ICOT Technical Report: TR-664

TR-664

Upside-Down Meta-InterPretation of
the Model Elimination Theorem-Proving

Procedure [or Deduction and Abduction

by
Mark Stickel

July, 1991

@ 1991, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191 ~ 5
| C DT 4.28 Mita |-Chome Telex ICOT 132964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Upside-Down Meta-Interpretation

of the Model Elimination Theorem-Proving Procedure
for Deduction and Abduction!

Mark E. Stickel

Artificial Intelligence Center Institute for New Generation
SHI International Computer Technology
Menlo Park, California Tokyo, Japan

May 1991

Abstract

Typical bottom-up, forward-chaining reasoning systems such as hyperresolution lack goal-
directedness while typical top down, backward chaining reasoning systems like Prolog or
madel elimination repeatedly solve the same goals, Reasoning systems that are poal-directed
and avoid repeatedly solving the same goals can be constructed by formulating the top-
down methods metatheoretically for execution by a bottom-up reasoning system (hence,
“upside down meta interpretation” is being used). This method also allows incorporation
of more flexible search ordering strategies, such as merit-ordered search, that are commonly
available in botlon-up bul nol top-down interpreters; this advantage is not so readily or
fully achievable in the alternative approach of adding caching to a top-down interpreter.
Neiman has developed a similar method for deduction with Horn clauses and Bry has
explored the idea in the context of query evaluation in databases, This work extends theirs
te both non-Horn clauses and abductive reasoning and can be regarded as an extension of
the magic set method to these cases. Model elimination extended hy the ability to make
assumptions for abduction and its restriction to Horn clauses are the top-down methods
adapted here,

1 Introduction

Bottom-up, forward-chaining reasoning systems derive new facts from already established
ones. The implication Ay, ..., A O O is interpreted procedurally by such systems to
derive the fact (' from the facts 4y,..., Am. Hyperresolution [38, 16] is a typical bottom-
up reasoning system. Top-down, backward-chaining reasoning systems, on the other hand,
derive new subgoals from existing goals. The implication Aq,..., Ay 2 O is interpreted
procedurally by such systems to derive ecach of the subgoals Ay,..., Ay, [rom the goal
C. Ordered input resolution {(for Horn clanses, used by Prolog) and the model elimination
procedure [19, 20] (for arbitrary clavses. used by PTTP [41]) are Ly pical top-down reasoning
systems. We assume the reader s already familiar with these inference procedores.

"This research was supported by the Mational Science Foundation under Grant COR-8922330. The
views and conclusions contained herein are those of the author and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the National Science Foundation or the

United States government.

Both bottom-up and top-down methods have well known weaknesses, Bottom-up rea-
soning is often not goal-directed. For example, if the initial goal is translated for refutation
into a negative clause, hyperresoclution can use the goal only in the final step of a proof. A
subset of the positive clauses is sometimes used as the set of support in conjunction with
hvperresalution [46, 47]. For example, hypotheses of the theorem, but not general axioms
of a theory, may be put in the set of support to make the derivation more goal-directed by
regquiring clauses 1o be derived only directly or indirectly from the hypotheses. Although
thiz often works, it is not guaranteed to, since the combination of hyperresolution and the
set of support strategy is incompiete in general.

Top-down reasoning often results in goals being derived and proved more than once,
which may result in large, redundant search spaces. For example, when Prolog tries to
prove P and). backtracking search will cause it to try to prove) once for every proof of
F it finds. This repeated work can be extraordinarily costly. “Intelligent backtracking™ can
reduce but not eliminate the problem. Redundancy can also occur in bottom-up methods
in the form of facts being derived more than once., However, there the redundancy is con-
trolled by subsuimnption, which deletes duplicate or less general facts. There are convincing
arguments that failure to control redundancy by some method such as subsumption will
lead to failure to prove difficult theorems [28], despite the high inference rate possible for
top-down reasoning systems such as Prolog and PTTP. Althongh methods such as sub-
sumption are costly and can drastically reduce the rate of inference, reduced search-space
size compensates for the lower inference rate.

A second problem with top-down reasoning systems is that they typically have much
less flexibility in specifying order of search than bottom-up reasoning systems. For example,
Frolog uses depth-first search with backtracking while hyperresolution can maintain a list
of facts in order of preference for inference.

In many instances. simply using a bottom-np reasoning method is the right salotion
to the problem. For example, problems in group theory or implicational calculus benefit
little from a top-down approach. since irrelevant axioms are absent and top-down reason-
ing guickly produces very general goals. Ou the other hand. in deductive database, logic
programming, and artificial intelligence applications, the lack of goal-directedness of pure
bottom-up reasoning is a crucial defect. In principle. it would reguire enumeration of all
consequences of the axioms until a fact matching the query is derived, a foolish approach
in the presence of many irrelevant axioms.

It is possible to adapt either bottom-up or top-down reasoning methods w0 produce
a goal-directed reasoning svstem with a nonredundant search space and flexible search
strategy. We choose to adapt bottom-up reasoming methods because they appear to be
closer to this ideal already, The prototypical bottom-up reasoning system hyperresolution
already possesses effective methods for controlling redundancy (subsumption) and ordering
the search space {merit-ordered search). As we shall see, it is feasible to make this hattom-up
reasoning method more goal-directed. Caching can be added to top-down reasoning methods
to eliminate search-space redundancy as subsumption does in bottom-up methods. However,
the extra code required to index formulas to make caching efficient is substantial [44], while
such code i3 already present in good implementations of bottom-np reasoning. Greater
flexibility in ordering the search space can be obtained in many top-down reasoning systems
such as Prolog only by discarding the current implementation approach.

The approach we adopt is similar to that of Neiman’s subgoal extraction method [23]
for nonredundant top-down deduction with Horn sets of clauses and Bry’s backward fix-
point procedure [4] for query evaluation in recursive databases. Bry presents the magic set
method [3] as a specialization of the backward fixpoint procedure to particular database
rules. We will translate Horn clauses similarly to the magie set method, and then extend
the translation to abductive reasoning and non-Horn clauses.

We use this approach with the model elimination theorem-proving procedure. Model
elimination is a complete theorem-proving procedure for the full first-order predicate calen-
lns that possesses the desirable properties of linear proofs, literal ordering, st of support,
and no need for factoring. PTTP's implementation of the model elimination procedure has
as well a high inference rate with minimal storage requirements. The largest problem with
model elimination and PTTP is the failure to control search space redundancy. Here, we
demonstrate how, while unfortunately sacrificing PTTP's implementation approach and low
storage requirements, we can make search much less redundant hy means of “npside-down
meta-interpretation”, i.e., by interpreting the top-down model elimination procedure by a
bottom-up interpreter,

Our approach is to start with top-down. backward-chaining input resolution and trans-
form the clauses for execution by a bottom-up interpreter such as hyperresolution. Instead
of a goal-subgoal tree being created, literals of the form goal(7)) are derived. Use of the im-
plication 4y A---A A, O O to derive the fact (7 from facts A,,. .., Ay is made contingenl on
the existence of goal(C') by use of the translated clanse goal(C)A fact{ A JA---A fact{ Ay | —
fact{C'). The translation is extended to impose a requirement of left-to-right solution, as in
Prolog and the model elimination procedure. In many cases, this can substantially reduce
the search space as solutions for earlier goals instantiate later goals.

Abductive reasoning (abduction) is becoming an important application of extended
Prolog and model elimination systems. Abduction extends deduction to the case of partial
proofs with assumptions that, if they could be proved, would allow a proof to be completed.
We extend our translation method to abduction. The added possibility in abduction of
assuming as well as proving formulas makes the search space for abduction problems larger
than for deduction problems with the same axioms. This, plus the fact that many applica-
tions of abduction demand rich knowledge bases with many irrelevant clauses, means that
there may be an even bigger payodl Tor this method in the case of abduction than deduction.

The intent is to translate clanses nsed in Prolog and model elimination inference for ex
ecution by a bottom-up interpreter using metapredicates goal, facl, and cont (for “contin-
uations”, which concisely encode what goals are we trying to solve, which of their subgoals
have been solved, and which subgoals remain), New facts, goals, and continuations are
derived hy hottam-up inference in a faithful encoding of the Prolog or model elimination
search tree, possibly in a different order depending on the chosen search strategy, and with
redundant subtrees eliminable by the reuse of facts derived earlier and by subsumption.
The time complexity in the worst case, when there is no eliminable redundancy, should be
the same order as that of Prolog or model elimination when the latter's search strategy is
imitated [a three-fold increase in length of the proof may oceur, as a single literal in the
search tree may be represented by goal, fact, and cont literals in the encoding). In the
case of Horn clanses, the procedure closely resembles hyperresolution in behavior, except
by perresolution vperations are allowed only i they derive a fact that matches & top-down

derived goal.

Because this method is a new approach to implementing standard theorem proving
procedures {Prolog, model elimination, and their extensions for abduction) instead of a
new theorem-proving procedure, we will omit soundness and completeness results. T'he
benefit of the new approach in eliminating redundancy should be obvious. Gains from
eliminating redundancy can be arbitrarily large.

In Section 2, we recount past approaches to the problem of redundancy in top-down
reasoning systems and cite their disadvantages, which are absent in the new approach.
In Section 3, we describe upside-down meta-interpretation of Prolog-style deduction with
Haorn clanses. This, except for the remarks on generalizing subsumption and generalizing
derived facts. is similar to the methods of Neiman and Bry and the magic set method. In
Section 4, the method is extended to abduction by allowing conditional facts accompanied by
assumptions sufficient to establish them. In Section 5, the method for abduction with Horn
clauses is transformed by different handling of assumptions into a method for upside-down
meta-interpretation of model-elimination-style deduction with non-Horn clanses, Deduction
with non-Horn clauses is then extended to abduction with non-Horn elanses in Section 6.

2 Previous Approaches

There are several previous approaches to eliminating redundancy in the model elimination
and similar procedures. Factoring is the earliest method for eliminating duplicate goals
and is required for completeness in many resolution procedures, though not for Prolog or
model elimination. While factoring can shorten proofs and is clearly beneficial and can
be made mandatory in the propositional case, in the first-order case when goals must be
unified during factoring, factoring must be optional and proofs with and without the goals
factored must both be sought, This results in an inerease in the breadth of the search
space; the depth of the search space is reduced in compensation ooly il o shorler proof
can he found with factoring than without. Unifying goals often results in clauses becoming
overinstantiated and not usable in a proof,

The graph construction procedure [39] adds the C-reduction operation to the model
elimination procedure. This is a sort of lazy factoring, because it delays factoring until
after one of the goals is proved. This i much better, since pairs of unproved goals are no
longer instantiated by factoring. For example, if a pair of factorable literals do not happen
to have a comman provable instance, factoring them will ultimately result in failure. If,
as in the graph construction procedure, it is necessaryv for one to be proved before being
factored with the other, the gnals will no longer he factorahle after one of them is proved.

Both factoring and C-reduction affect only the descendants of the factored clause. No
information about provable goals is made availahle to ather parts of the search space. Lem-
mas [19, 20] are extra clauses derivable by the model elimination procedure that contain
proved goals. Lemunas are not required for completeness, but their use can shorten proofs
in much the same way as factoring or C-reduction can. Unlike factoring and C-reduction.
lemmas are available throughout the search space after they are derived, not just in descen-
dant clauses. However, like factoring and C-reduction, lemmas increase the breadth of the
search space, by allowing proofs from lemmas as well as axioms. Lemmas save information
about successful but not unsuccessful proof attempts.

Caching is the most complete approach fur eliminating redundancy in top-down reason-
ing systems. By saving goals as well as solutions, caching can record information about
both success and failure. In a depth-hounded reasoner like PTTP, the cache would contain
goals and associated depth bounds asserting that the cache contains all solutions to the
goal discoverable with that depth bound. When attempting to prove a goal with a depth
bound, if the goal or a more general one with the same or greater depth bound is stored
in the cache, solutions are retrieved from the cache instead of searching for solutions by
backward-chaining. Only caching of the methods we have described uniformly replaces this
search instead of adding alternatives to it in the hope of finding a shorter proof. Caching
can easily reduce the size of the search space even if the proof found is not shorter. Caching
has been used in database query evaluation [4, 11] methods and in other theorem proving
procedures [12, 25, 32]. We have experimentad with it in the Prolog subset of PTTP and
achieved substantial reductions in the number of inferences, but at the expense of increased
time, since cache storage and retrieval is slow compared to PTTP's compiled inference.
Unless cache operations are sped up., a net saving appears possible only for quite large
problems. Recent results with another implementation of model elimination have been
more favorahle [1, 2.

Caching will surely be more complicated and less effective for the full model elimination
procedure than for the Prolog subset. In the full procedure, solutions to a goal no longer
depend on the goal formula alone, but also on its ancestor goals. Even if goals recur
frequently, they may rarely recur with a set of ancestor goals that can be found in the
cache, A refinement of the model elimination procedure thal uses negative but not positive
ancestor goals reduces the dependency on ancestor goals and may make looking up solutions
in the cache succeed more frequently |33]. Although caching can eliminate redundant search,
it can contribute little to the other problem of top-down reasoning systems, the inflexibility
of their search strategy.

Typival bottom-up reasoning systems eliminate redundancy effectively and allow general
search strategies. Although they have the disadvantage of a mueh lower inference rate than
top-down reasoning systems like Prolog or PTTP, adding caching or more flexible search
strategies to the latter would eliminate much of their speed advantage by forcing them to
nse similar data structures o those of bottom-up systems. The advantages of top-down
reasoning systems seem to be their high inference rate, low memory censumption, and
goal-directedness. It appears to be necessary to compromise on the first two to eliminate
redundancy. Thus, if bottom-up systems, which already have general search strategies
and the abilitv to eliminate redundancy, van be given greater goal-directedness, there is
little incentive for sticking with the top-down approach. We believe our upside-down meta-
interpretation procedure, which executes the top-down model elimination procedure by a
hottom-up interpreter. achieves the desired objective.

Our approach is to use bollom-up execution with top-down filtering. 'T'his is concepiu-
ally similar to the use of relevancy testing [45, 16] in the bottom-up SATCHMO [21] and
MGTH [15] theorem provers that use hyvperresolution and case-splitting on nonunit derived
clauses, Case splitting is practical because derived clause are required to be ground. This
is guaranteed in the case of range-restricted clanses {Lhose in which every variable in a pos-
itive literal also appears in a negalive literal), The relevancy test requires that each literal
of a derived clanse be relevant to the goal and can dramatically reduce the search space.

The SATCHMO/MGTF approach appears to work very well on naturally range-restricted
problems—-hetter than model elimination. Problems that are not range-restricted can be
easily converted into those that are, but this entails adding clauses that can generate all the
terms of the Herbrand nniverse, and the SATCHMO /MGTP approach is usually ineffective
for such problems.

3 Deduction with Horn Clauses

A Horn clause problem is composed of a set of facts F, a set of rules 4y Ao p A, 2 07
with m > 1, and a goal GG, where F, A,, (. and (7 are all atomir faormulas. Requiring the
goal to be atomic is not a significant restriction. A conjunctive goal Gy A --- A (7, can be
converted into the rile Gy A --- A G, O G for atomic goal G.

Arule Ay Ao A AL, DO can be interpreted in bottom-up or top-down fashion. The
hottom up interpretation is:

Derive the fact {7 from the facts Ay, ..., A,

A problem is solved when a fact matching the goal (¢ is derived from the initial facts F.
Hyperresolution, for example, is a standard bottom-up reasoning method. The top-down
interpretation is:

I'rom the goal €' derive the goals Aq,.. ., A,

A problem is solved when one can recursively derive from the goal & a set of subgoals
all of which match initial facts F. Input resolution, as in Prolog, is a standard top-down
reasoning method.

In the following, we assume a bottom-up reasoning system such as hyperresolution with
subsumption. The mle 4y A --- A A, — (7 is interpreted as: if Ay,... A, are present,
then ' can be derived. The separate roles of an atomic formula I as a fact or Eoal will he
distinguished by putting L as an argument of the fael or goal metapredicate,

Bottom-up and top-down interpretations of 4y A -+« A A, D (7 are expressed metathe
oretically by

fact{Ay) Ao A Fact{ Ay) — fact{)

and

goal(] — goal{ Ay}

goal{) — goal{ Ag)

respectively.
We now connect the foet and gool rules. The faet rule can be modified and used in
conjunction with the goal rules to provide bottom-up execntion with top-down filtering:

L]

goal[C) A facti Ay) A A Fact{ Ay) — fact{(')
goal(C') = goal{A;)

goad{) — goall Aq)

Goals are generated in simulated top-down fashion, but bottom-up reasoning is constrained:
Ffact(C') can only be derived if goal(() is present, Note that the clauses resulting from this
translation and all the extensions we present are Horn., Thus, a hottom-up interpreter such
as hyperresolution will derive only unit clanses using them.,

Subsumption is used to eliminate duplicate or less peneral facts or goals. Facts, once
derived, can be used again in the solution of other goals. The goal derivation rules employ
“upside-down meta-interpretation”, since the meaning of the rules is the top-down gener-
ation of subgoals, but the rules themselves are executed bottom-up. Each initial fact F'is
translated to fact(F') and the initial goal is translated to goal{G). Il a method like hyper-
resolution is used as the bottom-up interpreter for the translated rules, execution can be
terminated when a solution to the initial goal is found by alse including the clause =fact{G).
This can be resolved with faci{(7) when it is finally derived to produce the empty clause.

This translation of the problem is sometimes sufficient. However, it is often better
to create subgoals sequentially, e.g., Lo generate {an appropriate instance of) goal(A;) only
after goals Ay, Ai—1 have been solved, This is especially important in logic- programming
problems, in which ecarly subgoals compute values used as inputs to later subgoals. For
example, the rule fib{z,y) A fibls(z).z) A plus(y,z,w) O fib(s(s(x)),w) for computing
Fibonacci numbers could be used to create the subgoals fib{3. y). fib(4. 2], and plus(y, z. w)
from the goal fib{5, w). It would be better to delay creating the subgoal plus(y, z, w) until
after fib{3.y) and fib{4.z) are solved. thus instantiating y and =.

A left-to-right execution order for subgoals can be imposed so that goal(A;4,) is not
introduced until a solution to goal{ A;) has been found:

goal(C') — goal(Ay]
goali Ay) A fact{ Ay) — goad| Az)

goall Ay) A fact(Ay) — goal(A,)
goall Ay) A Suel{ Am) — fact{C')

If m = 1, only the first and last clanse are present,

Actually, the code above is not quite correct. It allows goal(A;41) to be derived from
goul{ A,) and fact{ 4;) even if goal{ A,) was introduced by some other clause, such as --- A
A, A oo — [, There may also be some confusion if A; is unifiable with another A, in the
same clause, so it is necessary to distinguish between different goals from the same clause
as well as poals from different clauses. Moreover, the code above does not insure that a
consistent set of variable values is used in goal € and facts Ay, .. An

l.et & be a unigue number for the rule AjA---A Ay, 2 C and ket V be a term that contains
all the variables of the rule excopt those in the head. The rule number, antecedent-literal
number. head and variables are put into a continuation predicate as follows:*

"Some of these roles have multiliteral consequents geoal{A.) A conty (O V), which means that both

gqoal((") = goall Ay) noronty, (€7, V)
cont (O V) A fact(Ay) — goal{ A2) A conty (O V)

conty (O VA fact{ A1) — goal(Ay] A conty . (C. V)
cont (O VI A fact(Ay) — fact{(T)

The literals conty ;(€’. V') identify which subgoal is being solved with what substitution.
Actually, k.2.V alone are sufficient if V' includes the variables of the head (the magic set
method does not incude € in such literals). Our representation includes ¢ as well to
facilitate generalized subsumption.

We note in passing the similarity of this code to a translation of hyperresolution nuclei
that seeks to reduce the number of unification operations. Partial matches of the antecedent
are encoded in continuations as above. The mle Ay A -+ A A, — C with m > 3 is translated
into:

Apady — condyal V)
conte (V)N Az — conty4(V)

conly w1 (VA A, o = conty (V)
conty L (VIn A, —

Derivalion of contg (V) indicates that literals matching A,,..., 4,_, exist with the unifier
recorded in V. Hyperresolution can be viewed as performing a sequence of ordered binary
resolution steps, but without storing the intermediate clauses Az A« A A, D€, Az Ae-o A
Am O ' ete. They are in effect recomputed by repeated unification operations when making
inferences from new literals 4,. The literal eont (V) is a compact encoding of an instance
of 4;A---A A, D (. These continuations generally result in more clauses being derived and
stored as well as fewer unifications being performed, so there is a tradeoff. Continuations
correspond to intermediate nodes in the RETE network for pattern matching [14). When
operations more complex than ordinary unification are used, as when computing labels for
an ATMS {9. 10], a great deal of effort can be saved by creating such intermediate nodes or
continnations [27]). Note that the transformed hyperresolution nuelei here and the clauses
created for upside-down meta interpretation have at most two negative literals,

A classic example of poor, highly redundant top-down execution behavior is the com-
putation of Fibonacci numbers. The computation can be defined by:

al. plusi, . x)

a2, plus(z,y,z) 2 plus(s(z), ¥, 5(2))

ad. fib(0,0)

ad. [ib(s(0),500))

ad. fiblx,y) A fibls(z),z) A plusiy, z,w) O fib{s(s(z)), w)

which can be translated to:?

goal{ Ay} and conty (7, V) are Lo be derived. [T standard, clavsal hyperresclution is used as the bottom-up
interpreter, Lhey must he split into separate rules - — goal{A) and -+ — conty (O, V).
“Tnstead of & variable-containing term V', we write all the variables as separate arguments of comiy ;.

bl.
b2.
b,
b4,
bA.
bk.
h7.

b,
ha.

Fact| plus(D,z,z))

goal(plus(s(zx),y.s(2)}) — goal(plus(x.y, 2))

goal(plus(s(x),y. s(2))) — contyza(plus(siz).y,s(2)))
contyyy(plus(s(z) g 8(2))) A fact(plus(z.y, 2)) — fact(plus(s(x),v,8(z}})
Jact{ fib{0,0))

faet(fibs(0), s(0)])

goal(fib{sis(z)), w)) — goal{ f1b{x,y))

goal(fib{sis(z)),w)) — conlgs (fib{s(s(z)) w))
contasi{ fiblsls{z)),w)) A faet(fiblz, y)) — goal(fibls(x),z))

b10. contys 1l fibls(s(z)),w)) A fact{ fib(z,y)) — contysal fib{s(s(z)),w), y)
b1, contus ol fib(s(s(z)),w), y) A fact{ fib{s(z), 2]} — goal(plus{y, z,w})
b12. contasal fibls(s(z)), w), y)n faet(fib(s(x), z)) — contass(fib(s(s(z)), w} y,2)

b13. cont,sal fib(s(s{x)).w), ¥, 2) A fact(plus(y, 2, w)) — farct{ fib{s(s(z)),w))

whose execution is substantially less redundant. These clauses, with minor syntactic changes,
are interpretable by the bottom-up hyperresolution inference procedure implemented in the
OTTER theorem prover [22].

The following is an OTTER derivation of fib(3) from clauses bl-b13 (for readability,
5(0) has been replaced by 1, s(s(0)) has been replaced by 2, etc.).

14
1&
16
17
i8
20
21
22
24
25
27
28
29
a0
31
3z
33
34

O goal(fib(5,A)}.

0 ~fact(fibv(6,A}).

[hyper,14,8] contBO1(fib(5,A)).
[hyper,14,7] goal(fib(3,A)).
[h],rpar.lT.S:l contB0L(fib{3,4)).
(hyper,18,10,6] cont502(£ib(3,4),1).
[hyper,18,9,6] goal(fib(2,A)).
[hyper,21,8] cont501(£ib(2,4)).
[hyper,22,10,5] cont502(£ib(2,4),0).
(hyper,24,12,6] cont503(fib(2,4},0,1).
(hyper,25,13,1] fact(fib(2,1)}.
[hyper,27.12,20] contE03(fib(3,4),1,1).
[hyper,27,11,20] goal(plus(1,1,4)).
[hyper,29,3] cont201(plus(1,1,s(A})).
(hyper,30,4,1] fact(plus{1,1,2}).
[hyper,31,13,28] fact(fib(3,2)).
[hyper,32,10,16] cont502(fib(5,A),2).
[hyper,32,9,16] goal(fib(4,A)).

Not all variables need be included in every continmation. For confy,, it is sufficient to include

(Vara({"A,.

CAimi PN Varai{ A, An b1 o Varal), where Vars{X) is the set of variables appearing

im literal or set of literals X.

35 [hyper,34,8] contS501(fib{4,4)).

36 [hyper,35,10,27] contb02(fib(4,4),1).
37 [hyper,36,12,32] cont503(fib(4,A),1,2).
38 [hyper,36,11,32] goal(plus(1,2,4)).

39 [hyper,38,3) cont201{plus(i,2,s{4a))).
41 [hyper,39,4,1] fact(plus(1,2,3)).

42 [hyper,41,13,37] fact(fib(4,3)).

43 [hyper,42,12,33] cont503(fib{5,4),2,3).
44 [hyper,42,11,33] goal(plus(2,3,4)).

45 [hyper,44,3] cont201(plus{2,3,8(A))).
46 [hyper,44,2] goal(plus(1,3,4)).

47 [hyper,46,3] cont201(plus(1,3,s(A})).
49 [hyper,47,4,1] fact{plus(1,3,4)).

50 [hyper,49,4,45] fact(plus(2,3,5)).

51 [hyper,50,13,43] fact(fib(5,5)).

52 [binary,81,15]

To see that our objective of reduring redundancy has been achieved, note the vccurrence of
the goals fib{3) and fib{2) on lines 17 and 21, their solutions on lines 32 and 27, and the
reuse {instead of rederivation, as top-down evaluation would require) of their solutions on

lines 36- 38,

3.1 Generalizing Subsumption

Subsumption is the principal mechanism for eliminating redundancy in bottom-up reason-
ing. If fact{L) and fact{Lo) are both derived, then fact{f.7) can be deleted. Likewise, if
goal(L) and goal{ La) are both derived, then goal{ Le) can be deleted. These deletions can
be accomplished by ordinary subsumption,

It is beneficial to generalize this. The following instances of generalized subsumption
are possible:

o fact] L) subsames goal{ L"), where ' = Lo for some substitution #. Goals can be
deleted if they are the same as or more specific than a fact.

o facl{ L) subsumes cont; (O, V), where ¢ = Lo for some substitution #. Continua-
tions can be deleted if they lead only to the derivation of facts the same as or more
specific than an existing one.

A stronger deletion strategy would also delete subgoals of deleted goals. Goal-subgoal
relatiouships would have to he recorded so that a subgoal is deleted only if all the goals of
which it is a subpoal have been deleted,

3.2 Generalizing Derived Facts

Although unnecessary recomputation of Vibonacei numbers is successfully eliminated in the
example, bottom up interpretation unfiltered by goals could yield a still shorter proof that
uses fewer, more general derived facts. The problem is that derived facts are sometimes
overly specific. This is a result of their having been derived with top-down filtering.

i

It is possible to derive plus(1,y, s(y}) from clauses al and a2, and it is likewise possible to
derive faet{plus(l,y,s(y))) from bl b4 when given the goal goal(plus(1,y, z)). However, if
more specific goals such as goal(plus(1.1,2)), goal(plus(1,2,2)), and goal(plus(1,3,2)} are
given (as on lines 20, 38, and 46 of the example), more specific facts such as fact(plus(1,1,2)),
Fact(plus(1.2,3)), and fact(plus(1,3,4}) will be derived (as on lines 31, 41, and 49). Com-
puting larger Fibonacci numbers results in many more repeated instances of computing
I 417+ Ua. Thelength of each of these derivations is linear in the size of z.

When goal{ L} leads to the derivation of fact{Lay), the problem of possible overspeci-
ficity of fact{Ley) can be overcome by reexecuting the same inference steps starting with
goul(z) (i.e., with a free variable as goal formula) instead of goal{L) and ending with
fact{zay). which is stored instead of fact{ Lay). The result fact(zoy) is an equally valid
conclusion that is either a generalization of or equivalent to fact(Lo }. There is no danger
in deriving these more general facts. They are more easily psed, but top-down filtering still
prevents their use except in the presence of a relevant goal.

Note that the problem of deriving overly specific goals is not universal, From ground
facts and range restricted rules, which are customary in databases, bottom-up reasoning can
derive only ground facts, and top-down filtering cannot result in anything more specific.

4 Abduction with Horn Clauses

We shall now extend the method to abduction with Horn elauses. First, we give a general
description of abduction, not restricted to Horn clauses. We will then extend the method
in Section 3 to a method for abduction with Horn clauses. Section 6 describes abduction
with non-Horn clauses,

Abduction is the form of reasoning that allows us to hypothesize that P is true if we
kuow that P O € is true and we are trying to explain why @ is true [31]. It can naturally
be viewed as an extension of deduction. Instead of being required to prove a formula,
abduction allows us to identify sets of hypotheses that, if they could be proved, would
allow a proof of the formula to be completed. This style of reasoning has been applied
to diagnosis [7, &, 20, 30, 36], design synthesis [13], theory formation [34, 35, default and
cireumscriptive reasoning [34, 35, 37}, and natural language interpretation [6, 17, 26, 42, 43].

A widespread approach for implementing abduction is top-down, backward-chaining
reasoning with some literals being allowed to be assumed instead of proved {7, 8, 17, 18,
34, 45, 36, 37. 40, 42, 43], i.e., an inference rule that assumes a literal is added to Prolog-
like inference {in the case of Horn clauses) or the model elimination procedure. Standard
top-down reasoning can be viewed as operating on a list of goals, removing goals when they
mateh facts, adding subgoals when a goal matches the head of a rule, and succeeding only
when the list becomes empty. Abductive reasoning allows this process to “skip” certain
goals [18]. An abductive proof or explanation is found when only skipped goals remain.
These are the assumptions that would allow completion of the proof.

The presence of an additional inference rule that allows literals to be either assumed
or proved makes the search space for abduction even larger than that for deduction. This
provides a strong motivation for upside-down meta-interpretation of the top-down infer-
ence rules for abduction in order to eliminate search-space redundancy. Recent work omn
using an ATMS [9, 10] 1o cache results of abductive reasoning [24] has the same objeclive

i1

as ours of eliminating redundant work on duplicate goals and has already demonstrated
significant improvement when compared to their implementation of a noncaching top-down
algorithm [42]. This is done for the case of Horn clanses with some limitation on unification
as a result of using an ATMS,

For some theory ' and goal (7, abduction comsists of finding sets of assumptions H and
substitutions # such that G# is a consequence of TU H,i.e., H O G# is a consequence of 7.
We require that Il consist of assumable atomic formulas with designated predicate symbols
{predicate specific abduction [13, 34, 35, 42, 43]). It is, of conrse, permissable to designate
all atomic formulas to be assumable. If nonatomic assumptions are desired, and the form of
the assumable formula F is known in advance, a new atomic farmula F can be created and
then P 3 F used and P assumed, instead of assuming the nonatomic formula F directly.

We focus on only one element of abduction here, namely, finding H and G#. It is a
nearly universal requirement that H be consistent with T, but this must be determined by
some other means {e.g.. by attempting to refute T U A and failing) and is undecidable in
general. Many abductive proofs can usually be found, and selection of a preferred abductive
proof is a vital part of abdnction. One criterion is that an abductive proof that requires a
subset of the assumplions required by another one is preferred. (Generalized subsumption
of derived facts allows us to discard such less general proofs. Assigning costs to assumable
formulas is a popular method to help choose among alternative proofs and is the focus of
much recent work on abduction (3, 17, 42, 43). We believe the top-down meta-interpretation
approach for abduction can be adapted to such cost-based abduction without difficulty, but
this is vutside Lthe scope of the present work.

Tu support abductive reasoning, the metatheoretic predicate fucl is extended to two
arguments: an atomic formula and a set of assumptions sufficient to prove it. Dottom-up
interpretation of the rule 4y A -+ A A, O ' can be expressed by

Sacti Ay Hy) no-oo A faetl Ay Hy) — Fact(C U 0 K

If each A; is true, assuming H,, then ¢ is trme, assuming the union of the assumptions. Fach
initial fact £ is translated to fact(F,8). If atomic formula L is assumable, fact(/.,{1})is
included.

Our rules for Horn clause deduction by bottom-up execution with top-down filtering
and left-to-right solution of goals can be saszily adapted to Hom clause abduction:

goal{C) — goal{ Ay) noconty ((C,0,V)
conti (O VA faet{ Ay,) — goal(Az) A conty 5(C, Hy L V)
vendy (CLH VYA faet| Ay, Hy) — goal{ Az) A conlpa(CLH U Ha V)

eomle (O H VA fact(Ay g, Hy) = goal(Ay) heonty o (CLHUH V)
conty AC H VA faeti Ay, Hyy) — foetiC, H U Hy,)

where H, Hy...., H,, are variables whose values during-execution will he sets of assumptions
used in deriving a continuation or fact.
For any H and &8 such that # is composed of assumable literals, H 2 G# is a conse-

12

quence of T, and H is consistent with T4 this procedure can derive some fact{(:', H') such
that (&'a = (8 and H'e C H for some substitution o.

Subsumption can be further generalized to take account of assumptions. The following
instances of generalized subsumption are possible:

e fact(L,H)subsumes fact{L'.H'), where I' = Lo and H' 2 Ho lor some substitution
o.

e fart(L. H) subsumes conty (', H', V'), where (" = Lo and H' 2 He for some substi-
tution o,

o fact{L.B) subsumes goal(L'), where L' = Lo for some substitution o.

5 Deduction with Non-Horn Clauses

Using the method for abduction with Horn clauses as a starting point, we now extend
our upside-down meta-interpretation method to deduction with possibly non-Horn clanses.
Abduction will be added again in Section 6. Facts, goals, and rules can be written with
literals instead of jnst atomic formulas. We require that contrapositives of the rules be
present. That is, if 4y A --- A Ay 2 Cis a rule, then m other rules of the form A4 O -4,
must also be provided, where A is the conjunction of Ay,..., 4i_y, Aig1,- -, Ay, =C, and,
for any literal L, - L denotes its complemenl.

The model elimination (ME} theorem-proving procedure has a single inference rule in
addition to Prolog’s:

If the current goal is unifiable with the complement of one of its ancestor goals,
then apply the unifying substitution and treat the current goal as if it were
solved,

This added inference operation is the ME reduction operation. The normal Prolog inference
operation is the ME ertension operation. The two together comprise a complete inference
procedure for the full first-order predicate caleulus, not just the Horn-clause subset. Unless
the unifving substitution {unifier) is empty (i.e., the goal and its ancestor goal are exactly
complementary), the reduction operation is used as an alternative to, not a substitute for,
salving the goal by extension or by reduction with a different ancestor goal.

Similarly to abduction with Horn clauses, we begin by formulating model elimination
procedure in terms of deriving facts that [ollow from a set of assnmptions.

The wetatheoretic predicate fact has two arguments: a literal and a set of assumptions
sufficient to prove it. Bottom-up interpretation of the rule 43 A <<~ A Ay D € can be

expressed by

fact(Ay Iy aceon faet{ Ay, Hy) = fact{C(H U0 Hin) = =)

' Although the pracedure may gencrate abdoctive proofs with hypotheses inconsistent with T', it is not
puaranteed to and we would not want it to gencrate all sets of inconsistent hypotheses.

13

If each A; is true. assuming If;, then ' is true, assuming the union of the assumptions,
excluding ~('. This description is accurate for the ground case. In the nonground case, it is
necessary to consider unifying -C with other assumptions to derive alternative results. In
that way, different instances of (" can be shown to follow from different sets of assumptions.
For example, suppose =" is not a member of Hy U - U H,,. We conclude that " is true,
assuming Hy U ---U Hy o If <07 i= unifiable (by unifier o) with & member of ;U -+ U H,,,
we can also conclude that e is troe, assuming the smaller set (Hyg U U o) — (o,

Single-literal fucts F are translated to foctl{ F,®). The single literal fact{e, {2}) is also
included. Its interpretation is that any literal r is a consequence of its own assumption.

This differs from upside-down meta-interpretation of abduction with Horn clauses be-
cause all literals are treated as assumable {because any literal can be solved by reduction
with & complementary ancestor goal) and if €' is proved, =’ can be omitted from the set
of assumptions used.

Top-down filtering by goals along with left-to-right execution order for subgoals can he
accomplished as in the case of abduction for Horn clauses:

goal() — goal{ A1) A cond (€0, V)
cont ((C.0. VA fact{ Ay Hy) — goal{ Ay) A contp o(C, Hy, V)
conty o (O H VYA fact{ Ay, Hy) = goall As) A conty 2(CLH U Ha V)

comty - (C,H VA fact{ Ay, Hoooy) — goal{ Ay) Aeonty o {C,HUH 2, V)
eonty m(C,H VA factiAp, Hy) — faet{C(H U H,) = =)

Note the use of =" in the final clanse.

A single-literal goal can be translated as before to geal(7). A deductive model elimi-
nalion proof is complete when faet{Ge,0) is derived, i.e., when an instance of (7 iz derived
with the empty set of assumptions. If & method like hyperresolution is used as the botlom-
up interpreter for the translated rules, execution can be terminated when a solution to the
initial goal i found by also including the clanse = faet(7,0). This can be resolved with
fact{Z @) when it is finally derived to produce the empty clanse. When seeking indefinite
answers to a goal, fact{ =G0 is included as well as goal((7, 0.

We expect performance of this code to be poor, since assumptions can be made easily
but can only he removed in the presence of a complementary ancestor goal. For example,
if 7 is a goal, fact((".{4;..... A, }) can be derived. But this fact can he used in a proof
only if additional facts are derived from it in which A,...., A, are all absent from the set
of assumptions, having been removed by the ([U W} = =" computations, an unlikely
possibility. It is apparent that more control over the generation of facts is required. Top-
down filtering is done above using only the form of the goal; we propose top-down filtering
also take account of the goal's ancestors, so that a fact will not be derived unless a goal
exists whose ancestor list includes all the fact’s the assumptions,

For top-down meta-interpretation of the model elimination proceduore for deduction,
we include another argument, F, in goals and continuations that specifies the set of as-
sumptions {ohtained from negations of ancestor goals) that are permitted to be made in
the solution of a goal. Siegel likewise replaced model elimination’s representation of goal-
subgoal relationships in chains by directly associating a goal with its set of ancestors [40].

14

The translated rules will not be able to derive facts that require assumptions outside this
set.

goal (. Fy) — goal{ Ay, Py U {-C 1 A condg 1(C,0, B U {-C} V)

conty (C0, PV A fact{ 4y, Hi) A Hy © P — goal(Az, PYA
conly »(C. H PV

(.'ﬂﬂfk1z[{-.r-. H. P VA !ﬂf!f.‘iz.ﬂrz] AH, TP - yl}ﬂ!{ls P} A
comty (O 0T U Hy, PV

tonty o (C,H . PVIA facti Ay Hoo)N Hinmy € P — goal{ A, P) A
conty @ (O, H U Hyp g, PV

comily m (O, H, PVIA facti A Hp)W Hy ©TF — fact{C,(H U Hy) — =0)

A single-literal goal is translated to geal((:, W), i.e., an assumption-free proof of (7 is sought.
Unification of members of H; and P may be necessary to make H; a subset of P and unifica-
tion of members of ([T U) and =¢" may he necessary to derive facts with fewer assump-
tions. If this rule is invoked by goal((7, P), it will derive literals of the form fact{G", H),
where (7' — (77 and H C P for some substitution o. Derived facts include only assump-
tions that are used (those in H;), not all those that are permitted to be used (those in
F). Thus, equally general facts can be derived even if I' has extra memhers. This justifies
generalized subsumption that eliminates goals with permitted assumption sets that are a
subset of those of another goal.

We give a sketeh of a sample proof of p from s 7 p, § 2 p, and sV 1. For clanty,
continuations are omitted; they do not a large role in this proof anyway, since the rules all
have single-literal antecededents.

1. goall{p.{}) initial goal

2. goal(s,{-ph) subgoal of 1 by 8 -> p

3. goall-t,{-p,-sh} gubgoal of 2 by -t -> s

4. goal(-p,{-p,-s,t}) subgoal of 3 by -p -» -t

5. fact(-p,{-pH) instance of fact(x,{x})

6. fact(-t,{-ph) solution of 3 by -p -> -t from 5
7. fact(s,{-p}) solution of 2 by =t => s from 6
8. fact(p,{}} solution of 1 by 5 -> p from 7

We explain a few features of the proof. On line 2, the goal s is derived, with —p, the negation
of the parent goal, listed as a permitted assumption for use in the proof of 5. On line 6, it is
derived that -t is a consequence of assuming —p becanse —p s a consequence of assuming
—p (line 5} and —p implies =t. Although —p and —s were both permitted as assumptions
(line), only —p was used and appears in the result. On line 8, the unconditional fact p
is derived to complete the proof, becanse s is a consequence of assuming ~p (line 7) and

15

implies p (if p is 2 consequence of assuming -p, then pis true, by excluded middle). The —p
assumption of line 7 is removed in the result on line 8 by the (H U K.,) — ~ computation.
The following instances of generalized subsumption are possible:

e fact{ L, I }subsumes fact{ L', '), where L' = Lo and H' 2 He for some substitution
. Facts that are less general or require more assumptions can be deleted.

v fact(L,H) subsumes conty (C,H'. PV}, where = Le and H' 2 He for some
substitution #. Continuations that lead only to the derivation of facts that are less
general of require more assumptions can be deleted.

s fact(L,) subsumes goal{C, P), where O = L# for some substitution o. Goals can be
deleted if an unconditional more general fact exists.

e goul(L, P) subsumes goal(L', P'}, where L' = Lo and P' C Po for some substitution
. Goals that are less general or allow fewer assumptions in their prool can be deleted.

In the ordinary model elimination procedure, a goal of the form goal{GG, P), where P
is the set of negated ancestor goals and happens to include =G, can be rejected because
a goal is identical to an ancestor geal. It is incorrect to use this rule in top-down meta-
interpretation if we use the generalized subsumption rule that allows deletion of goals with
smaller sets of permitted assumptions. The goal goal(p,{g}) might vield the conclusion
fact(p,0) or fact(p,{q}). The goal goal(p, {=p.q}) can yield the same conclusions, justify-
ing its use to subsume the goal with fewer permitted assumptions, but only if evaluation of
goal(p,{-p,q}) is not blocked by the identical ancestor pruning rule.

6 Abduction with Non-Horn Clauses

The case of abduction with non-Horn clauses is nearly identical to that of deduction., The
only change required is that assumptions are no longer restricted to those listed in poals
as being permitted hecanse their negations appeared in ancestor goals. This restriction
is imposed by the test H; € FP. The test is modified in the case of abduction to apply
only to literals that are not abductively assumable: nonass(H;) C P, where nonass(H;)
is the largest subset of H; that cannot be abduetively assumed |those with nonassumable
predicate names). In other words, any abductively assumable literal in H; need not appear
in F, but others must.

We summarize the treatment of assumptions in these procedures. In the Horn case
of abduction, fact{L,{L}) exists only for abductively assumable literals, so only they can
bhe assumed. In the non-Horn case of deduction, fact{r.r) exists and any literal can be
assumed, though top-down filtering permits only assumptions that match negated ancestor
goals to be used. In the non-Horn case of abduction, we again allow any literal to be
assumed, but omit the requirement to match assumptions with negated ancestor goals in
the case of abductively assumable literals,

Derivation of faet{(o, H} is an abductive proof of (5, provided H consists entirely of
abductively assumable literals. For any H and '# such that H is composed of abductively
assumable literals, H# 2 ¥ is a consequence of T, and H is consistent with T, this procedure
can derive some fact{G', H') such that &'s = &8 and H's © A for some substitution e,

if

7 Conclusion

The model elimination procedure is an effective theorem-proving procedure whose principal
defect is the redundancy of its search space. Despite this defect, it has been used effectively
for theorem proving and recently for abductive and related inference. Model elimination
is a highly restrictive inference procedure that includes compatibility with set of support.
This is crucial in the presence of many irrelevant axioms, such as in deductive database,
logic programming, and artificial intelligence applications.

Upside-down meta-interpretation, the execution of the top-down model elimination pro-
cedure by a bottom-up interpreter like hyperresolution with subsumption, can basically
reproduce the model elimination search space while eliminating much of its redundancy.
Of previous methods for eliminating redundancy—factoring, C-reduction, lemmas, and
caching—only caching is capable of achieving the same goal. Efficient caching, however,
requires many of the same data structures and operations as bottom-up interpretation, c.g.,
clanse indexing. Typical top-down reasoners also lack the flexible search strategies possi-
ble fur bottom-up reasoners. Thus, npside-down meta-interpretation instead of top-down
interpretation plus caching makes it easier to incorporate flexible search strategies.

Such upside-down meta interpretation has been applied to Horn clauses in Neiman's
subgoal extraction method and Bry's backward fixpoint procedure, which specializes to
rewriting-based query evaluation methods such as the magic set method. Upside-down
meta-interpretation of the model elimination procedure in effect extends these to non-Horn
clauses. We extended it further to allow literals to be assumed as well as proved during a
proof and have thus developed an abductive extension as well.

In the context of query evaluation, Bry claimed upside down meta-interpretation (i.e.,
rewriting-based query evaluation methods) and top-down evaluation with caching (ic.,
resolution-based query evaluation methods) are essentially equivalent instances of his back-
ward fixpoint procedure. However, for theorem proving instead of query evaluation, when
a single proof instead of all answers is sought, and heuristic rather than exhaustive search
is employed, upside-down meta-interpretation seems preferable.

Upside-down meta-interpretation can be regarded as adding top-down filtering to a
bottom-up interpreter thus making it more goal-directed. Its principal contribution is in ap-
plications with many irrelevant axioms, especially in the case of abductive reasoning, where
the search space is even greater than for deduction. Although non goal-directed methods
such as hyperresolution seem naive even for mathematical problems, they are actually quite
effective. When all the axioms are accessible from the initial goal and general subgoals are
quickly generated, the top-down filtering provided by upside-down meta-interpretation is
able to add little goal-directedness.

The high inference rate and low memory consumption of top-down reasoning system
such as Prolog and PTTP is lost in this move to upside-down meta-interpretation. This
seems inevitable, since controlling redundancy requires storing more information about
goals. solutions, ete., and the volume of information stored demands efficient, but still slow
indexing. Efforts to make the inference rate of bottom-up interpreters more closely approach
that of top-dewn interpreters will make the upside-down meta-interpretation approach even
more attractive. Writing a bottom-up interpreter specialized to the rules used in upside-
down meta-interpretation can also improve performance. Neiman did this in the case of

17

deduction with Horn clauses when implementing his subgoal extraction method.

Acknowledgements

I would like to express my appreciation to ICOT for providing a friendly and supportive
environment for deing this research and discussing and investigating many aspects of the
orem proving. [would like to thank Masayuki Fujita for our discussions of this work and
hatsumi Inoue and Donald Loveland for their comments on an earlier drafi of this paper.

References

(1]

[2]

3]

4]

5]

(9]
10}
[11]

Astrachan, O. METEOR: model elimination theorem proving for efficient OR-
parallelism. Masters Thesis, Department of Computer Science, Duke University, 1980,

Astrachan, 0. Personal communication, 1991,

Bancilhon, F.. D. Maier, Y. Sagiv, and J. Ullman. Magic sets and other strange ways
to implement logic programs. Proceedings of the Fifth ACM SIGCMOD-SIGACT Sym-
posivm on Principles of Database Systems, 1986,

Bry. F. Query evaluation in recursive datahases: hottom-up and top-down reconciled.
Data £ Rnowledge Engineering 5 (1000), 259 312.

Charniak, E. and S, Husain. A new admissable heuristic for minimal-cost proofs. To
appear in Proceedings of the AAAL-91 National Conference on Artificial Intelligence,
Anaheim, California, July 1991,

Charniak, E. and R. Goldman. A logic for semantic interpretation. Proceedings of the
26th Annual Mecting of the Association for Computational Linguistics, Buffalo, New
York, June 1988 B7-04,

Cox, P.T. and T. Pietrzykowski. Canses for events: their computation and applications.
Proceedings of the Sth Conference on Automated Deduction. Oxford, England, July
1934, Gl8-621,

Cox, P.T. and T. Pietrzykowski. General diagnosis by abductive inference. Proceedings
of the 1987 Symposium on Logic Programining, San Francisco, California, August 1087,
183-180.

dekleer, 1. An assumption-based TMS. Artificial Intelligence 28 (1986), 127-162.
dekleer. J. Extending the ATMS. Artificial Intelligence 28 (1086), 163 196.

Dretrich, 5.W. Extension tables: memo relations in logic programming. Proceedings of
the 1987 Symposium on Logic Programming, San Francisco, California, August 1987,
264-272.

18

[12]

[13]
[14]

[15]

16
7]

[18]

19

[20]

[21]

22]

[23]

[24]

[25]

[26]

Flkan, C. Conspiracy numbers and caching for searching and/or trees and theorem
proving. Proceedings of the Eleventh International Joint Conference on Artificial In-
telligence, Detroit, Michigan, August 18989, J41-346.

Finger, J.J. Ezploiting Constraints in Design Synthesis. Ph.D. dissertation, Depart-
ment of Computer Science, Stanford University, Stanford, California, February 1987.

Forgy, C.L. RETE: a fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence 19, 1 (1982), 17-37.

Fujita, H. and R. Hasegawa. A model generation theorem prover in KL1 using a
ramified-stack algorithm. Technical Report TR-606, Institute for New Generation Com
puter Technology, Tokyo, Japan, 1981,

Fujita, M. Personal communication, 1991,

Hobbs. J.R.. M. Stickel, D. Appelt, and P. Martin. Interpretation as abduction. Techni-
cal Note 499, Artificial Intelligence Center, SRI International, Menlo Park, California,
Decamber 1990,

Inoue, K. Consequence-finding based on ordered linear resolution. To appear in FProceed-
ings of the Twelfth International Joint Conference on Artificial Intelligence, Sydney.
Australia, August 1991.

Loveland, D.W. A simplified format for the model elimination procedure. Journal of
the ACM 16, 3 (July 1969), 319-363.

Loveland, DLW, Automated Theorem Proving: A lLogical Basis. North-Holland, Am-
sterdarm. the Netherlands, 1978,

Manthey, R. and F. Bry. SATCHMO: a theorem prover in Prolog. Proceedings of the
gth International Conference on Automated Deduction, Argonne, [llinois, May 1988,

McCune, W.W. OTTER 2.0 Users Guide, Technical Report ANL-90/9, Mathemat-
iez and Computer Science Division, Argonne National Laboratory, Argonne, Ilinois,
March 199i,

Neiman. V.5. Refutation search for Horn sets by a subgoal-extraction method. Journal
of Logic Programming § (1990), 267-284.

Ng. H.T. and R.J. Mooney. An efficient first-order abduction system based on the
ATMS. To appear in Proceedings of the AAAT-91 National Conference on Artificial
Intelligence, Anaheim, California, July 1991,

Nie, X, and D.A. Plaisted. A complete semantic back chaining proof system. Proceed-
ings of the 10th International Conference on Automated Deduction, Kaiserslautern,
Germany, July 1890, 16-27.

Norvig, P. Inference in text understanding. Proceedings of the AAALST National Con-
ference on Artificial Intelligence, Seatile, Washington, July 1987.

L9

[27]

(28]

28]

(30]

[31]

2]

[33]

(4]

[37)
[38]

EE]
[40]

[41]

Ohta, Y. and K. Inone. A forward-chaining multiple-context reasoner and its applica-

tion to logic design. Proceedings of the 2nd International IEEE Conference on Tools
Jor Artificial Intelligence, Herndon, Virginia, November 1000, 386-302.

Overbeek, . and L. Wos. Subsumption, a sometimes undervalued procedure. In Lassez,
J.-L. and G. Plotkin {Eds.). Computational Logic, Essays in Honor of Alan Robinson.
MIT Press, Cambridge, Massachusetts, 1991,

Peng. ¥. and J.A. Reggia. A probabilistic causal model for diagnostic problem solving—
part I integrating symbolic causal inference with numeric probabilistic inference. IFEE
Transactions on Systems. Man, and Cybernetics SMC-17, 2 (March/April 1957), 146
162.

Peng. Y. and J.A. Reggia. A probabilistic cansal model for diagnostic problem solving—
part I diagnostic strategy, IEEE Transaciions on Systems, Man, and Cybernetics
SMEL1Y, 3 (May /June 1987), 305-406.

Pierce, C.S. Abduction and induction. In Buchler, J. (Ed.). Philosophical Wrilings of
Fierce. Dover Books, New York, 1953, pp. 130-156,

Plaisted, D.A. Non-Horn clause logic programming without contrapositives. Journal of
Automated Regsoning {, 3 (1088), 287-325.

Plaisted, DA, A sequent-style model elimination strategy and a positive refinement.
Journal of Automated Reasoning 6, 4 { December 1990}, 389-402,

Poole, D). Explanation and prediction: an architecture for default and abductive rea-
soning. Computational nielligence 5 (1989, 97 110.

| Poole, DL, Compiling a default reasoning svstem into Prolog. New Generation Com-

puling 3, 1 (1991}, 3-338.

Pople, H.E. Jr. On the mechanization of abductive logic. Proceedings of the Third
International Joind Conference on Artificial Intelligence, Stanford, California, August
1973, 147-152.

Przymusinski, T.C. An algorithm to compute circumscription. Artificial Intelligence
3%, 1 {February 1980}, 4973,

Robinson, J.A. Automatic deduction with hyper-resolution. International Journal of
Computer Mathematics, [(1965), 227-234.

Shostak, R.E. Befutation graphs. Artificial Inlelligence 7. 1 (Spring 1976), 51-64.

Siegel, P. Représentation of Utilisation de la Connaissance en Calewl Propositionnel.

These d'Ftat, Université de Aix-Marseille TI, 1987,

Stickel, M.E. A Prolog technology theorem prover: implementation by an extended
Prolog compiler. Journal of Automated Reasoning 4, 4 (December 1988), 353-380.

20

[42]

[43]

[44]

[45]

[46]

[47]

Stickel, M.E. A Prolog-like inference system for computing minimuim-cost abductive
explanations in natural-langnage interpretation. To appear in Annals of Mathemalics
and Artificial Intelligence.

Stickel, M.E. Rationale and methods for abductive reasoning in natural-language in-
terpretation. In Studer, R. (Ed.). Natural Language and Logic, Internalional Scientific
Symposium, Hamburg, FRG, May 1989, Proceedings. Lecture Notes in Artificial Intel-
ligence #4539, Springer-Verlag, Berlin, Germany, 1990, pp. 233-252.

Stickel, M.E. The path-indexing method for indexing terms. Techuical Note 473, Arti-
ficial Intelligence Center, SRI International, Menlo Park, California, October 1980,

Wilson. 11.S. and D.W. Loveland. Incorporating relevancy testing in SATCHMO. Tech-
nical Report 8 1980 24, Department of Computer Science Duke University, Durham,
MNaorth Carolina, November 1939,

Wos, L., R. Overbeek, E. Lusk, and J. Boyle. Automated Reasoning. Prentice-1Tall,
Englewand Cliffs, New Jersey, 1984,

Wos. L.. G.A. Robinson, and I).F, Carson. Efficiency and completeness of the set of
support strategy in theorem proving. Journal of the ACM 12, 4 {October 1965), 536~
541,

21

