ deductions. The set of literals £ can
he divided into four sets: those never skipped, those skipped only if cannot
he resolved, thuse which can be non-deterministically chosen either skipped
ar resolved, and those immediately skipped. This is useful for a sort of
abduction where we would like to get explanations in appropriate detail.

One further gencralization of this idea would be best-firs! abduction. This
notion was originally introduced by Lee [21] in consequence-finding. Stickel
[45] also nses the minimal-cost proof for Horn theories where we can choose an
operation whose expected computational cost is minimum, bul it is difficult
to apply the idea to non-Horn theories.

4.4 Approximation

We can consider more drastic variations of the basic procedure. To do so,
let us remember the complexity issues of consequence-finding in the propo-
sitional case 1*, which have been recently examined for the CMS/ATMS by
[33, 40]. Provan [33] shows that the ATMS complexity inherits from enumer-
ation of prime implicates which is NP-hard, Thus any complete algorithm for
computing ATMS labels is intractable. Selman and Levesque [40] show that
finding one explanation of an atom from a Horn theory and a set of atomic
hypotheses is NP-hard. Therefore, even if we abandon the compleleness of
deductions with respect to the primitive Newearc operation, for instance, by
limiting the production to only those clauses having some small number of
literals [5] belonging to P = { A, size is less than k)'%, it is slill intractable.

Are there any rescues from the computational difficulty? We can consider
approximation of abduction; either discard the consistency or dispense with
the soundness. ln the former case, we may only run an SOL-deduction and
helieve the result, omitting consistency checking described in Section 3.2.

19The complexity of consequence-finding in the general case is bounded by the limitation
that the set of all tbeorems is recursively enumerable. Notice, however, that whether a
given formula is net a logical consequence of such a theory cannot be determined.in a
finite amount of time.

VNotice that this P i= stahle. Tn practice, this size-restriction is very wseful for mini
mizing the search effort, because it causes earlier pruning in SOT~deduction sequences.
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This is a sort of optimistic reasoner without taking care of ramification. On
the other hand, the latter case happens if we skip literals not belonging to
the characteristic literals: the soundness is violated in the sense that there
is a clause 5§ € Prodx(%,C,P) such that § & Thp(X U {C}) . This is
an extreme of an SOL-S deduction in Section 4.2. We can stop deductions
in accordance with computational resources; the unresolved literals in a leaf
of the deduction are then immediately skipped. These skipped literals are
dealt with as defaults and will be reconsidered later. Levesque [22] also gives
a hint for this kind of computation in terms of ezplicit abduction.

The fact that the procedure is sound and complete is valuable although
the computational complexity is exponential. This is because we can improve
the quality of solutions as time goes by; we can expect to get the correct
answer if we can spend enough time to solve it. This property of “anytime
algorithm” is a desirable feature for any future AT system.

5 Conclusion

We have revealed the importance of consequence-finding in Al techniques.
Most advanced reasoning mechanisms such as abduction and default reason-
ing require global search in their proofl procedures. This global character
is strongly dependent on consequence-finding, in particular those theorems
of the theory belonging to production fields. That is why we need some
complete procedure for consequence-finding,

For this purpose, we have proposed SOL-resolution, an extension of C-
otdered linear resclution augmented by the skap rule. The procedure is sound
and complete for finding the (new) characteristic clauses. The significant
innovation of the results presenled is that the procedure is direct relative to
the given production field. We have also presented incomplete, but efficient
variations of the basic procedures with different properties of consequence-
finding.

Y However, since for any structured clause I; = ( £, ;) in every deduction from 5+
and 7, it holds that TU{C} | KU Q; , we can always guarantee that S € TA(ZU {C]).
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A Appendix: Proofs of Theorems

In this Appendix, we show the proofs of Theorems 3.2 and 4.1.
Firstly, we prove the soundness of SOL-resolution.

Lemma A.1 Let Dy, ... , D, be an SOL-dednction of § [rom X+ " and P.
For cach [); = { P, ;) (0 <i < n—1),it hold that

EU{PﬂUQD!~--1P='UQ|'}|:H+1UQ|+1-

Notice that U@y = C and P, UG, = 5.

Proof: Since truncation (Rule 5b) does not change the clausal
meaning of each structured clanse, we can consider only Rule ja.
Let Diyy = { Piaqy Qipr } (0 <1 < n—1) be the structured clause

obtained from I = | P, @,) by applying either of the three
choices, Skip (Rule 5(a)i), Resolve (Rule 5(a)ii) or Reduce
(Rule 5(a)iii), and truncation.

1. Skip is applied. In this case, I; U @; = Py U Qs

2. Resolve is applied. In this case, BU{FUQ} | PipaUQisr.

3. Reduce is applicd. If factoring (Rule 5(a)iliA) is applied,
then {P,UQ,} | Py U Qi I ancestry {Rule 5(a)iiiB) is
applicd, then there exists a structured clause D; = {F}, @)
(7 < i) such that {UQ;, PUQ;} B Fipr U Qg (see (2,
Lemma 7.2, page 111]).

By combining the above three cases, the lemma holds. O

Theorem 3.2 (1) {Suundness of SOL-Resolution)
Il a clause S is derived using an SOL-deduction from ¥ + C and P, then S
helongs to The(X U {C}).

Proof: Let Dg..... 0, be an SOL-deduction of § from & + C
and P. Since Skip is applied to only those literals belonging to
P, it is easy to see that § belongs to P.

We prove that ¥ U {(:”!‘ i= B lake any model M of U {(.»T}
Since TU{C} | PUQ, by Lemma A.1, M satisfies P, U@, and
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is a model of LU{C, A UQ,}. Again by Lemma A.1, M satisfies
P, U (), and further applications of Lemma A.1 lead to the fact
that M satisfies P, = 5. Hence, S € The(EU {C}). O

Before giving the completeness proof of SOL-resolution for consequence-
finding, we prove the completeness of SOL-resolution for proof-finding. In
proof-finding, since the only target clause produced from £+ (' 1s O, we can
consider the production field Py = (#) so that Skip (Rule 5(a)i) will never
be applied. Thus for an SOL-deduction D of O fram X + C and P,

(g, €Y,....(0, @),....(0, O),
we identify ) with a sequence of ordered clauses,
5,...,Q‘¢1-1.,D,
We call 50L-resolution with the production field Py OL *-resolution.

Definition A.2 (OL*-Hefutation) Given a theory X, and a clause (7,
an OL*-refutation from ¥ 4+ C consists of a sequence of ordered clauses,

Qos Q. ., Gn, such that:
I. Qa=0C.
2. Q, =0,
3. For each G, @ is not a tautology.

4. Far each II'.'.:,-’".-, (i is not subsumed by any @;, where @j is a previous
ordered clanse, j < 1.

. Qi1 is generated from J; according to the following steps:

o

(a) Let [ be the left-most literal of ;. R:,.l is obtained by applying
either of the rules:
i. (Resolve0) If there is a clause 5; in ¥ such that —k € B;
and [l and k are unifiable with mgu 6, then .R,—;l is an ordered
clause obtained by concatenating B;# and @8, framing 16,
and removing —kd.

i. (Reduce0) If either
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A. (factoring) Q',- contains an unframed literal k either dif-
ferent from [ or another occurrence of I, or

B. (ancestry) (J; contains a framed literal E1 '—|k|1

and [ and k are unifiable with mgu @, then R.,, is obtained
from ;0 by deleting 16,

(b) @i}y is obtained from ;1 by deleting every framed literal not
preceded by an unframed literal in the remainder (truncation ).

We can see that the above definition of OT.*-refutation is a variant of
SL-refutation [20] or ME relutation [24]. However, as noted in Remark (4)
of Definition 3.1, OL*-refutation is different from OL-refutation [2] because
ancestry (Rule 5(a)iiB) is an alternative choice to Resolve (Rule 5(a)i)
or factoring (Rule 5(a)iiA). According to the completeness results for SL
refutation or ME refutation, it is not difficult to verify the completeness of
OL*-refutation.

Theorem A.3 If ¥ is satisfiable and ¥ U {C} is unsatisfiable, then there
exists an OL*-refutation from £+ C. O

In SOL-resolution, since the Skip rule is defined as an alternative rule to
others, a refutation can be obtained without using Skip as if the rulc does
not exist like OL* refutation. Therefore, for any stable production field P,
we can identify an SOL-deduction of O from ¥ + € and P with an OL*-
refutation from ¥ 4 € as follows.

Corollary A.4 Let P be any stable production field. If ¥ is satisfiable and
%1U{('} is unsatisfiable, then there exists an SOL-deduction of O from L40C
and P. O

The proof of the completeness of SOL-resolution for consequence-finding
can be seen as an extension of the results for m.s.l. resolution by Minicozz:
and Reiter [26, Theorems 1 and 2, pages 176-1 77]. In addition to these
techniques, we have to take C-ordering and the skip operation into account.

If ¥ is a set of clauses and T is a clause, we write

Sr={C|C"EL and O=0C"-T}.

We first show the proof for the ground cases.
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Lemma A.5 [26, Lemma 1] If ¥ is an unsatisfiable set of ground clanses
and T is a ground clause, then Yy is unsatisfiable. O

Lemma A.6 Let ¥ be a set of ground clauses and T a ground clause. If Yp
is unsatisfiable, then ¥ |= T

Proof: Assume to the contrary that X [£ T. Since ¥ U {-T}
is salisfiable, there is a model M of ¥ U {-T}. Let ' be any
clause in 8. If ONT = {t,..., 8} (& is a literal), then M
satisfics C' = {{y,...,t;} because M satisfies C and every =i; for
1 £ ¢ < k. Therefore, M satisfies C — T and is a model of Ep.
Hence, X is satisfiable, contradiction. 0

Lemma AT Let £ be a set of ground clanses, T' and €' ground clauses. If
Y ¥ T and ZU{C} |= T, then there is an OL* refutation from Sy + (C'—T).

Proof: Suppose that ¥ = T'. By Lemma A.6, ¥y is satisfiable.

Suppose further that £ U {C'} = 7" This implies that U {C} U
{-T} is unsatisfiable. Since {=1'}y = {=T}, Zr U {C - T} U
{—T} is unsatisfiable by Lemma A.5. However, no literal of the
CNF formula =T has the literal complementary to a literal in the
clauses of £+ U {C' = T'}. Hence, £ U {C — T'} is unsatisfiable.

By Theorem A.3, there is an OL*-refutation from E¢ 4 (€' — T).
0

Theorem A.8 Let I be a set of ground clauses, T' and ¢ ground clauses,
and P a stable production field. If T does not belong to Thp(X), but belongs
to I'hp(X U {C}), then there is an SOL-deduction of a clause § from T + ¢
and P such that S T.

Proof: Suppose that T' € The(EU{C}) — The(X). Obviously,
Y Tand TU{C} 1. By Lemuma A7, there is an OL*-

refutation, . - )
. Qﬂ:"th“-an+
from X7 + (C —T'). Note that @, = C =T and @,, = O

In this refutation, replace each occurrence of a clause ;€ Er
used in an applicalion of Resolvel (Rule 5(a)i) to (J; by the
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clause B} of ¥ from which it was derived. Now, construct a
sequence D of structured clanses

Doy ---+ Doggoys s Digreves Diis <o o3 Do oo Dy ke(m) +
from the refutation according to the following steps:

I. Let Dy = (0, C}.
2. Dijpr = (Pigrt, Qo) (0<i<m, 0<5 <k(i)—1)is
obtained from D, ; = { P, ;, Qi;) in the following way:

{a) If the left-most literal of (., is the same as the left-
most literal of @; in the OL*-refutation, do not con-
struct I ;4. Set k(i) = J.

(b) Otherwise, skip the left-most literal [ of Qi;, i.e., let
Piip1 = Fi; U{l}. Qi;41 is obtained from ¢} ; by re-
moving the given occurrence of [, and truncating the
remainder.

3. Diprp = Pinno Qi;l,u} (0 <i < m—1) is obtained from

Di iy = ( Pirei)y Qikgsy ) in the following way:

(a) Let Fiy0 = P

(b) Let I be the left-most liicral of Q,-:_.{t-],, Q;;m is obtained
as follows.

i. If Resolve0 (Rule 5(a)i) was applied to Q; in the

OL*-refutation, deducing Q41 through truncation,
then Q,y10 is the ordered clause obtained by con-
catenating g: and Qi;:t-’]n framing I, removing -,
and truncating the remainder.

ii. If Reduce0 (Rule 5(a)ii) was applied to @ in the
OL*-refutation, deducing Q:.,.q_ through truncation,
then Q110 is obtained from Q.,_:;[;]. by deleting the
given occurrence of [, and truncating the remainder.

Note that the left-most literal of Qi;{,—] (1 <1< m)isalways the
same as the left-most literal of ¢J; in the refutation. Notice also
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that &(¢) is the number of literals skipped in the sequence from
-D:'.U to EI+'.|.I'|'| i.ﬁ..,

k(1) = |Piq10 — Pigl.

In other words, Py, 9 = F,gUS;, where S; is the set of non-framed
literals in @, not preceded by the left-most literal of ;4.
Now, let § = Pm,k{m}- We see that Um,kfm} = (S, 0} In D,
since every literal in any F;; is a literal of T which comes from
B:NT (= B~ BjJor CNT (= C ~(C~—1T)), we verify that
S5CT.

It remains to verily that D is actually an SOL-deduction from
Y4 C and P.

1. In each construction of D; ;0 from Dig (0<i<m 1),
the rulcs Resolve0 and Reduce0 have been changed to just
the rules Resolve and Reduece.

2. In cach construction of X gerfrom Dy (0 <7v<m, 0 <
J < k(i) —1), Skip has been used. By the supposition, since
T belongs to P, every F;; belongs to P and the condition
for the application of Skip is satisfied.

3. Noclause of B; ¢ 7 contains a literal of =7 because each B,
is used in the OL*-refutation from Y7+ (C’—T). This implies
that no clause of B} € ¥ contains the complement of a literal
of T' so that for any structured clause D;; = {F;, Q:a }s
F,; UQ,; is not a tautology.

4. Fach Q;; in D contains all the literals of (; in the OL*-
refutation. Furthermore, every literal in (i — @ is a litera]
of T and thus does not appear in any previous Qy (k < i) in
the refutation. Therefore, as @Q; is not subsumed by any Q,
(k < 1), Qi is not subsumed by any other @, (k < ¢,1 < j).

O

We now lift the result of Theorem A.8 to the general level. We use
the technique, first used by Slagle, Chang aud Lee [43], of introducing new
distinct constants into the Ilerbrand Universe,
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Lemma A.9 [43, Theorem 1] Let ¥ be a set of clauses and T a ground
clause. ¥ |= T if and only if there is a finite set L' of ground instances of
clauses in % over the Herbrand Universe of £ U {T'} such that &' =T. O

Theorem 3.2 (2) (Completeness of SOL-Resolution)
If a clause T does not belong to Thp(¥), but belongs to The(ZU {C}), then
there is an SOL-deduction of a clause § from ¥ + C and P such that §

subsumes T,

Proof: Let zy,...,2, be all of the individual variables of T
Let By, ..., b, be new distinct constants not appearing anywhere
in . C or T. Since ZU{C} |= T, it holds that TU {C} |= T'0
for a substitution @ = {xy /by, ..., Tpm/bm}. Similarly, as £ T,
it must be that ¥ & T0. Let H(b,...,b,) be the Herbrand
Universe of TU {C, T8}. By Lemma A.9, there is a [inite set of

gronnd instances ' of E over H(bi,..., bn) such that

1. &' T4, and
2. ¥'u{C'} = T# where " is a ground instance of £’ over
H(by,... bn).

By Theorem A.8, there is a ground SOL-deduction D' of §' fromn
' 4+ " and P such that §' € Té. In IV, replace each occurrence
of a clavse B! € ¥’ used in an application of Resolve by the
clause B, of ¥ of which it is a ground instance. Also, replace
each structured clause I} in I’ by the general structured clause
D, which is constructed from its parent and the corresponding
E;_; in the obvious way. The resultant sequence D} is a general
SO1.-deduction of a clause § from E + C and P such that S has,

as an instance, S'. So, there is a substitution p such that
SpC§CTY,

but since ¥ does not contain the symbols b,..., by, there is a
substitution o such that

SeCT, and o =p~t.

Thus, & subsumes I'. O
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Before proving Theorem 4.1, we show a property of SOL-S deductions in
a special case, where a stronger result can be obtained.

If 2 sequence, D, of structured clauses, D,, ..., D,, is a subsequence of an
SOL-deduction (or SOL-§ deduction), Dy, ..., D4,..., D, of § from £ 4+ C
and P, we say D is au SOL-deduction (or SOL-S deduction) of § from L+ D,
and P.

Lemma A.10 If a clause T is derived by an SOL-deduction from £ +
and P without applying the Reduce rule to any structured clause in the
deduction, then there is an SOL-S deduction of a clause § from T + C and
P such that T U {§} = T.

Proof: Lel Dy, Dy,..., D, be an SOL-deduction of T from &+
and P. Let [; be the selected literal of (J;, where D; = (#, Q'._- )
aud 0 < 1 < n— 1. Assume that Reduce is not used in the
deduction.

Iirstly, if Skip is applicd upon every I, (0 < j < n—1) such that
F; U {l;} belongs to P, then T is actually SOL-S deduced from
Y+ C and P, and of course £ U {T} &= T holds.

Next, suppose that there exists a siructured clause D, in the SOL-
deduction such that P; U {I;} belongs to P, but that Resolve is
applied upon /; in Q'_,- with a clause B; € E. We now eall such D;
a restster. We prove the lemma in this case by induction on the
number m (1 < m < n) of resisters in the deduction.

Il Dy (0 < k < n—1)is the only resister in the SOL-deduction,
ic.,m=1, then Dyyy = ( Py, Q;H ) satisfies

Peyy = B, and
Qrp1 = (B — {=00}) U (Qsf — {1:6}),

where # is a substitution.

Obviously, 1" is SOL-deduced from ¥ + Dy, and P. Now, let I7
be a clause SOL-S deduced from X + (By# — {=l,0}) and P, V a
clause SOL-S deduced from X 4 (Q4# — {Ix8}) and P. Since no
more Resolve is applied upon any subsequent selected literal I;
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(j > k) such that P; U {l;} belongs to P, we can choose such {7
and V to satisfy
T=(FRUlUUV)p,

for some substitution p.

Now assume that instead of applying Resolve, Skip & Cut is
applied to Dy, deducing D}y = { Piy1y @y ), Where

Pl = P.u{l}, and
Q;:+1 = QF:_{F#}-

Then, (P U {It}UV)o for some substitution o is SOL-5 deduced
from ¥ 4 D}, and P, and thus SOL-S deduced from L + C and
P. Since SU{L} E By—{~k}, ZU{l} E U holds, and therefore
it holds that

EU{(PU{lJUuV)}ET.

Thus, the leinma holds for the base case.

Assume that the lemma holds for cases that m— 1 or less resisters
are in number. We consider the case that there are m resisters
in the SOL-deduction. Let ¢ be the last resister in the SOL-
deduction, namely k is the biggest number in such m resisters.
Tn the same way as the base case, we can prove that there is an
SOL-S deduction of a clause §' from £ + Dy and P such that

EU(S)ET.

where §' = (P U {l;} U V).

Now, since §' is SOL-deduced from £+ C and P involving (m—1)
resisters, there is an SOL-S deduction of S from ¥ 4+ C and P

such that

TU{StE S,
by induction hypothesis. Hence, ZU {5} | T. This completes
the proof. G

We now take the Reduce rule into account. The result of Lemma A0
still remains to hold even if factoring is incorporated. However, if ancestry
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occurs in SOL-deduction of T upon a selected literal against a framed literal
that had been resolved upon before a resister appeared, then the relation
between an SOL-S deduced clause S and T that £ U {S} = T no longer
holds and another SOL-S deduced clause S’ is required to imply T, namely
Zu s, 8} =T (see Example 4.3).

Theorem 4.1 If a clause T is derived by an SOL deduction from & +
and 7, then there is a set 4 of clauses each of which is derived by an SOL-S
deduction from ¥ 4+ C and P such that TUé = T.

Proof: Lel Dy, Dy, ..., D, be an SOL-deduction of T from T+
and P. Let I; be the selected literal of §;, where D, = (P Q)
(0 £¢ < n—1). We prove the theorem by induction on the
number m (0 < m < n) of Reduce operations in the SOL-
deduction.

If Reduce is not applied upon any [; (0 < j < n—1),ie,m =0,
then by Lenuna A.10 there is an SOL-S deduction of a clause S
from ¥ + € and P such that ¥ U {5} = T. Thus the theorem
holds for the base case.

Assume that the theorem holds for cases that m — 1 or less tirnes
of Reduce operations occur in SOI-deductions, We consider
the casc that there are m selected literals upon which Reduce
15 applied in the 50L-deduction. T.et D) be the last structured
clause to which Reduce is applied in SOL-deductions, namely
k is the biggest number in such structured clauses. In this case,

Diy1 = ( Pip1y Quyr ) satisfies

.!Uj:+1 —_ Pj;f;, and
Qi1 = Qub — {1i0},

where # is a substitution. Note that T is SOL-deduced from
Y+ Diyy and P without involving further application of Reduce.

L. Factoring (Rule 5{a)iiiA) is applied to D;. In this case, since
{Pe U@} | Peyq U Qiyr bolds, it is casy to verify that
there is an SOL-deduction of §* from © + D and P without
involving any application of Reduce such that {§'} = T.
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Since D} is a structured clause in the SOL-deduction of T',
5" can be derived by an SOL-deduction from E+C and P in
which (m 1) Reduce operations are applied. By induction
hypothesis, there is a set é of clauses SOL-5 deduced from
¥+ and P such that £ U6 | 5 Thus, EUé = T.

Notice that in the above proof for applications of factaring,
if all of m Reduce operations arc factoring, it holds that
there is an SOT.-S deduction of a clause S from ¥ + C and
P such that LU {5} | T. Hence, Lemma A.10 holds even
if factoring is taken into account. Thus, in the following, we
can turn to focus on induction on the number of ancestry
{Rule 5{a)iiiB) operations in the SOL-deduction ol T

Assume that the theorem holds for cases that m = 1 or less
ancesiry operations are applied in SOL-deductions. Suppose
that m ancestry operations occurs in the SOL-deduction of
T. Dy is now the m-th structured clause to which ancestry
is applied. In this case, there is a structured clause [D; =

{ Fj: Q'J} [j = r‘rn-] such that
{PJ UQJ‘! PkUQk]‘ |=Pj:+1UQk+l

(see the proof of Lemma A.1). Now, apply Resolve to [y
against a clause { P;UQ;), then apply Skip and factoring ap-
propriately to the result. Then, we get an SOL-deduction of
S, from TU{P;UQ;} + Dy without involving any application
of ancestry, such that

{PJ'UQ.h SiYET.

Since I is a structured clause in the SOL-deduction of T’
from £ 4+ C and P, &, can be derived by an SOL-deduction
from EU{P;UQ,}+C and P. But since EU{C} |- F;UQ;
by Lemma A.l, S; can be derived by an SOL-deduction
from ¥+ C and P in which (m — 1) ancestry operations are
applied. By induction hypothesis, there is a set & of clauses
S0OL-S deduced from £ 4+ €' and P such that

SUS ES.
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In the similar way, apply Resolve to D; against a clause 55,
then apply Skip and factoring appropriately to the result.
Then, we get an SOL-deduction of S, from L U {5} + D;
without involving any application of ancestry, such that

{Sh 52} JE T.

Since [); is a structured clause in the SOL-deduction of T'
from X + € and P, S; can be derived by an 50L-deduction
from ¥ U {5} + C and P. But since 5; is 50L-deduced
from ¥ + (7 and P, it holds that £ U {C'}  5; and thus S,
can be derived by an SOL-deduction from ¥ 4+ C' and P in
which less than m ancestry operations are applied. Again,
by induction hypothesis, there is a sel &; of clauses SOL-§
deduced from ¥ + € and P such that

LU S5,

Aud therefore,

By letting & = §;Ué,, it holds that EUé | T. This completes
the proofl of the theorem.
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