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Abstract

This paper shows a sirategy of logic program transformation based on unfold /fold riles,
In unfold /fold transformation, efficiency is often improved by performing folding steps. and
folding steps are often allowed by syathesizing new auxiliary predicates. Since atoms in the
body of & clanse nsed to fold should be more general than atoms to be folded. new predicates
are often found by generalizing atoms in the body of the clauses. Our methad svnithesizes
new predicates automatically with suitable generalization steps in many cases, An extension
of this method to incorporate goal replarement transformation is also shown .

1 Introduction

Program transformation is an important technique to derive correct and efficient programs.
Unfold ffold transformation is one of the well-known program transformation techniques and
its effectiveness was first demonstrated by Burstall and Darlington for functional programs[2].
In the field of logic programming. Tamaki aud Sato proposed unfold /fold rules [or definite
clause programs which preserve equivalence of programs[17]. The correctuess of unfold /fold
rules was further investigated in successive works[3, 6, 13].

Though unfold ffold rules provide a very powerful methodology for program development.
the application of those rules needs to be guided by strategies to obtain efficient PrOgrams,
Recently. Pettorossi and Proietti showed some theoretical limitations to the mechanization
of unfold/fold transformation[11. 12, 13]. However. in spite of those limitations. it will be
worthwhite investigating the transformation strategies further.

I unfold ffold transformation. the efliciency improvement is mainly due to finding a recur-
sive definition of a predicate. by performing folding steps. Introduction of anxiliary predicates
often allows foiding steps. Pettorossi and Proietti also proposed several transformation sirate-
gies which suggest the new predicates to be defined[11, 12, 13]. Further, they showed that
their strategies are successful for any logic program by performing suitable generalization
steps. which generalize the atoms to be folded for synthesizing new predicates[12. 13].

This paper shows a strategy of logic program transformation based on unfold /fold rules.
New predicates are syuthesized antomatically to perform folding. A generalization technigque
is adopted in the synthesis provess. An extension of this method to incorporate goal replace-
ment transforiation is also shown.



The rest ol this paper is organized as follows. Section 2 describes program transformation
rules and formalizes the transformation process, Section 3 deseribes a program transformation
procedure which syothesizes new predicates automatically, Section 4 shows an extension of
onr method. Section 5 discusses the relations to other works and Section 6 gives a conclusion,

In the following. familiarity with the basic terminologies of first order logic is assumed [7].
A program is a set of definite clauses. As syntactical variables, XY, ... are used for variahles,
A. B Tor atoms, and AL for multisets of atoms, possibly with primes and subsceipts. In
addition. # is used for substitutions, and A# for the atom obtained from atom A by applying
substitution #,

2  Logic Program Transformation

In this section. preliminary notions of our logic program transformation are described. At
first, nnfold/fold transformation rules are shown below [17].

Definition 2.1 Unfolding

Let P, be a program, " be a clause in F.. 4 he an atom in the body of Cyand €y, (7, Oy
heall the elauses in P, whose heads are unifiable with A, gay by meu's 8, H,, .., . Let €7 be
the result of applying #, after replacing A in ¢ with the body of (.. Then Foy = (I —={("Hu
{01 Ch o CLh s called the unfolded clause, (),€, ... . Cy are called the unfolding
Clamses and €775, (7} are called the results of unfolding C at A by €°. 0" .. A

Definition 2.2 Folding

Let £, be a program. (' be a clause in P, of the form A « K. L. and 1) be & clause of
the form # - K’ where K" and I are multisets of atoms. Suppose that there exists a
substitution # such that K'® = K holds. Let (7 he a clause of the form 4 — 0o, L. Then
Por =108 = {CHu{0") ¢ is called the result of folding " hv D,

Nete that when applying folding, some conditions have to be satisfied to preserve the
ieast Herhrand model of programs. See 117] for details.
Next, to formalize transformation processes, several notions are defiped.

Definition 2.3 Descendant Clause and Ancestor (lanse

Let P he a program, ( be a clause in P, and /' be a program ohtained from P by
suecessively applying unfolding to P. A clanse (" in P’ is called a descendant clause of ('
when
lal ¢ is identical tu (7, or
{b) " is the result of unfolding a descendant clause of .
Conversely. (" is called an ancestor clayse of ¢,

Definition 2.4 U-selection Rule

A rule that determines what transformation should be applied to a program is called a
selection rule. Let P be s program and ¢ be a clause in P. A selection rule R is called &
U sclection rule for P rooted on ¢ when R always selects unfolding such that the unfolded
clause is a descendant clause of (. (7 is called the rout clause for Hior of the transformation. )
A program obtained from P by successively applying unfolding according to B is called a
program ohtained from P via R,



Definition 2.5 Delinition Clause Set

Let P be a program. A clause [7is called a definition clanse for P when all the predicates
appearing in D7s body are defined in £ oand the predicate of D7 head does nol appear in
PooA zet of clanses TV iz called a definition olavse ser for I when every element ) of TV is a
definition clause for # and the predicate of [’z head appears only once in 77,

Drefinition 2.6 Closed Program
Let # be a program. ¢ be a clause in £, T be a definition clanse sel for P, and & he.a
Il-zelection rule for P rooted on O Let 1" be a program obtained from § via K. 7 s said
to be closed with respect o triple < P.O, T > when every non-unit descendant clause ¢ of
(" in P satisfies one of the following:
ta) O can be folded by a clanse in T '}
{b] There exists an atom in the body of (7 thar is not unifiable with the head of any clause
in F.
Fis said to be closed with respect to 7 and TP when there exists a closed program with respect
to < PLOT = and for every clause ) in D there exists a closed program with respect to
< Pu{DpDDn s,

Our framework 35 a slight modification of the one which Pettorossi and Proiettl has
proposed with the notion of unfolding tree[11, 12, 13]. Our framework directly corresponds
to the transformation provess proposed by Tamaki and Sato[17].

Mow. we can formalize our problem as follows: for given program P and clanse ¢ in P,
find a finite definition clause set T such that P is closed with respect to (7 and 10

Mote that it is always possible to find a trivial answer for this problem. For example, for
every predicate p appearing in &, construct a definition clanse such that its hody cousists of
only one atom whose predicate is p and whose arguments are all distinel variables, and its
head is identical 1o ils body except for the predicate symbol. A definition clause set consisting
of those clanses merely renames predicates, but it satisfies the above problem. Obviously.
efficiency of the program is not improved by using such a trivial set. In the next section. we
propose a mathod 1o find A possibiy non trivial) =et of pew predicate definitions.

3 A Transformation Method
by Synthesizing New Predicates

Tu this section. we describe a procedure to derive efficient programs by svihesizing new
predicates,

3.1 Atomic Closure for Unfolding

Our idea is as follows. If we can predict what atoms appear in the bodies of clauses during
a transformation process. we can specily clauses o fuld them. Thongh an infinite nnmber of
distinet atoms may appear, we can represent them by a finite number of atoms, by regarding
au atom as o sel consisting of all s instances. This idea is formalized as follows,

Definition 3.1 Atomic Closure for Unfolding
Let P be a program, A be a multiset of atoms, 1D be a clause of the form H — K. whera
H i an atom whose predicate does not appear in P nor K, and R be a U-selection rule for



F UL} rooted ou D. Let P' be a program obtained from £ U {0 vie B. A finite set of
atoms 5715 called an atomic closure for unfolding of P with respect to & via B when for
every descendant clause of I in P, every atom appearing in its body is an instance of an
atom in 5. A finite set of atoms ¥ is called an atomic closure for untodding of P with respect
to b when 5 is an atomic closure of # with respect to K via anv U-selection rule for P
rocted on 0,

In the following, we often sav simply ‘atomic rlosure’ for “atomic closure for unfolding’.
A similar notion was given in [8] to show the correctness of partial evaluation.

Note that it is easy to construct a trivial atomic closure. For example, construet an atom
whose arguments are all distinct variables for every predicate appearing in a program. A set
consisting of those atoms is an atomic closure of the program. However, we are not interested
in such a trivial set.

A generalizalion technique is required to represent an infinite number of atoms by a finite
number of atoms. We use the notion of least general generalization(lgg for short}[10]. Let
A and B be atoms. We write A < B when there exists a substitution # such that A8 — B
holds, Let § be a set of atoms. Then, atom A js an lgg of 5 when {a) for every atom B in
5.4 = Band (b} if A" is an atom such that A’ < B for every atom B in 5, then 4 < A,
An algorithm to compute lgg was also shown in [10].

Further. we classify atoms hy their unifiability with the heads of the clauses in a program.
The atoms which can be unified with the different heads of clauses often bohave in a different
manner, Thus, the classification srems to be reasonable.

Definition 3.2 Unifiable Clause Set
Let F be a program and A be an atom. The set of all the clauses in P whose head is
unifiable with A is called the unifiable clause set of A with respect 1o P,

Now, we show a naive procedure to calculate an atomic closure w.r.t. an atom.

Procedure 3.1 Getting an atomic closure of a program w.r.t. an atom
procedure atomic-closure :

Input: P : a program and Ay : an atom :

Output: a set of pairs consisting of an atom and a set of clauses :

Pz
S0 = {{Ap. Ug) }. where Uy be the unifiable clause set of Ag worl. P
repeat
begin
=74l
5= =1 s
for every element (4, 07)in 8, do
begin
let {C)....,C,) be the wnifiable clause set of A w.rt, P :
let #; be an mgu of 4 and the head of (', for k= 1.....n :
for every atom B appearing in the bodies of (48,,...,( 6, do
begin
let I'g be the unifiable clause set of B w.r.t. P
if there exists an element of the form (B’ ['g) in S,



then 5, := &, — {{#" Uit Ui Hyw LB
where Bae b5 an lgg of B and B
else 5 = S U {{H, g}
end
cnd
end
until 5 i« identical ta 5,
relurn &, :

A procedure similar to ongs was given in [1] for the porpose ol partial evalusation.
Next, we show the termination properly and soundoess of Procedure 3.1

Theorem 3.1 For aoy program & and atom Ay given as inponts, Procedure 3.1 always ter-
tminates.

Proof. Note that the number of possible nnifiable clause sets is finite since they are subsets
of F. Then, the number of the elements of every set of pairs 57 appearing in Procedure 3.1 15
bounded. Suppose that &, contains n distinet pairs for some o0 Note that each atom appearing
i the atom-part of an element of &; 15 identical to or more general than the corresponding
atom im 5, for j > . Since for any atom AL the nomber of atoms which is more general than
A is finite, one of the following holds.

fa) There exists a Aoite integer k> i) st. 5 = Sp4) and S also contains » clements.

(b) There exists a finite integer I > 1) sl 5o conlains o elements and S contains > o)
clements,

I case {a), the procedure terminates. Consider case (bl 'The above discussion holds repeat-
edly Tor 5 whenever case (b) oceurs, The number of the elemeuts of 5 ncreases when case
[k} reenrs, Sinee the number of the elements is bounded. case (h) oceurs for a finite number
of times. Thus, eventually case {a) oceurs and the procedure terminales, U

Theorem 3.2 Suppose Procedure 3.1 returns a set of pairs % consisting of an atom and a
sot of clauses for given program F and atom A given as inpota. Let 55 be a set consisting of
atoms appearing in the atom-part of every element in 5. Then, 54 is an atomic closure of F
w.ord. A

Froof. The theorem is proved by induction on the number of iteralions oo the repeat loop
in Procedure 3.1, Let €., .0 he clavses in 7 whose heads are unifiable with A, sav by
men’s @, ..., 80, and By, ..., B, beall the atoms appearing in the bodies of €8, .. C6,.
Let SpiB,) be any atomic closure of F wort, L for s = 1, o Then, there exists an
atomic closure Spld) of F owort. 4 st

Spid)y={AuSp(By) U ..U Spi B, (1)

Suppuse thal an atom represents a set of all its instances. Let 17 be a set of atoms and {01}
he the set of pairs consisting of every atom in 1 and its unifiable clause sel word. P. Lel
Fp(T) be the set of all the atoms appearing in the atom-part of the set obtained from ['p{'1)
and 1" hy the repeat loop of Procedure 3.1, Then.

FelTUTY 2 FplT)u Fr1" (2)

=



holds since same atows in Fp(T){ Fp(17)) may be generalized hy computing lgg with atoms
in Fp(T") (Fp{T)) when computing Fp{T' U T"). Further, evidently

FplT) 2 Fp(T") T 2T {4
holds. By applving I'p to {4}, the following holds.
Fpi{Ahy 2 {A By..... H.} (4}
From (2} (3) and {4,
FEPAYD 2 Fa{A By, D))
2 Fp{ANUFL{B ) U FA({ B}
2 {A UM U . Fp({Ba)) (5)

From Theorem 3.1, there exists a finite integer k st FE({B,}) = FE'({#}) holds for
t = 1,...,m. By the induction hvpothesis,

Fp({B}) 2 Sp(B:) (i)
holds. Thus. from (1}, (3) and (6}, Ff-’.""[ﬁ} = Sp{ A} holds, which means F';'H[.-'l} is an
atomic closure of P wort, A, O

Evidently, an atomic closure of a program w.r.t. a multiset of atoms A is the union of
the atomic closures of the program w.r.t. all the elements of A,

Example 3.1 Let P be a program as follows :

Cyororev([]2.0).

€0 rev{[AIXLYZ) — rev{X.Y[A|Z)).
An atomic closure § of P w.ort. reviX.Y,%) is ralculated by Procedure 3.1 as follows. First, a
set S ={(rev(X.Y.Z){C}, 2 })} is given. Next, rev( XY [AJZ]) is abtained from rev(X.Y.Z)
and Cy. But this atom is generalized into rev(X.Y.7) by computing lgg. because it is also
unifiable with €'y and ('3, Henee, 8, is not chianged in this step. Asaresalt, § ={rev(X.Y.Z)}.

Note that in Example 3.1, an infinite number of distinct atoms appear when applying
uniolding successively, that is, revi XY [AIZ])rev( XY, [BLA|Z])- - . Those atoms are repre-
sented by the single atom revi X, Y. Z).

Example 3.2 Let P be a program as follows :
'y : subseq([lL}.
"y 0 subseq(|X|L][X|M]) « subseq(L.M).
Cla: subseq( [X|LL{Y[M]) — subseq([X|L].M).
Cy o csub(X.Y.Z) — subseq(X\Y), subseqg X,%).
An atowic closure § of P w.r.t. subseq{L.M) is calculated by Pracedure 3.1 as follows:
So = {{subseq( LM ),{(",. (2, ("4 }1}
& = Hauhﬁeq{l_..."'.-'l},{f-'l,l".'g.(ﬁ}},[auh:ifq{[X|L],M‘].{Cg‘fg}}}
-5'-2 = S]
Then, § = {subseq(1..M ) subseqi[X|L].M}}.

Note that in Example 3.2, 5o is also an atomic closure. However, considering the unifiabil-
ity with the heads of the clauses, subseq([X|L] M) is also included. In fact, when transforming
the definition of ‘esub’ into a recursive one, subseq([X|L].M) will appear in the body of a new
predicate definition.



3.2 Synthesis of New Predicates by Using Unfolding Closure

It this subsection. we propose a transformation provedure which incorporates a method to
find a (possibly non-trivial] set of new predicate definitions, To synthesize a new predicate. we
have 1o predict what multisets of atoms appear in the body of clauses during a transformation
process. { Note thal atoms in o muoltiset may share some terms.) We consider a method to
construct such moltisets from an atomic closwre,

Definition 3.3 Cover of Multize
Let B be nomoultisel of atoms and 8 be o set of atoms, A multiset of atoms L is called a
cover of W h_l. 5 when
{a) there exists a substitution # such that L#= A", and
(h) for every element 4 of L. 5 includes a variant of 4.

Note that for any finite multiset of atoms K and any set of atoms 5, the number of
distinet covers of & by § is finite. For our purpose, it is sufficient to get a cover by an atomic
closure. Now_ after giving ore more definition. we will show a procedure to get a rover,

Definition 3.4 Minimally General Atom

Let A be an atom and 5 be a set of atoms. Then, an atom B in 5 s called a minimallv
general atom of 1 in & when (a) I = A and (b} for any atom B’ in § such that B < A,
BB

Procedure 3.2 (ietling o eover of a multizel

provedure cover-of- multisel

Input : A = {4.....4, ] amultset of atoms and Y : a set of atoms
Qutput : A" ={H... . H.} a2 multiset of atoms ;

sebert a minimally general atom A of A;jin Sfori=1.....n:
comstruct atom f; from A; foro = 1..... noas follows :

for CVOTY ar[._'_;unmnt LT ‘L do ome of the fnllnwing:

(1) if all the variables in ! appear only once in K, then replace  in A; by the
cotresponding argument in A7
(2110 a variable in ¢ appears in another place in &', then

i

(2,10 leave £ in A, as it is, if ¢ i= a variant of the corresponding argument. of
Al
{2.2) replace § i A, by the corresponding argument in A, otherwise :

return A = { B B )

Proposition 3.3 Suppose that for multizet A of atoms and set 5 of atoms given as inputs,
Procedure 3.2 returns a multisel of atoms A'. Then, A is a minimally general cover of A
by S ie. there does not exist a multiset of atoms L which satisfies the following :

faj L s a cover of & by 5 and

i by there exists a substitntion # such that /. = A'#.

Proof. Ohvious. l

=1



Example 3.3 Let 5 be the set {reverse{L;.M,). append(Ng Xy Mg), append([|,Ma,N4),
append([X,4].M4,Ns )}, Then, a cover of {reverse{ Ly.Ny |, append( No [Xol.Mao)} by § obtained
by Procedure 3.2 is {reverse{L.N). append(N. X M)}.

Next. we show our program transformation procedure. A clanse € is called a terminal
clause of program P when (7 is a unit clause or there cxists an atom in €"'s body that is not
unifiable with the head of any rlanse in P.

Procedure 3.3 program transformation

procedure transform ;

Input : Fy: a program, (% : a clause in P, and & : a finite integer ;
OQutput : P a program ;

let 5 be an atomic closure of Fy w.r.t. the body of (p :

D= {(4}:
while there exist clauses in T that are not marked ‘selected” do
hegh:
select an unmarked clause D from D and mark [ welocted
Pe=Pul{D};
P =D} ;
while P’ includes non-terminal clauses do
begin
select a non-terminal clause ¢ from 1
Moo P

if (" can be folded by a clause 1 in D
then P:= P - {("} U{C"}, where (" is the result of folding " hy D'
{folding may be applied to ¢ successivelv, 1f possible) ;
else if sxecite one of the fol lowing nondeterministically
(1) {1 P) := deline| P,, D, 5 k)
(2) (P P') = unfold{ PO, 8, Py .
end
end
return F :

procednre define ;

Input : F:aprogram, ¢ - a clause, D : a set of clauses, § : a set of atoms,
and & : an integer ;

Output : £, : a program and D,.,. : 4 set of clases :

suppose that (7 is of the form 4 — K. L. where the number of A”'s clements is Jess than & ;
let A be u cover of A hy § -

synthesize a new clause D of the form B — A", where B is an atom such that its predicate
does not appear in PU D and it contaius all the variables appearing in A as its arguments :
let " be the result of folding " by 1) ;

Priew 2= P = {C}U{C"}

Dy = D0 {D}

return F,., and D, :



provedure unfold
Input : P : a program, (' a clause, S @ a set of aloms, and £ : 2 set of clauses |

Output : P, aprogram and P a set of clanses

select an atomn A [rom (s body s.t. there exists a minimally gensral atom A" of 4 in 5 which
is not marked with s ancestor clause (if there is no such atom, nnfolding is forbidden) ;
mark A" with ¢ :

et €75, . .. (", be the results of unfolding ¢ at .4 by the clanses i £ :
Pow = P = UL Coh
Ii-:I|l||'r| - I"l- {(I'.....L{’.-m_} :

return P, and Py,

Note that Procedure 3.3 does not depend ou the method of calenlating atomic closures
nor the method of calenlating covers. Any atomic closures and covers are available, Note
also that an atomie closure is used to cestrict the application of unfolding.

Theorem 3.4 When any program P, clause O in P oand integer £ are given as inputs.
Procedure 3.3 always terminates for any nondeterministic choice in it

FProof.  First, we show that only a fivite npumber of new predicates can be defined. Note
that the body of each new predicate definition s constructed from the atoms appearing in an
atomic closure of F w.or.t. the body of (4. allowing some atoms in the body to share some
terms. Sipce the atomic closure is a finite set and the number of terms appearing in it is also
finite, the number of distinet new predicates i= finite.

Next, we show that unfolding can not be appliod an infinite number of times. Consider the
application of unfolding to a clanse €', Let & be an atomic closure used in the transformalion
process. suppose that n elements of 5 are not marked with ancestor clanses of €', Let (7 be
a clause in the results of unfolding C. Then. when applyving unfolding to & n — | elements
of § are not marked. By induction on the number of unmarked elements of 5, unfolding can
be applied o each of s descendant clauses only a finite number of times. As only a finite
nnmeber of clauses are generated as the result of wofolding, wofolding can be applied to (s
deseendant clanses only a finite number of times,

Note that the above properties hold for any nondeterministic choiee in Procedure 3.3, In
the inner while-loop in the procedure transform. the number of clauses in 1" is reduced when
{olding is applied and may be increased by applying unfolding. Then, since unfolding can be
applied to cach clanse only a finite aumber of times, the number of clauses in P"is bounded.
Thus. the inner while-loop eventually terminates. In the onter while loop in the procedure
transform. the number of clauses in T 38 bounded by the number of new predicate definitions,
which is finite as shown above. Thus. the outer while-loop also eventually terminates. Hence,
Mroweedore 3.3 always terminates for any nondeterminiztic choice in it. o

The root clanse and all definition clanses are eventually folded if they are not transformed
into terminal clauses. For nondeterministic choices in the procedure, different choices can
derive different programs. 1t is important to investigate which choice can derive an efficient
program, although we do not discuss this problem in this paper.

Example 3.4 Let €5 (3 and ¢y he clanses in Fxample 3.2, Let P be a program
consisting of {070 4 Cyh. Recall that an atomic closure § of P w.ril. subseg(LM) is

i



{subseq(L.M).(subseq([A[L|.M}}, as shown in Fxample 3.2. Suppose that (7 is the root of
the transformation. By unfolding the first atom in (4's body, the following clauses are ob-
tained.

C's 0 csubl[LY.Z) — subseq{[].7).
g+ esub{[AXL[AIY]Z] « subseq(X.Y).subseq{[A|X].Z).
O esub{[BIX][A[YLEZ) — suhseq{ [B|X]Y Jsubseq( [BX],Z).
Mark subseq( LM} in 5 with . By unfolding 5 further. clanse ' is obtained, where
Cs 1 esub{[].Y.Z).
By folding - by 4, clause Cg is obtained, where
Cy esub( [BIX][AY]Z)  csub{[B|IX].Y.,Z).
Since folding can not be applied to (s, a new predicate is synthesized to fold (5. Pro-
cedure 3.2 gives {snbseq{X.Y).subseq([A]X],Z)} as a cover of ('s body by §. Then, new

predicate 'rs” is synthesized as follows.

D osfAXY.Z) — SLIhSEq[}[,":'],suban{[ﬂ

X1.Z).
By folding s by D, clause (7 is obtained, where
Cho o coub{[AXL[AY]LZ) = o2 A X Y.Z).

Now all the descendant clanses of Cy have been dealt with. Next, D is regarded as the root
clause. By unfolding the second atom of 1)'s hody and then applying folding, we can obtain
the lollowing clauses,

Dyos el AXY A 7)) — csubi X, Y.2).
Dy : estAXYBIZD — es{ ALY, Z).

As a result, program P = {Cy, Cyg. Dy, Dy} is obtained.

Pettorrusi and Proietti pointed out that a definition clause may be trivial when the atoms
i its body do nat share any terms[11, 12, 13]. Our method may construct such a definition
clause since some shared terms may be replaced by new terms in (2.2} in Procedure 3.2,
In general. it is very difficult to avoid such definition clauses because some shared variables
may be instantiated an infinite number of times by unfolding, which may produce an infinite
numhber of distinet muoltisets of atoms.

However, if the depth of every term appearing in the bodies of clauses during a transfor-
mation process is known to be finite, only a finite number of distinet multisets can appear in
the budy when the sizes of those multisets are bounded. Thus, {2) in Procedure 3.2 can be
madified as follows,

{2} Il a variable in ¢ appears in another place in K, then leave t in A, as it is.

10



P'roietti and Pettorossi showed sume classes of programs that satisfv the ahove restriction[12].
Our modilied method can be applied to those classes of programs. Note that we can weaken
the restriction for programs because we do not care about the depth of non-shared terms,

4 An Extension - Incorporating Goal Replacement

Tamaki and Sato proposed soal replacement transformation that is consistent with v
fold ffold transformation {17]. In many cases. efficient programs can be derived by unfold /fold
transformation combined with goal replacement. In this section, we extend our framework to
incorparate goal replacement. First, goal replacement transformation is described following
[17].

Definition 4.1 Replacement Rule

A replacement role is a rule of the form
3XL AR = 3N L

where K and 1 are conjunction of atoms and Xy, ... L P Yy are distinet variables,

Example 4.1 The fullowing is a replacement rule r» which represents the associativity of
sappend .
r:o 34 LM (append| LALLM append{ LM.N LM~} |
— 3 MN {append| M. N MN Lappend| LMN.TLMN})

Definition 4.2 Goal Replacement

Let P, be a program. (" be a clause in F of the form A — AL A7 and r be a replacement
rule of the form 3N L — Y. .. VoL Suppose that there exists a sabstitution
fosuch that K = T#. Then, % = P — 40 0 {0"), where ¢ s a clause of the form
A— L8 R'. (s called the applied clawse, each atom in A is called the applied atom. r is
called the applving rule and " is the result of the application of v to O

Note that when applying replacement rules, several conditions have to be satisfied to
preserve the least Herhrand model of programs, See [17] for details.

The notion of atomic closure for nnfolding can be casily extended to that of atonic closure
for unfolding and goal replarement. Now, we redefine some notions.

Definition 4.3 Descendanl Clause and Aucestor Clavse [repised}
Let ' he a pragram. ' he a clanse in 7. and R he a sot of replacement rules. Lel P’ be
a program obtained from P by successively applying unfolding or replacement rules in B to
FP. A clause (" in P is called a descendant clanse of (" when
f{a) (" is the result of unfolding or applyving a replacement rule in B Lo ¢ ur
{hi € is the result of unfolding or applying a replacement rule in R to a descendant clause
of .
Conversely, €' s called an ancestor clause of O,

Definition 4.4 UR-selection Rule

Let P be a program, (" he a clanse in ', and R be a set of replacement rules, A selection
rule B s called a UR-selection rule fur P with B rooted on € when R always selects unfolding
or goal replacement by roles in R such that the unfolded/applied clause is a descendant clause
of €, € i called the rvot clause for Rlor of the transformation.) A program obtained from
I by suecessively applving unfolding or replacement rules in 'K according to K is called a
program obtained from F with B via R.

11



Definition 4.5 (losed Programrevised |
Let P be a program, (" be a clause in P, B be a set of replacement rules, T be a finite
set of definition clauses for P.and § be a UR-selection rule for P with K rooted on . Let
P be a program obtained from P via . P’ is said to be closed with respect to quadruplet
< PO.DR > when every non-unit descendant clanse ¢ of ¢ in /* satisfies one of the
following :
(a) €7 can be folded by a clause in DU {7}
(b} There exists an atom in the body of O that is not unifiable with the head of any clause
i P,
P is said to be closed with respect to triple << O, D, R > when there exists a closed program
with respect to < PO DR > and for every clause D in D there exists a closed program
with respect to < PU{D}.D.DUR >,

Again, our problem is formalized as follows : for given program P, clause ¢ in # and set
R of replacement rules. find a finite definition clanse set P such that P is closed with respect
to < (DR =,

Definition 4.6 Atomic Closure for Unfolding and Goal Replacement

Let F be a program. A be a multiset of atoms, B be a set of replacement rules, [} be a
clause of the form I — K, where H is an atom whose predicate does not appear in P, and
ft he a UR-selection rule for PU {D} with R rooted on D. Let P! be a program obtained
from PU{D} with R via R. A finite set of atoms §" is called an atomic closire for unfolding
and goal replacement of P with respect to K with R via R when for every descendant clanse
of ) in 1", every atom appeariug in its body is an instance of an atom in 57 A finite set of
atoms § is called an atomic closnre for nnfolding and goal replacement of P with respect to
K with R when S is an atomic closure for unfolding and goal replaceruent of F' with respect
to A with R via anv UR-selection rule for P with ® rooted on 1.

In the fullowing, we say simply ‘extended atomic closure’ for *atomic clusure for unfolding
and goal replacement’.

Again, we consider an extended atomic closnre which is concerned with the unifiability
with the heads of the clanses in a program. After giving a definition as a preliminary, we will
show a naive method to get such an extended atomic closure.

BDefinition 4.7 Compatible Multisel
Let K be a multiset of atoms and 5 be a setl of atoms. A multiset of atoms [ is called a
rompatible multiset with K from 5 when
{a) there exists a substitntion # such that A8 = L# and
{h)] for each clewent A in L, 5 includes a variant of 4.

Note that for any finite multiset of atums K and any finite set of atoms 5, the number
of distinct compatible multisets with A from & is finite.

Suppose that procedure ‘atomic-closure’ in Procedure 4.1 is moditied to be applied 1o a
set of pairs consisting of an atom and its unifiable clanse set, by using the repeat loop in the
procedure only.

Procedure 4.1 (/etting an eriended alomic closure

procedure extended-atomic-closure |

Input : F: a program. 4 : an atom and R : a set of replacement rules ;
Output : aset of pairs consisting of an atom and a set of clauses ;

12



Pi=

S

i =

- 5

repoed
hegin
N
5y r=atomic-closurel 5 3. F) :
5 r=clogure-lor-goal-replacomenti s, PR
enid
until 5, is identical 1o 5,2
return &

procedure elosure-for-goal-replacement

Input : 5 : a set of pairs consisting of an atom and a set of clauses, P @ a program,
and K : aset of replacement rules ;

Qutput : aset of pairs consisting of an atom and a set of clauses ;

i=10
HU = 5
repeat
begin
b= 1
§:=5_,:
for evers rule &' — Lin R do
begin
let S, be aset of all the atoms appearing in the atom-part of an element of 5, :
let 5y be the set consisting of all the compatible multiset with & from Sqeem 2
for every element K in 5y do
begin
let 8 be an mgu of A and K"
for every atom A appearing in L# do
hegin
let {7 he the unifiahle flanse set of A w.rt, P
if there exists an element of the form (A 07) in 5,
then 5, := 5, — {{A 071} U{(H, ')}, where B is an lgg of 4 and A" ;
else 5 :=5 U {41}
end
end
end
end
until 5, s identical to 54 :
return 5, ;

Procedure 4.1 alwavs terminates and an extended atamic closnre can be easily obtained.
{ This is shown in a similar way to Theorems 3.1 and 3.2, )

Note that the procedure ‘closure-for-goal-replacement’ tries to apply goal replacement
to any possible combination of atoms. During the actual transformation process, some of
the combinations may not appear or some of the applications may he impossible. Thus, an
extended atomic closnre obtained by Procedure 4.1 may include superfluous atoms.

13



Example 4.2 [et # be a program as follows:

Oy reversel [
"5 ¢ reverse{[N|L].M} — reversel LN Lappend( N, [X].M).

0 append{[ ] MM
"y append{[X|TLLALIXIN]) — appendi{L,M.N}.

Let K be a set consisting of oniy one replacement rule v, where

v 3 LM jappend| LALLM Lappend| LM LMN
A MN (append{M.N MN ) append{ LMY LMN)).

An extended atonie closure of P ow.ort, (4% body with W is caleulated by Procedure 4.1 as
follows. Dy applving “atomic-closure” to P and Op's body. a set 5y is obtained, where

So ={reversel LN ) {C" . (o} fappend( N [X].M).{C3. C4 1)}

Now the procedure “closure-for-goal replacement” is applied 1o PS5, and R. First, the only
possible application of r 1o the atoms in 5 is as follows,

append{ L.[X].M Lappendi M.[Y].N} — append([XLIY].M; jappend{L. M, N}

Then. a set 5 is obtained. where

St ={lroversel LN O O L {append (N2 X2 M2 14 Ca, O 1),
{append([Xa][Yal.Na {0l

Next, rocan be applicd to the atoms appearing in 57 in the following four ways.

appoend| LML Lappend{ L' NNy — append(M.N M} append| LM N")
append( (X Y] 2 L append{( 2 MN) — append([Y],M.Z").append{|X].Z' N}
append{ LM X]Lappend( [X][Y].N] — append({M.[Y].M' ) append{ L. M"N)
appewd((X]Y][UlLappend{{U][V].Z} — append(|Y][V].W)append([X].W.Z)

{Obvionsly, the fourth application is incorrect since append([X][Y].[U]) is unsatisfiable. We
can ignore such incorrect applications in some cases. However, we do not discuss the prohlem
here.) Then, a set 5; is obtained, where

Sy ={ireverse{ LNy ) 4O O ), (appendi No X Mg ) {5, Cy b ).
fappend( [Xa) Mo N4 {4}
Further application of the above procedure does not change Sz, Thus, ¥z 15 the ontpur of
‘closure for poal replacement’. Next, by applving ‘atomic-closure’ to P oand 55, 2 sel 85 is
obtained, where
S —{[T""'PT-‘“‘“-_MT';I PO, Ca} ) (append( Ny Xo Mg ) {Cs, Ca}),
(append([],M3.Na),{C3}), {append([X4], M4, N3 ). {Cs})}.
T'he result of applyving *closure for-goal-replacement” to P 5, and R is identical to S5 itself.
Then, an extended atomic closure of P w.r.t. €'s body with R obtained by Procedure 4.1
is {reverse{ L, Ny |, append({ N2, X2 M), append([|.M3.N3), append([X,]. M4 Na)} .

14



Next, we show our lranslormation procedure incorporating goal replacement.

Procedure 4.2 progronn Lrarsformation

P I'I}['t"dt]]'l‘." tl'ﬂ-ll-"tfﬂl'[ll .

Input : [ a program, (g @ a clause in P, W ¢ a set of replacement rules.
and & oa linile Integer

Qutput : ' a program ;

let & be an extended atowic closure of iy wort, the body of €y with R
=%
while there exist clavses in D thal are not mwarked “selected” do
hegin

select an unmarked clause D from T oand mark 0 selecied”;

Fo=pPuiD};

/s D)

while P includes non-terminal clanse do

begin
select a non-terminagl clavse O from P
Fro= P 1)

if " can be folded by a clanse D in D
then F:= = {7} U {0}, where ' is the result of folding " by D" ;
else If oxecule one of the following nondeterministically ;
(10T = definel P00, D5 k) :
(200 P = anfold 0,85, P
(R P = poal replacement{ P, OVRL 5 P

end
end
return F

procedure goal-replacement |

Input : P : a program, ¢ a clavse, B : a set of replacement rules, 5 - a set of atoms,
and P’ aset of clauses ;

Output : F,., : a program and Fy_ @ asct of clauses

suppose that " is of the form A — L. L7
selert a replacrement rule » of the form A — K from R s.t.
{a] there exists a substitution # s.t. K = L#, and
H‘l'l there exists a mualtiset of atoms .f.ﬂ 5.t
i b-1) for every element A of L, Ly includes an atom A" which is a minimally general
atom of A in 5, and
ib-2) Ly is not marked with an ancestor clavse of © and r
(Il there does ot exist such r in R, goal replacement is forbidden.}
mark Ly with {7 and # ;
iet (" be the result of the application of r to (7
’:r.'eu' = -lu - {{I} J {(-II} .
P = PULCT)

return P and

e *
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The procedures define and unfold are the ones given in Procedure 3.3,
Note that Procedure 4.2 always terminates, (This is shown in a similar wav to Theo-
rem 4.4,

Example 4.3 Let £ be the program and R be the set of replacement rules in Example 4.2,
Suppose that 'z 15 selected as a root clause, Let 5 be an extended atomic closure § of P
w.rt, €% body with R obtained in Example 4.2, Recall that a cover of (3's body by &
is {reverse| L.N jappend{ N X M)}, as shown in Exampie 3.3. Then, a new predicate ‘rev’ is
defined as follows,

rev( LAY X) - reversel LN jLappend( N X.M).

This definition is essentially the same as the one used in a well-known example transforming
an ()(n?] list reversal algorithm to a linear one. Our method allows the usual transformation
steps. Then, the following program is obtained.

rev( [ X.[].X]).
rev{ [AILL.MNX) - rev( LLM.N' [A[X])

(Orbviously, the third argument of ‘rev’ is redundant. A method to remove redundant argu-
ments called “truncation” is shown in [3).

Note that the definition of “rev’ is automatically derived, while it was given manually in
most ol previous works. It is well-known that list processing programs using ‘append’ can
he often optimized by adding an extra argument as an accumulator. The transformation of
list reversal is an example of such optimization. Example 4.3 shows that the optimization
process can be mechanized by our method.

5 Discussion

As described in section 2, our framework of logic program transformation is similar to that
of Petiorossi and Proietti[l1, 12, 13]. They showed the effectiveness of the generalization
strategy[12, 13]. The purpose of the generalization is to bound: {a) the depth of terms in
the body of a clavwse {vertical bound) and (b) the length of a chain of atoms in the body
of a clanse which share variables (horizontal bound). New predicates are defined to fold
the generalized atoms. However, as Pettorossi and Proletti pointed out, the application of
the generalization should be restricted. The unrestricted use of generalization reduces the
number of variables shared among atoms and often fails to improve efficiency of ProOgrams.
They showed a solution to the problem, which gives the vertical and horizontal bounds.

They also proposed a notion of program projections/11]. Projections generate unary
programs by noticing only one argument of a predicate and abstracting others. The program
projection is also regarded as a restricted use of generalization.

Our method also incorporates a generalization technique. In many cases, Procedures 3.1
and 4.1 can produce appropriately generalized atoms. Some arguments of an atom are ab-
stracted when they are not concerned with the unifiability with the heads of clanses. We
believe that our method is another possible solution to the generalization technique.
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The work described hers has common leatures Lo partial evaluation. rather than the con
ventional works on transformation strategies{cf. [14}]. In the researches of partial evaluation.
recent works investigated the wse of foldinglor similar rules) [4, 9] and the restricted use of
goal replacement[ 16, We hope that further investigation in this direction will contribute to
the research of the advanced program development.

6 Conclusion

A logie program trapsformation method has been desceibed, This method is based on un-
fold Mfold transformation and synthesizes new predicates automatically to derive a recursive
definition of a predicate, An extension to incorporate goa! replacement has also heen de-
serihed.
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