ICOT Technical Report: TR-659

TR-65%

PIM Architecture and Implementations

by
A, Imai, K. Hirata & K. Taki

June, 1991

@ 1991, 1COoT

Mita Kokusat Bldg. 21F {03)3456-3191 -5

IC DT 4-78 Mitn 1-Chome Telex ICOT 132964

Minato-kn Tokye 108 Japan

Institute for New Generation Computer Technology

Fourth Franco Japansese Symposium
fennes, France, July, 1981

PIM Architecture and Implementations

Akira Imai - Keiji Hirata Kazuo Taki
Institute for New Generation Computer Technology {(ICOT)

Abstract

In the Japanese Tifth Generation Computer Systews (FGOS) project, parallel inference ma-
chine (PIM) systems are being developed. Multi-P5S] system has already been developed as an
experimental hardware systems to provide a practical tool for parallel software research, Several
FIMs are now under development as prototype hardware systems of Fifth Generation Computer

System.
This paper describes a brief summary of (1) the architecture of Multi-PSI and PIM, and (2)

KL1 language implementation on these hardwares.

1 Introduction

Research and development (R & D) of the parallel inference machine (PIM) [4] system is one of the
most important issues in the Fifth Generation Computer Systems (FGCS) project. The R & D includes
(1) hardware architecture, (2) implementation of kernel langnage (KL1), and (3) the PIM operating
system (PIMOS)[2] to build up a total system for knowledge information processing systems.

KL1[27], the kernel language of IM is a concurrent logic programming language [22] based on
flat-GHC [26]. Since KL1 uses clear and simple semantics as a concurrent programming language,
it is very easy for programmers who write large applications to express concurrency control such as
sychronization and communication.

The Multi-PSI system [25] was built to provide a practical tool for parallel software research and
to enhance the research for KL1 parallel implementation. This has been available to parallel software
researchers for over two years. We have used the system to study several concurrent programming
paradigms such as dynamic load balancing schemes [3] and how to build large scale applications [14].

Five PIM systems are now under development as prolotype hardware systems of FGCS. The
purpose of the development of more than one PIM was to examine and compare the technical jssnes
for different architectures.

The hierarchy of the PIM system is summarized in Figure 1. The lowest layer is hardware. The

second layer is a KL1 runtime system which executes KL1 programs by accessing hardware resources,

"Mita Kokusai Bldg. 21F, 4-28, Mita 1-Chome, Minato-ku, Tokyo 108, Japan E-mail: imaiticot.or.jp

(Interface)

Application
PIMOS
Operating System protocol
(PIMOS)
Kil
KLl Runtime System
machine
Hardware language
(PIMs, Multi-PSI)

Figure 1: Hierarchy of PIM system

This level includes (1) memory management, (2) process control and (3) distributed variable colherence
control functions as OS kernel. "T'he third layer is an operating system PIMOS which controls user
tasks and file systems. This layer includes programming svstems sich as debugrers and compilers,
which are all written in KL1. The upper-most layer is a parallel application program written in KI.1.

This paper focuses on the lower two layers, picking up several technical issues. This paper is
organized as follows. Section 2 reviews the Multi-PSI hardware system and KL1 implementation on

it. Section 3 explains PIM architectures and KL1 implementation on them. Section 4 describes the

current status of PIM R & D) and future plans.

2 Multi-PSI : Experimental Hardware System

2.1 Architecture
2.1.1 Overview

The Multi-PST[25] is a MIMD {multiple instruction-stream, multiple data-streams) type non-shared
memory multi-processor consisting of up to 64 processing elements (PEs).

To build a large scale multi-processor architecture, a distributed memory architecture (e.f. shared
memory architecture) is indispensable, however it is said that programming on a distributed memory
system is more difficult than on a shared memory system. One approach to deal with this problem is
to build physically distributed, logically shared memory architectures such as DASH architecture [12].
Cur approach looks like this approach from the view of a KL1 programmer, however it is different
from the view point of architectural design. Global consistency in the logical variables among PEs are
maintained by KL1 runtime systems sending/receiving unification messages on demand. The reason
why we did not choose a DASH like approach is that KL1 processes of fine-grain communicate so

frequently using shared variables that the logical shared memory based on large memory blocks does

not work effectively,
The PEs of Multi-P5I, which are the CPUs of personal sequential inference machines (PSI-II) [17],

are connected by 8 x 8 mesh networks, Since two-dimensional mesh network topology is scalable, the

Multi-PSI architecture can be extended to larger-scale configurations with little modification.

2.1.2 Processing Element

The processing element (PE) is a 40-bit (8 bits {or tag, 32 bits for data) CISC processor controlled
hy the horizomtal micro-instruction. lts micro-programmability enables flexible implementation for
incrementally enhancing the performance and adding various functions. It has up to 16M words (5
bytes/word} of memory and a 4-Kword direct-map cache memory.

The performance of Multi-PSI PE is 130 KRPS (Kilo Reductions Per Second) for the append

program including incremental garbage collection.

2.1.3 Network

Each processing element has a specially designed network-controller to send /receive messages to/from
other PEs.

The network-controller has an antomatic ronting facility {the worm-hole routing). It can route
messages according to the destination PE number in the message header without disturbing the CPU.
The bandwidih of each channel is 5 Mbyte/sec.

2.2 KLI1 Implementation for Distributed Memory Environment

KLl implementation techniques for distributed memory multi-processors have been developed on
Multi-PSI [15]. KL1 is compiled to KL1-B [11] before execution, which is just like the WAM code
of Prolog, aud KLI runtime system interprets KL1-B code. The KL1 runtime system includes the
fellowing facilities, which are managed by conventional operating systems.
Memory management

The storage allocation /reclamation system is maintained by the KL1 runtime system because

it is essential o [ree programmers lo perform memory management when writing large scale

applications by symbolic operation.

Process control & resource management
The meta-programming facility by 'Sho-en’ |2| enables a operating system to be writien in KLI
because it can encapsulate user program failures in 'Sho-en’, and protect the operating sysiem

from it. "Sho-en’ functions are supported by the KL] runtime system.

(zoal scheduling
Gzoal scheduling and synchronization are major issues of parallel programming systems. Syn-

chronization among goals, that is suspension /resumption of KL1 goals, is managed by the K11

3

runtime system automatically even if goals communicating each other are on different PFEs.
However, programmers are currently responsible for goal distribution among PEs because com-
munication cost among PEs are so high that automatic goal distribution does not work well.

Exception handling
As we described before, internal exceptions such as program failure can be encapsulated by 'Sho-

en'. External exception handling such as I/0 to FEP (Front End Processor) or disk is handled
by special built-in predicates.

Hecause logic programming languages are based on dynamic structure allocation, 2 garbage col-
lection (GC) mechanism is crucial for reclaiming storage during computation. Some novel methods
of efficient GC have been developed and implemented on the KL1 runtime system for Multi-PSL An
incremental GC scheme using a single bit (MRB-GC) was proposed [1], and evaluated intra processor
on Multi-PSI [9]. A GC for inter-processor pointers (WEC) was also proposed [7] and implemented
on Multi-PSI,

Other techniques for KL1 implementation on distributed memory multi-processors are as follows:

¢ D'rocess control facility using the WTC scheme [19];
+ Distributed unification scheme [7];
¢ Debugging support facility such as detecting perpetual suspension goals [10].

These were implemented and evaluated on Multi-PSI [16].

3 PIM: Fifth Generation Computer Prototype System

3.1 Architecture
3.1.1 Overview

As we described in section 1, we are manufacturing several PIMs: PIM/p, PIM/e, PIM/m, PIM/i,
and PIM/E,

All PIMs except PIM/m, which is designed to be a large scale multi-processor where the locality
in communicalion cost can easily be used from software, have hierarchical architectures. That js they
are clusters formed by 10 or so PEs connected by shared memory and shared bus with coherent cache
[24], and the clusters are connected by asynchronous network. The global configuration of five PIMs
is snmmarized in table 3.

An Overview of PIM/p architecture is shown in Figure 2, PIM/p comnsists of up to 512 PEs. 8
FEs inside a cluster share one address space, and data colerence is maintained by a snooping cache

mechanism. Each PE has a network interface unit to provide sufficient performance for short and long

message packets.

Table 1: Global Configuration

Total number of PEs |

Topology | Number of Clusters
d;l M/p hypercube 64 512
| PIM /e erosshar 32 256
" PIM/m mesh | 256 256
PIM/i — 2 16
PE*[,’I-: — 41 16
Multi-PSI | mesh 64 64

+ mini-clusters

Multiple Hypercube Network

FEP
Input
Output

L L L

(Router |
pivf| (o] | [o] [N]
PE; PE; || PEs |..| PE: |1 : : \
Cache| |[Cache)| |[Cache] |[Cache]l : ! EERY '
T i
Shared Memory :ri E :. :'
Clusterg '—————————— ______!!Cluster;s Clustergy

Figure 2: Overview of PIM/p Architecture

Table 2: Specification on Processing Element

Instruction set Cycle time | LSI fabrication | Line interval
PIM/p RISC + macro instruction 60 nsec standard-cell 0.96 pm
PIM /¢ CISC (micro programmable) | 50 nsee gale-arrays 0.8 pm
PIM/m | CISC (micro programmable) | 65 nsec standard-cell 0.5 um
PIM/i i RISC 100 nsec | standard-cell 1.2 pm
CPIM/k | RISC 100 nsec custom 12um |
Multi-PSI || CISC (micro programmable) | 200 nsec gale-arrays 2.0 pm

3.1.2 Processing Element

Since KL1 implementation requires frequent runtime type chacking, all CPUs of PIM are designed as
the tageed-architecture following the Multi-PSL

PIM/p, PIM/i and PIM/k have RISC-like instruction set whereas PIM/m and PIM/c have CISC-
like micro programmable jnstruction set (Table 2). The former processors execute machine instruc-
tions, which are at a level still lower than KLI1-B, the latter processors interpret KLI-B code by
horizontal micro program.

The CI'U of I"IM/p [6] has a unique feature called macro-call [23] instructions for light-weight
subroutine calls. The instructions enable the size of compiled user program codes to be kept small
and Lo reduce the overheads of subroutine calls. It also has some more instructions dedicated to
KL1 implementation, such as dereference instructions and MRHB [1] incremental garbage collection
instruclions.

The estimated performance of one processing element of PIM /p is 600 KRPS, which is over 4 times
as fast as that of Multi-PSI.

3.1.3 Network

Network connecting clusters are summarized in table 3.
In PIM/p, four NIs are connected to a router, which works as a node in a global network. PIM/p
also has two 5CSI channels per cluster, which are used for connecting PIM/p and FEP (Front End

Processor} or PIM/p and disks.
PIM/c has one special processor called cluster controller per cluster, which is connected to a shared

bus. The cluster controller has overall responsibility for network communication.

3.1.4 Cache System

Since we had studied that it was effective for KL1 execution to exploit data access localities, we
designed coherent cache protocols [5][13] which can keep the locality high and reduce the shared bus

Tahle 3: Network

PEs in a cluster | # Nls in a cluster | Comment
| PIM/p 8 8 each PE has NI
PIM/c 8 1 N1 is connected to a bus
PIM/m 1 1
PIM /i B | NI is connected to a bus
PIM/k 16 —
Multi-PSI | 1 | 1

{PE = processing element, NI = network interface)

Table 4: Specification on Cache

Coherence Control Mapping Cache Size
Protocol # States t Instruction | Data
PIM/p invalidation 4 4 way 64 KB
PIM/c invalidation | 5 2 way B) KB
| PIM/m | i direct-map 5KB| 20 KB
PIM/i broadcasting & direct-map 160 KB | 160 KB
PIM/k hierarchical -l (1st) direct-map 128 KB | 256 KB
invalidation {2nd) 4 way IMB| 4MB
Multi-PSI || —] = direct-map 20 KB

(1 does not include locking state.)

traffic [18]. AN PIMs have write-back type coherent cache protocols (Table 4). Low cost locking
mechanisms are also supported by using the cache block status of cache memory.
PIM /k has hierarchical cache system. Four PEs connected to a bus [cache bus) form a mini-cluster,

and four mini-clusters are connected to another bus (memory bus).

3.2 KL1 Implementation on Shared Memory Environment

KL1 implementation techniques of PIM’s inter-cluster follow in that of Multi-PSI's inter-processor.
The biggest difference is inside the cluster (shared memory environment) where all PEs share ad-
dress space. The techniques include automatic load distribution among PEs, unification with mutual

exclusion, and executing garbage collection in parallel.
Since communication costs inside clusters is low, the KL1 runtime system can distribute goals

antomatically. Each processor has a local run queue called & “ready goal stack” to keep memory
access locality high, and automatic load distribution is performed in the following sequence [20];

1. An idle PE, broadcasts a signal to all processors.
2, PE;, which receives the signal first, pops one goal from its ready goal stack.
3. PE; links the goal to the mailbox of PE;.

The scheme was evaluated on a parallel simulator on Sequent Symmetry [21].
Executing stopping GC (clusterwise) in parallel combined with MRB-GC was invented and eval-

vated on a PIM simulator [8].

4 Current Status and Future Work

The five models of PIM hardware are now under production. The development of KL1 implementation

for PIM is almost complete as a common specification. Now we are modifying the common specification

ta fit the respective PIM hardware.
We hope we will be able to demonstrate large applications running on PIMs at the international
conference on FGCS to be held in July, 1992,

Acknowledgment

We would like to thank the researchers of ICOT and cooperative companies who have been working
on PIMs and Malti-PSIL.

References

[1] T. Chikayama and Y. Kimura. “Multiple Reference Management in Flat GHC”, In Proceedings of
Fourth International Conference on Logic Programming, pages 276-293, University of Melbourne,
MIT Press, 1957,

[2] T. Chikayama, H. Sato and T. Miyazaki. “Overview of the Parallel Inference Machine Operating
System (PIMOS)", In Proceedings of the International Conference on Fifth Generation Computer
Systems, pages 230-251, Tokyo, Japan, 1988,

[3] M. Furuichi, N. Ichiyoshi and K. Taki. “A Multi-Level Load Balancing Scheme for OR-Parallel
Exhaustive Search Programs on the Multi-PSI", In Proceedings of the Second ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP), pages 50-59, Seattle,
USA, 1990.

[4]

[5}

[6]

[7]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

A, Goto, M. Sato, K. Nakajima, K. Taki and A. Matsnmoto. “Overview of the Parallel Inference
Machine Architecture (PIM)", In Proceedings of the International Conference on Fifth Generation
(Computer Systems, pages 208-229, Tokyo, Japan, 1988,

A, Goto, A, Matsumoto and E. Tick. “Design and Performance of a Coherent Cache for Parallel
Logic Programming Architectures”, In Proceedings of 16th Annual International Symposium on
Computer Archilecture, pages 25 — 33, Jerusalem, lsrael, 1989,

A. Gote, 'I'. Shinogi, T. Chikayama, K. Kumon and A. Hattori. “Processor Element Architecture
for a Parallel Inference Machine, PIM/p”, Journal of Information Processing Vol.13, No.2, pages

174-182, 1940.

N. Ichivoshi, K. Rokusawa, K. Nakajima and Y. Inamura. “A New External Reference Manape-
ment and Distributed Unification for KL1", In Proceedings of the International Conference on

Fifth Generation Computer Systems, pages 904 — 913, Tokyo, Japan, 1088,

A, Imai and E. Tick., “Evaluation of Parallel Copying Garbage Collection on a Shared-Memory
Multiprocessor™, ICOT Technical Report 650, 1991.

Y. Inamura, N. Ichiyoshi, K. Rokusawa and K. Nakajima. “Optimization Techniques Using the
MREB and Their Evaination on the Multi-PSI/V2", In Proceedings of North American Conference
on Logic Programming 19489, pages 907-921, Cleveland, MIT Press, 1989,

Y. Inamura and S, Onishi. “A Detection Algorithm of Perpetual Suspension in KL17, In Pra.
ceedings of the Seventh International Conferenice on Logic Programming, pages 18-30, Jerusalem,
MIT Press, 1990.

Y. Kimura and T. Chikayama. “An Abstract KL1 Machine and Iis Instruction Set”, In Proceed-
ings af 1987 Symposium on Logic Programming, pages 468-477, San Francisco, IEEE Computer
Society, 1987,

D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta and J. Hennessy. “The Directory-Based Cache

Coherence Protocol for the DASH Multiprocessor™, In Proceedings of 17th Annual International
Symposium on Computer Architecture, pages 148-159, Seattle, IEEE Computer Society, 1990.

A. Matsumoto, T. Nakagawa, M. 5ato, K. Nishida and A. Goto. “Locally Parallel Cache Design
Based on K11 Memory Access Characteristics”, [C0O'T" Technical Report 327, 1987,

Y. Matsumoto and K. Taki. “Parallel Logic Level Simulation System on a Distributed Memory
Machine™, In Proceedings of Fourth Franco-Japanese Symposium on Artificial Intelligence and

Informatics, Wennes, France, 1991.

K. Nakajima, Y. Inamura, N. Ichivoshi, K. Rokusawa and T. Chikayama. “Distributed Imple
mentation of KL1 on the Multi-PSI/V2", In Proceedings of the Sizth International Conference
on Logic Programming, pages 436451, Lisbon, MIT Press, 1989,

9

