_ICOT Technical Report: TR-673

TR-673
Time-homogeneous Parallel Annealing Algorithm

by
K. Kimura & K. Taki

August, 199]

1991, 1CO0T

Mita Kokusal Bldg. 21F {03)3456-3191 -5
“ :D I 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokye 108 Japan

Institute for New Generation Computer Technology

Time-homogeneous Parallel Annealing Algorithm

Kovicn KiMura aND Kazuo Taki

Institute for New Gencration Computer Technology
1-4-28 Mita, Minato ku, Tokyo 108, Japan

Abstract

We propose o new parallel simulated annealing al-
gorithm. Each processor maintains one solution and
performs the annealing process concurrently at a con-
stanl temperature that differs from processor to pro-
cessor, and the solutions obtained by the processors
are exchanged oceasionally in some probabilistic way.
An appropriate cooling schedule is automatically con-
structed from a given set of temperatures that are as-
signed to the processors. Thus we can avoid the task
of careflully reducing the temperature over the course
of time, which is essential for the performance of the
conventivnal sequeatial algorithm

In this paper we propose a scheme for the proba-
bilistic exchange of solutions and justify it from the
viewpoint of probability theory. We have applied our
algorithm to a graph-partitioning problem. Results
of experiments, and comparison with those by the se
quential annealing algorithm and the Eernighan-Lin
algorithm, are discussed.

1 Introduction

Many combinatorial optirizatisn problems belong
to the class of NP-hard problems [7], f.e., there are no
known deterministic algorithms that can solve them
exactly and efficiently. In order te obtain approxi-
mate solutions for them, many heuristic algorithms
have been devised with a great deal of effort. How-
ever, they are mostly problem-specific and cannot be
applied to other types of problems, and they often
have a commen drawhback: they are hikely to stick to
the se-called local optimals.

Simulated annealing (SA) is a general and powerful
technique to solve these difficult combinatorial opti-
mization problems [12]. It is a stochastic algorithin
using pseudo-random numbers. The outline of the al-
gorithm is as follows.

Let X be a solution space and & : X — R be the
ohjective function which we wanl to minimize. Given

an arbitrary initial solution zg € X, the algorithm gen-
erates a sequence of solutions {z, }n=o12, iteratively
as follows, and finally ouiputs =, for a large enough
Ti.

(i) Perturb the current solution z,, randomly and get
a candidate for Lhe next solution J"'n

(ii) Caleulate the change in the objective function:
AF = B(z.} = E(z,).

(1) When AF <0, accept the candidate: znq1 = 2y,
When AE > 0, accept the candidaie wilh proba-
hility p = exp(—AFE /T,), and reject it otherwise:
ITnsl = o

where T >0 15 a conbrol parameter decreasing with
n.
When T, = ++oc, SA is reduced to a blind random
search; and when T, = 40, il is reduced Lo a greedy al-
gorithm (iterative improvement) converging to one of
the local optimals at hand. For general 0 < T < 4o,
it behaves in a manner between these two extreme
cases. Im the following we refer to a sequence of op-
erations (i)~(iii) as an ennealing step, or simply, a
step.
5A is based on the analogy between combinatorial
optimization and statistical mechanics. The ohjective
function E is referred to as energy and T, is referred to
as termperature. We call {T,)n=n1, & cooling sched-
ule., When the temperature is eonstant (T, = T),
5A simulates the equilibrium states of an imaginary
physical svstemn at temperature T, which corresponds
io a combinatorial optimization problem. Hence the
solution x,, is distributed according to the Boltzmann
distribution at temperature T. This Boltzmann distri-
bution converges to the lowest energy states (optimal
solutions) as the temperature decreases to zero. Hence
one might expect that SA can provide the exactly op-
timal solutions in principle.
Hajek [9] characterized the necessary and sufficient
condition of the cooling schedule for convergence to

the optimal solutions, It is essentially given by

T —0 and Th = A
= logn

where A > 0 is a constant representing the “rough-
ness” of the “energy landscape”. Such a cooling sched-
ule requires an prohibitively long computation time,
and henee 13 inadequate for practical use.

It is well-known that a cooling schedule has a great
influence on the performance of SA; a poor schedule
may lead Lo only poor solutions. Here arises the cool
ing schedule problem: how slowly should we decrease
the temperature so as to get as better solution as pos-
sible within a given number of annealing steps {within
a given amount of computation time). However, char-
acterizing the ideal cooling schedule is also a difficult
stochastic control problem.

In practice, such a simple cooling schedule as:

Tw=cl®l . Ty, n=12..N
<ol K1

is often used [12]. When the initial temperature T}
and the final temperature T are chowen propecly
and both K and N/K (the number of so-called inner
loops and outer loops) are large enough, such a cool-
ing schedule has been known te work well in many
applications. In order to further reduce the compu-
tation time and improve the quelity of the solution,
many more claborste and empirically efficient cooling
schedules have heen proposed [14, 15].

SA has received mueh attention since it can provide
much better solutions than conventional heuristics, al-
though it often requires lengthy execution time [17).
In order to accelerate its execution, the parallelization
of SA has been studied extensively [1, 3, 4, 5, 13]. The
mest popular approach is the so-called “paralle] moves
with lazy updates™: — the solution data iz divided
between the processors, which perform annealing pro-
eemfes conourrently to improve different parts of the
shared solution while occasionally exchanging the up-
dated information. In order to reduce the costly inter-
pracessor communications which damage the speed-
up, minor errors in calculating the energy function are
often admitted in practice. However, this harms the
soundness of the a.lgnrithm from the theoretical point
of view,

In this paper we propose a new parallel simu-
lated annealing algorithm, which antomatically con-
structs an appropriate cooling schedule from a given
set of temperalurcs. Hence it partly sclves the cool-
ing schedule problem. Namely, it automatically deter-
mines how many steps should be spent of each tem-
perature: the majority of steps should be spent at

some crilical temperatures around which the cnergy
reduces remmarkably. Such a cooling schedule i= con
structed stochastically based on the same principle as
that behind simulated annealing itself. Parallelization
is employed in the temperature dimension, and the
tooling schedule s embedded in the paraliel execution
and never manifests itself explicitly. This algorithm
is schedule-less or time-homogeneous in the sense that
there are no time-dependent control parameters.

The organization of this paper is as [ollows, We
present the time-homogeneous parallel annealing algo-
rithm in Section 2, and discuss 1ts convergence prop-
ecties in Section 3. Results of experiments and com-
parison with other methods are discussed in Section
4. Finally conclusions are given in Section 5.

2 Time-homogeneous Parallel SA
2.1 Outline of the algorithm

The basic idea is Lo use parallelism in temperature,
to perform annealing processes concurrenily at vari-
ous temperatures mstead of sequentially reducing the
temperature over the conrse of Line.

The outline of the algorithm iz as follows. Each pro-
cessor maintains one sclution and performs the anmeal-
ing process concurrently at a constant temperature
that differs from processor to processor. After every
& annealing steps, every pair of processors with adja-
cent temperatures performs a probabilisiic exchange of
selulions: exchange each other's solution with some
probability p or do nothing with probability 1 — p,
where p is appropriately defined and caleulated for
each pair. In order to avoid the possible collisions he
tween the pair-wise exchanges, half of them are per-
formed k/2 steps after the other half (Fig.1). The
algorithm can be stopped at any time after a large
number of steps and we will find a well-optimized so-
lution on the processor that has the lowest tempera-
ture. We refer to k as the period of exchange, f = 1/k
as the frequency of exchange, and p as the probability
of exchange.

Since exchanging the solutions between processors
with different temperatures is nothing but changing
the temperature for each participant aolution, each so-
lution will select its appropriate cooling schedule dy-
namically through successive competitions with others
for lower temperatures. We will define the probability
of exchanges so that it is advantageous to the solu-
tions with low energies. Hence, the eolution at the
lowest temperature, the winner of these competitions,
is expected to be the best solution so far. The cooling

T (termperamure)
ik a cooling schedule for the
Ko sequential simulated annealing
T2y —= K
Ta K
Ted - Ke
T+ —
0 t (time)
u parallelize
Tr === ~ = onPEl
T pbiy < L . torm
o IR S ¢ on PE3
0 S T e
Ts = ==Fs t pn PES
T aprobabilistic exchange of solutions
f=1/% : frequency of exchange

Fig.1. Parallelization in Temperature

schedule adopted by this winner, which is dynamically
and stochastically determined | is supposed to be an ef-
ficient cooling schedule and i= invisibly embedded in
the parallel exccution (Fig.1).

Fxchanges often occcur between a quenched solu-
tion quickly obtained at a lower temperature and a
good solution found by chance at a higher tempera-
ture. Afler such an exchange, the latter will be im-
proved more greedily at the lower temperature, and
the former will be annealed again at the higher tem-
perature so that it can escape from the valley of a local
optimum for further improvement. Without these ex-
changes, quenched solutions will stay around the local
optima, and good solutions found by chance will be
deformed and lost.

An essential question is how to define and caleulate
the probability of exchange. This will be discussed in
the next subsection, and will be subjected to proba-
bilistie analysis in Section 3.

Since this algorithm maintains a set of solutions and
competitions between them lead to the optimization,
it may share some features with the genetic algorithm
[8]. Mowever, they are totally different in principle.
The aptimization here owes most to the annealing pro-
cess performed at each processor.

2.2 Probability of exchange

In order to find a proper definition of the proba-
bility of exchange, we first investigate the necessary
condition which a probabilistic exchange of solutions
must satisly.

Imagine that the annealing process is performed -
dependently (i.e. without any exchanges) at each pro-

cessor at a distinet constant temperature. Then the
distribution of the solution in each processor converges
to the Boltzmann distribution of the respective tem-
perature [14). The lower the temperature is, the better
the sclution that will be found, but after a longer time,

Now we introduce probabilistic exchanges of the so-
lutions hetween the processors and intend to acceler-
ate the convergence so that we can find a better solu-
tion at the lowest temperature more quickly.

Let p(T, E,T', E') denote the probability of the ex-
change between two solutions: one with energy E at
temperature T and the other with energy £' at tem-
perature 77, Since we expect a better sclution at a
lower temperature, we always exchange the solutions
if we find the better solution at the higher tempera-
ture. Namely, we define:

(T=-TYME-EY=0 = pI ET E)=1

On the other hand, when (T — T')(E — E') > D
piT, E, T, E'} is uniquely determined as follows.
order to accelerate the convergence to the equlllbrlum
a probabilistic exchange of solutions must not disturb
the equilibrium — thiz is only a necessary condition.
Namely, the detajled balance equation must hold be-
tween Lhe distributions before and after the prohahilis-
tic exchange of salutions:

1 E 1 E' ,
mﬂ?(-—} 7 7 op(—5) o7, E,T' . F')
=%exp[fjl 7T —— exp(- } 1

™

where Z({T'} denotes the partition function:

p(T, 8,1, E') = exp {'{T_TI]'[E - E-"}}

2(1)= Y exp(-

e X
Therelore we are led to the definition:
1 if AT-AE <10

piT, E.T,E*} = { expf—%ﬁ} otherwise

AT=T-T" AE=E-F'

We will confirm in Subsection 3.3 that such a prob-
abilistic exchange of solutions in fact accelerates the
CONVErgence,

The abeve derivation uses the same principle as the
Metropolis’s criterion in the ordinary simulated an-
nealing, although the exponent in the above expres-
sion has a similar but distinet form. Exchanging the

where

solutions enly in the case AT-AF < 0 is a too greedy
stratery and would spol the equilibrium.

Note that p(T, F, T, E'} > 0 for arbitrary T, 77 > 0
and £ E' € K. This means that a solution can go
thl‘fﬂ.lgh a non-moenofonic cooling sehedule.!

This probability has o quite different form from that
of choosing a selution-temperature pair in the systolic
statistical cooling algorithm by E. Aarts et al [1].
Given two solution-temperature pairs, one with en-
ergy U at temperature T and the other with energy
E' at temperature 17, they defined the probability of
choosing the former pair by

o 1 E
- , 'h e Pt
F PRpr, where 1y 7 expl T}
l I
and py = i) .exp{—F]

Such a definition requires computing the partition
functions Z{1") and Z({I"), which is not an easy task.
The advantage of our definition 1s that it does not con-
tain the partition function and hence can be computed
easily, and that we can give a rather easy proof of the
eomvergence of Lhe algorithm (ef Section 3).

2.3 Time-homogeneity

A remarkable feature of this algorithm s that it
s lime-homogeneous, since the temperature on each
processor remaing constant. An appropriate cooling
schedule is dynamically constructed from a given set
of temperatures, however, it is embedded in the pac-
allel execution and never manifests itself explicitly. In
other words, this algorithm automatically decides how
muny sleps should be spent af each lemperature, fe.,
al ¢ach processor. Thus, the cooling schedule problem
is partly solved.

The time-homogeneity of the algorithm is advanta-
geous when we want to continue the execution until
a satisfiable srolution is found. We can stop the exe-
cution at any time and examine whether a satisfiable
solution has already been obtained. If one has not,
we can resume the execution again withou! eny re-
scheduling and continue it for a better solution. —
In contrast, in the conventional simulated aopealing,
when an obtained solution is not satisfiable, we have
to ineresse the temperature again and repeat the time-
consuming annealing process, since we should not stick
to the “quenched” solution that will not make & major
improvement.

!Strenski e ol showed a siriking fact thai the optimal coal-
ing schedule s noo-monotonic in some cases [18].

2.4 Assignment of temperatures

In our algorithm, it is necessary to allocate an ap-
propriate temperature to each processor beforehand.
Namely, we have to specify a set of temperatures, from
which the algorithm will construct a cooling sched-
ule. This set of temperatures should be chosen large
enough from a wide range, since the following may
damage the quality of the sclution.

(i) If it does mot cover the high temperature region,
the search will be restricted to a narrow area
arotind the initial solution.

(1) If it does not cover the low temperature Tegion,
the solution will keep being deformed and will
never settle down to low-energy states.

(i) If the neighboring temperatures are too much
apart from each other, the probability of exchange
will be only slight.

Converaely, if the set of temperatures is too rich, only a
certain subsct of it may contribute to the optimization
effectively. An extra high temperature annealing will
Just keep generating high-energy solutions and will sel-
dom have influence on the others. An extra low tem
perature annealing will virtually do nothing., Thus an
excessive set of temperatures may waste the proces-
gora, but will never increase the execution time.

Getting o necessary and sufficient set of temper-
atures is the remaining part of the cooling schedule
problem, which is not solved here, The estimation of
the equilibrivm (static) relation belween the temper-
ature and the energy, e.g., the concepts of the scales
[19], will be useful. However, such an estimation can-
not, direetly provide the number of steps that should
be devoted to each temperature. Tt is just empirically
believed that they should be determined according to
the heat capacity. In geperzl, predicting the heat ca-
pacity in lower temperature is difficult, and estimating
it on run time 15 expensive since the estimation itself
requires many annealing ateps.

3 Convergence Properties

In this section we describe the behavior of ‘the
time-homogeneous parallel annealing algorithm as a
Markoy chatn and study its convergence properties,

3.1 Representation by Markov chains

In order to fix our basic notations, we first review
the Markov chain that describes the behavior of the

ordinary sequential siinulated annealing at a constant

temperature.
Let X be the solufion spoce (a large finite set} and
E:X—HR i— E(i) = E;

be the energy funclion. Wamely, we search for a solu-
tion { £ X that minimizes E;.

Random perturbations on a solution: z, — zj,, as
in {i) in Section 1, can be described by the conditional
probabilities:

sy = Plzh=j | za=i) forijeX
A stochastic matrix § = (&) jex i8 called the selee-
fron probaboity matriz. We assume that 5 18 symmet-
tic and irreducible. Namecly, il safisfies:

ZS.;;‘ =1
i

and there exists m > | such that all elements in 5"
are posilive. The latter means that any solution in
X can be reached from any other solution in X by a
sequence of perturbations.

Then the behavior of the simulated annealing at a
constant temperature T > {0 can be described as a
Markov chain over X with a transition matrix A as
follows, Let iz € X be the initial solufion and xy be
the solution after ¢ steps. The distribution of # is
specified by a row vector py = (Pz = #))igx, which
is given hy:

ni:‘ijzsglf;11

P = (fiis)iex: P =pA (1=0,1,2,...)

where #; is Kronecker's delta, and A is a matrix de-

fined by
A= A{ﬁ:' = ':_a|_1{ﬂ}j!

sije- BB =Eds (i1
a; = aii(f) = { 1= spe /BB (j=1)

ki

where wy = max(w,0) for w € R and = 1/T is the
muerse femperafure,

In the limit § — +oo, p; converges to the Holis-
mann distribution ® = w(f).

_ [fE _ -BE,

Now, let us turn to the time-homogeneous parallel
annealing algorithm. Let N be the number of proces-
sors and T, = 1/8, be the temperature of the n-th
processor such that 0 < 8, < f; < --- < Ay If there

is no probabilistic exchange of solutions and each pro-
ressor performs annealing independently, its behavior
is described as a Markov chain over XN with a tran-
sition matrix A, which is given by the tensor product
of the above transition matrices. Namely,

A= Alf)® A(F2) ® - - @ ABw)

A corresponds to performing one anpealing step af
each temperature. In the limit of ¢ — oo, the equilib-
rium state is given by a probability vector m:

w=wmhlen(f) @ en(dy)

Probabilistic exchanges of solutions can be de-
scribed by similar transition matrices. Firstly let us
consider the case with N =2 Ty =T and T3 =T
Then the transition matrix is given by

C = Ci(8,8) = (epnun)
i (£,7)=(Lk)

caen = 4 V—eg (47) = (kD £ (5,4)
otherwise
iy = (8, 8) = explmin{0, (8 — B)(Es — Ej)}]
G=1T, & =11

For the general case with N > 2, there are two
parallel probabilistic exchanges, each of which con-
sists of an exhaustive disjoint set of probabilistic ex-
changes with adjacent temperatures. Namely, they are
expressed by the transition matrices Cyyen and Codd
respectively:

o Ci@®Ci®- - @Cn. (N :even)
e T @@ @O @ Ix (N :odd)

Coda = Iy @C2@Cy@ - 2Cn_y (N : odd)

where Oy = C(fn,Fngr1) for 1 <n < N and Ix de-
notes the unit matrix of degree |X|. These two paral-
le]l probabilistic exchanges of solutions are repeatedly
performed one after another every k/2 annealing steps,
where k is the period of exchange. For simplicity we
assume that & is a positive even integer,

Thus the behavior of the time-homogeneous parallel
annealing algorithm after every k annealing steps can
be deseribed by a time-homogeneous Markov chain M
with a transition matrix P:

B = A3 oas A4 Coven

. {fx@CmC.@---@CN_,@fx (N : even)

f’ curresp-umiﬂ Lo one PHl'i.-Dd of the a.lgorithm, namely,
k annealing steps at each processor and one probabilis-
tic exchange of solutions at every pair of processors
with adjacent temperatures,

3.2 Convergence in law

Since the behavior of the time-homogeneous par-
allel annealing algorithm can be described by a time-
homageneous Markov chain A, we can easily establish
ILs CONVergence property:

.E"Jui'" = (convergence in law)

where P, represents the distribution over XV of the
solutions in the processors after ¢ periods (after ki
steps at each processor). This fallows from the facts
that the state space X" is a finite set and that the
transition matrix P is irreducible and aperiedic [6].
These facts are verified immediately.

3.3 Monotone convergence property

I Subsection 2.2, investigating the necessary con-
dition that a probabilistic exchange of solutions must
satisfy, we saw that the probability of exchange is
uniquely determined. In this subacction, we show that
such a probabilistic exchange of solutions in fact ac-
celerates the convergence of the algorithm. In order
to measure how close the current distribution of solu-
livns approaches the equilibrivm distribution, we use
Kullback-Leibler divergence. For two probability dis-
tribution specified by probability vectors p = (p;) and
g = {g;), the Kullback-Leibler divergence defined by

i
Diglip) ==Y _a Iagf?— >0

represents the diserepancy between them [2]. Here the
strict inequality holds unless p = g.

lo begin with, we note a monotone convergence
property of Lhe ordinary sequential simulated anneal-
ing at & constan! lemperature. Let X, E, 4 and p,
be as in the beginning of Subsection 1.1, and denate
an arbitrary probability distribution over the solution
space X by a |X| dimensional row probability vector

r=im :ilE.A'-

Lemuma 1

Di=x|p) = Diw||pAd) for Vp

Froor: From the definition of 7, we have

. 1 —8E - .
Dnllp) = —5 3o e P logpi=2 Y e PF Eimlog 2
i i

From the definition of a;; and the symmetry of S, we

have

e PEigy = c~PEigy

Owing to the fact that 4 is a stochastic matrix and
that the logarithmic function is concave, we can de-
rive:

Z:E—:?E. LUE'[Z piaji)
1 i
3 e 5N "ay{logpy + B(E; — E))}
i i
= E-ﬁ_'ﬂg‘uj.-]:rgp}

1
+3 ZIE_HE’ Ejaz; — e~ 75 Fra;;)

= D¢ Blogy

H

I

Thus we obtain the desired result. B

For a probabilistic exchange of solutions between
two processors, we can establish a similar result as
follows. Let N = 2 and €' = (4, #') be as before and
denote an arbitrary probability distribution over X «
X of a pair of solutions in the two processors by a |X |*-
dimensional row probability vector p = (Pis)igex-

Lemma 2
Dixlp) 2 DiwlpC) far ¥p
FPrRoOF: From the definition of %, we have
D(=lp)
= _m ,Z_,: e FEATE) o Pij

—% IEF“‘E; - :5’1%; er'f""““*ﬂ_,
= log Z(8) - log Z(§')
From the definition of ¢;;, we have
e~ (BEHA Ry, — o~ (B 8B
Owing to the fact that ' is a stochastic matrix and

that the loganthmic function is concave, we can de-
Tive:

3 e PRAEED Jog{(1 — e)pi; + ¢jimsi}
0y
Y e UBHIEN_gE, _ g I,

f

I

+{1 - '3':'} m![ﬁﬂﬁi-l-ﬁr-ﬁ'; Pij]

e log(e? Et By}
= Ze-{ﬁﬂ.ﬁi'ﬁ-‘:}[l — ¢i5) log pi;

i
4 Z -E_"'H'E’-"-'EJH"]CI-.-]_DEPJ.".
if
— Z-’;-f'ﬂs"‘"ﬂrE’jcij{ﬂ - F}{Es - Ej}
i
- Z fa fﬂEl""] EJ] IDEPI'J'
i

Thus we obtain the desired result. 0

Now we extend these results to the general case
with & = 2 Let zi, L‘j'".,,., (i'ndd and P be az before
and denote an arbitrary probability distribution over
XV of the solutions in the N processors by a [XY
dimensional row probability vector .

Theorem 3 For arbilrary p,
D(x||p) = D(%||p4)
D(#(|p) 2 D(7[|PCeven)
D(#{p) > D(7|[HCasa)
where the stricl inequalities hold unless p = #.

This theoremn implies that performing a parallel
probabilistic exchange of solutions as well as perform-
ing one anncaeling step at each processor in fact accel-

erates the convergence of the algorithm, since applying
each of A, Cupeq oF Chgg always reducea the Kullback-

Leibler divergence of the current distribution to the
equilibrium distribution.

PrRoOF: A can be decomposed as

jﬂ - Irﬂr"-l}'@A{ﬁn}@'fxﬁtﬂ-n-l}

where 7®*® denotes the k-fold tensor product of [. As
in Lemma 1, we have

D{#|ip) = D(#||pA,)

Thus we can cslablish the first claim by induclion.
Other claims can be established similarly. 1

1<¥n<N)

Corollary 4 (monotone convergence to the
equilibrinm distribution)

Diwflp:) 0

as t— o0

Proor: The monotone decreasing property follows
from Theorern 3 and the convergence to zero follows

from the result of Subsection 3.2. 1

4 Experimental Results

We have implemented our algorithm for a geaph-
partitioning problem on the Multi-PSI/V2 [16], an
MIMD parallel mmachine with 64 processors,

{graph-partitioning problem) (iven a graph (7 =
{V,£), define a label on the vertices A 1 WV — [£1} s0
as to minimize £

E=— 3" Au)A(v)+e- (3 A()?

{uvigd vEV
where ¢ > () is a constant.

This is an NP-hard problem [7]. Kernighan-Lin al-
gorithm efficiently gives its approximate solutions [11].

For a random graph 7 with 400 vertices and 2004
edges, we compared the results given by our algorithm
with those by other methods (Fig.2).

{a) Time-homogeneous parallel annealing: All
of 63 processors performed 20,000 annealing steps cach
at distinet constant temperature. The highest and
lowest temperntures are determined empirically, and
the vlher temperatures are detecmined so thal adja-
cent ones have the same ratio. As for the frequency of
exchange f, we examined various values ranging from
1/20,000 to 1/2. Each point represents the average
over 30 runs with different sequences of random num-
bers.

(b} Sequential annealing: The cooling schedule
consists of exactly the same sequence of 63 temper-
atures as those in (a). 20,000 annealing steps are per-
formesd, which are divided equally between the 63 tem-
peratures, The final energy is indicated by a dashed
line.

(¢} Simple parallel annealing: Each of the 63
processors executes the sequential annealing with the
cooling schedule described in (b) using a distinet se-
quence of random numbers. The result is the best so-
luticn among those obtained by them, and its energy
is indicated by a dashed line.

{d} Kernighan-Lin: Kernighan-Lin algorithm is re-
peatedly applied several times until convergence. The
final energy is indicated by a dashed line,

Fig.2. Energy vs Frequency of Exchange
1620
B 1T i J) S, WY, ¢ -y g byipegegiogipgegt.. SR
-1680 k
-1880 -
ATOOF —ermmmmmdmmnas
1720
1740
-1:'51::0 5 10 + m“ 1E&"‘ 11:‘1"" “"'1‘0"

frequency of exchange in (a)

(@) time=homo. paraliel annaaling

(d) Kemighan-Lin

() semple parallsl annealing

We also measured the execution time of the time
homogeneous parallel annealing (a) for different values
of f in order to see the overheads associated with the
probabilistic exchanges of solutions between proces-
sors (Fig.d). Plotted pointa in Fig¥ and Fig.d cor-
respond to each other with the same values of f, al-
though the abseissa are sealed differently (logarith-
mically and linearly). The gap between the execution
time and the busy time represents the idle time, which
s incurred by synchronization between the processors
in exchanging the solutions. The execution time with
f — 0 almost agreed with those in (b) aod (c).

We made the following observations from these re-

stlis.

1. {a) gives the best solutions for a wide range of
frequency of exchange: 1/1000 < f < 1/2 (Fig.2).
The overheads grow linearly with the frequency f,
although they are rather immaterial for f < 1/50
(Fig.3). Thus this algorithm is fairly insensitive
to the value of f.

2. Since 20,000 annealing steps are relatively small,
(b} gives a worse solution than (d). However, in
(a), the algorithm probabilistically selects an ap-
propriate cooling schedule with 20,000 steps and
gives a better salution.

3. Note that the total number of annealing steps in
(a) and that in (¢) are the same. (a) outperforms
{c) unless f is too small,

5 Conclusions

We have proposed the time-homogeneous parallel
annealing algorithm, in which an appropriate cooling

Fig.3. Execution Time vs Frequency of Exchange
100

) (sec)

20 —=— axecution time
—*— busytime

u Ll v L] . T hd T T
0.0 0.1 0.2 0.3 0.4 0.5
frequency of exchange

- ™

schedule is automatically and probahbilistically eon-
structed from a given set of temperatures. And the
cooling schedule problem i partly solved.

Time-homogeneity of the algorithm is advantageous
when we want to prolong the execution for further op-
Liruzation, since it does not require any re-scheduling.

The behavior of this algorithm is theoretically
tractable, sinee it is described in terms of a fime-
homogeneous Markev chain. In particular, we have
proved its monotone convergence property.

We have experimentally observed that this al-
gorithm automatically constructed a better cocling
schedule than that which assigned the same number
of annealing steps at each temperature, We also ob-
served that this algorithm is fairly insensitive to the
choice of the frequency of exchanges,

The following require further investigation.

(i) How do we find the range of optimal frequency of
exchange in general?

(i) Does this algorithm probabilistically select the
theorctically best cocling schedule, the theoreti-
cally best assignment of the annealing steps to
each temperature?

(iii) How many processors (temperatures) are neces-
sary and sufficient?

(iv) What is the optimal assignment of temperatures
to the processors?

The last two questions are concerned wilh the part of
the cooling schedule problem, which is not solved in
aur algorithm.

6 Acknowledgments

We would like to thank N. lchivoshi, K. Roku-
sawa, and F. Sugino for valuable discussions, and also
D). Greening for calling our attention to [18].

References

(1] EHL. Aarts et al, “Parallel Implementations of
the Statistical Cooling Algorithm,” fafegration, 4,
(1984).

[2] S. Amari, “Differential Geometric Methods
in Statistics,” Lecture Note in Statistics 28,
Springer-Verlag, {19£3).

[3] P. Bancrjee and M. Jones, “A Parallel Simulated
Aunnealing for Standard Cell Placement on a Hy-
percube Computer,” Proc. Int. Conf on CAD
(1986).

[4] A. Casotte ef al, “Placement of Standard Cells
Using Simulated Annealing on the Connection Ma-
chine,” Proc. Int. Conf on CAD (1987).

[5] F. Darcma, 5. Kirkpatrick and V.A. Norton, “Tar-
allel Algorithms for Chip Placement by Simulated
Annealing ;" IBM J. Res. Dew. 31(2), (1987).

[6] W. Feller, “An Introduetion to Probability Theory
and Tte Applications,” vel, 1, John Wiley & Sons
(1957).

[7] M. Garey and D. Johnson, “Computers and In-
tractability, A Guide to the Theory of NP-
Clompleteness,” Freeman, New York, (1979),

[8] D.E. Goldberg, “Genetic Algorithms in Search,
Optimization, and Machine Learning,” Addison-
Wesley, [1584).

[9] B. Hajek, “Cocling Schedule for Optimal Simu-
lated Annealing,” Math. Oper. fles. 13 (1988).

[10] M. Huang, T. Romeo and A. Sangiovanni-
Vincentelli, “An Efficient General Cooling Sched-
ule for Simulated Aonealing.” Proc. fni. Conf. on
CAD (1986).

[11] B.W. Kernighan and 5. Lin, “An Eflicient Heuris-
tic Procedure for Partitioning Graphs,” Bell. sgs.
tech. J., 49, (1969).

[12] §. Kirkpatrick, C.D. Gelatt, and M.P. Vecei,
“Optimization by Simulated Annealing” Science,
vol,220, no.4598 (1933).

[13] §5.A. Kravitz and K. Rutenbar, “Placement by
Simulated Annealing on a Multiprocessor,” IEEE
Trans. on CAD volB, nod (1987).

[14] P.J.M. van Laarhoven and E.H.L. Aarts, “Simu-
lated Annealing: Theory and Applications”, Rei-
del (1987).

[15] J. Lam and J.-M. Delosme, “Performance of a
New Annealing Schedule”, Proe. 25th Design Au-
tomation Conf. [1958].

(16] K. Nakajima et al., “Distributed Implementation
of K1 en the Multi-PS1/V2", Proc. ik Int. Conf.
on Logic Programming (1989).

[17] €. Sechen, and A. Sangiovanni-Vincentelli, *The
TimberWolf Placement and Routing Package,”
IEEE fournal of Solid-Stlate Cyrcusis, vol. SC-20,
no.2 (1985).

[18] P.N. Strenski and 5. Kirkpatrick, “Analysis of
Finite Length Annealing Schedule,” Algerithmaca,
val 6, no.d (1881},

[19] §. K. White, “Concepts of Scales in Simulated
Annealing,” Proc. fnt. Conf. on Compuler Design
(19841,

