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Abstract

This paper presents a methodology for learn-
ing stochastic motife from given genetic se
guetizes, A stochastic motif here is a prob-
abilistic mapping from 2 genetic sequence
(which has been drawn frem a finite alpha-
bet) to a number of categories (cytochrome
¢, globin, trypsin, ete)). We propese a new
representation eof stochastic motifs, stochas-
1ic decision predicates (SDPs) and reduce cur
learning preblem to that of learning SDPs.
We employ Hizssanen’s Minimum Deserip-
tion Length (MDL) principle in selecting an
cptimal hypothesiz and present a detailed
method for caleulating description lengths
relative to SDPs. Experimental resclts show
the validily of our learning sirategy.

1 INTRODUCTION

We consider here the problem of learning the relation-
ship belween genetic szquences which have been drawn
from a finite alphabet, and their corresponding cate-
gories (eytochrome ¢, globin, trypsin, ete.). While a
given group of genetic sequences may at first follow
such a general rule as, for example, “If & sequence con-
tains the pattern - CAQCH -+« then it corresponds
to eytochrome ¢ -+, " in actual situations, howewver,
not all of such sequances will, in fact, belong to that
category, because of the existence of neoisz or uncer-
tainky due Lo the variety of biological species. The
following type of rule weould be mere appropriate here
to express a mapping from a genetic sequence to cate-
gories: "If a sequence contains the pattern - -CAQCH
-, Lhen it correspands to cytochroms ¢ with probabil-
ity 475 and atherwise with probability 1/5." We may
call this kind of mapping & sfechastic molyf, which can
be regarded az 2 econditional prabability distribution
over calegories for a given sequence.

The purpose of this study is to give a methodology
for lzarning stochastie motifs from genetic sequences,
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First, we propose & new representation of the proba-
bilistic structure of stochastic metifs. This representa-
tion we call stochastic deciston predicates (SDPs) and
we reduce our learning problem to that of learning
SDPs from given genetic sequences. (In this paper,
we define SOPs as specific type of probability distri-
butions, See (Konagaya & Yamanishi 21) for a mare
general definition and detailed discussion of SDFs.)

Mext, we apply the Minimuom Description Length
(MDL) principle developed in (Rissanen 78, 83), (Wal-
lace & Boulton 68), and (Solomeonofl 64), to the se-
lection of the best hypothesis. This principle gives
a strategy of selecting an optimal hypothesis on the
bagiz of the trade-off between the simplicity of the
model and its fitness to the given examples. The MDL
principle has been widely applied to leaming prob-
fems {e.g. (Quinlan & Rivest 89), (Segen 90), (Ya-
manishi 90) ete.) and also to the genetic information
processing for the purpese of 'unsupervised learning”
le.g. (Milesavljewi'c 90}, (Cheeseman & Kenefskey
90), and (Babeock, Olson, ke Pednault 90) etc.). In
this paper we apply the MDL principle o a new Lype’
'supervised’ learning problem in genetic information
processing, which cannot be fonger reduced to the
problem of learning decision trees {Quinlan & Rivest
89) ar stochastic decision lists (Yamanishi 90}, because
in classification of genelic sequences, complicated pat-
terns (including variables) appearing in the sequences
must be included in the considerations.

Further, we demanstrate the aplimality of the MDL
strategy for learning SDPs by testing the performance
af aur methad on real genetic data, Our experimental
results show that the MDL strategy actually produces
metifs with less predictive errors than the maximum
likelihood methad.

2 A FORMAL DEFINITION OF
THE LEARNING PROBLEM

This section gives a formal definition of a probabilis-
tic structure for genetic sequences and of the learning



problem associated with the structure.

In the discussion below, a penetic ‘sequence' refers
to a string of letlers drawn from a fixed alphabet
A. For example, for alphabet 4 ={abede, - 2},
“asfaeapa- " is a sequence. We assume Lhe following
about sequences:

(1) Fach sequence is independently drawa.
{2) The length of each sequence is fixed.

{3) Each sequence belongs to a single cetegory (e.pg.
evtochrome ¢, globin, trypsin, eic.).

We have made the second assumption here for simplic-
ity's sake. Although in actual observations, the length
of ohserved sequences may be not fixed, we may adjust
for this by taking the lengthe of the longest ohserved
sequence as our fixed length and adding an appropri-
ate number of raps to all EEUENCES which have [ewer
Jetters in them.

In addition to these assumptions, we assume that the
source from which sequences are drawn is “stochastic.”
We use the folloewing notation te intreduce a proba-
bulistic structure on genstic sequences:

[ Motation ]
s A alphabet

AL (n: the length of the sequence)

0% {Cy, - e} - the set of categories

= (5= C, 8,7} (P:aprobability measure on & x £,
51 asigma algebra on P}

s 5: segquence (random varialle on §)

= O eategory {random variable on )

For nucleic acids, | 4 |= 5. For amid acids, | 4 |= 21,
Here Llie gap *—" is siso regarded as a letter,

MNote that each = € P is resolved as follows:

(5, C) = Q(5)\P(C| 5) (1}
Here Q(5) is a probability distribution over S. P(( |
£) is a conditional probability distribution aver € given
5 g &, which 13 called a slochastic rule{[Yam 90]). In
the context of genetic information processing, we cail a
stochesticrule P{C | 5) a stochastic motifand also call
the stochestic motif P*{C | 5) defined by the saurce
the target motif

In the above probabilistic setting, we consider the fol-
lawing learning problem:

“Given /A examples of pairs (sequence, category):
(51,00} (5w, Cr) deawn independently according
to an unknown distribution Q(5)P*(C | 5), find a
geod approximation of the target motif P{C | 5) {from
the hypothesis space H."

Here the hypothesis space 'H denoles a class of stochas-
tie motifs specified by some conslraints.

3 STOCHASTIC DECISION
PREDICATES

In thiz section, we prepese a new hypothesis space,
stochastic decigion predicates (SDPz), for representa-
tien of stochastic motifs. An SDP probabilistically
maps from a genetie sequence to a number of diferent
categories and takes the form of a linearly ordered set
af canjunctive normal forms of a number of predicates
including “patterns.”

First we define a patiern set © as 5 % (AL,
where [AU{X'})" is aset of all strings generated by the
elements of 4 and X, We call € T & patlern. For ex-
ample, if d = {4,5,C, T}, AACKXCN and XOGXT
are patterns, Here we regard X as an anonymous vari-
able. That is, for exemple, in A4CX CX, we regard
A as & variable bul we don't necessarily identify the
firet X with the sceond X In order to define STIPs, we
use the following notation. For the sake of simplicity,
we assume that the number of categories is two.

[ Maotation ]
» 5(E &) - zequance
* m o positive integer
o Ci(€ €= {CU} C): category
o motif(5,C;) : predicate that is true if and enly if
5 belongs to C;
. Qtl'} A QE'}' (f = 1,---,m): conjunction of
Q(‘] e bl
1 e
(Y _ plil s, {4 pi ) _ .
C Qi =RV VRIS m, = k)
disjunction of HEI ],.~ ey J'fl;:’]
e R =L m s hy, = k)
predicate of Lthe form: canmimf&',a}
= contein(§ a): predicate that is true if and only if
5 contains o,
# o(E D) pattern
o €[0,1) (i = 1, m): probability parameter

We define an SDF as a stochastic rule which takes
the following general form:

motif{8,C1) (withpi} = QA
motif{5,Ca} [with py) - QA ..

AQEL.

A Qi

moli {5, Cw ) (With poy) - Q[Lm‘” LRTRr, Qi:::]
malif(§, Cm)  (with pm)

The semantics of the SDP is as follows: For given
S €5, C is assigned with probability p; and €— {C;}
i5 assigned with probability 1 — p; where i is the least
index such that 5 makes Q?} LT Qw true (the
m=—th condition is regarded as true for any 8.).



Let 8 & (pr, . Pm) be a probability parameter vec-
tor and M % {metif(5,¢) — o Al
Vimi,m De a countable meodel. An SDP specified
by § end M defines a stochastic rule, which we de-
note P(C | 5:8 = M). Letting the set of all possible
[M} be M, the set of all stochastic decision predicates,
which we denote Hgpp, can be writien as lollows:

Hepp = {(PIC| 58 < A} 0 0, 1]™ and M € M)
where m 13 the number of clauses in M,

The preblem of learning stochastic motifs can he re
duced to estimation of both of " and M" specilying
the target motif, ffom given genetic sequences.

4 LEARNING STOCHASTIC
MOTIFS USING THE MDL
PRINCIFPLE

The MDL principle asserts that the best hypothesis is
the one that minimizes the total description length {in
bits) of the hypothesis plus the descriplion of Lhe ex-
amples relative to the hypothesis. In this section, we
describe 2 methodology for applying the MDL prinzi-
ple to learning stechastic SDPs. All logarithms, here-
after, are to the hase 2.

For observed examples of DY = Dy Dy, Ik =
(S, CeESxC{i=1,-,N) let ML 5 .5
and C% = ¢y ... Cy. Let E; be the sel of examples
which make the 1,---,(j — 1] —th clauses false and
make the j=th clause true. Let N be the number of
elements in £; and let NJ-+ be the number of examples
which are in Ej and belonglo € (i = 1,---,m, mis
the number of clauses in M)

Then the likelihood of € for given SV with respect
to P & Hepp with § and M, which we denote P(CV |
SN .8 <« M), is calculated as follows:

YES ,
PlEN | sY ey =T g (1-p)V N
j=l
The description length of 5™ for given C‘”ﬂ with re-
spect to the maximum likelihood estimate § and the
countable madel M, which we denote £(CY | SV - 6 <
MY, is calculated by —log P(CY 1 5Y 1 8 < M) as
fallows:
qEV | SN d My = NHE) + DUE LAY (2)
sl
where f; = V¥ /N; and §; is an estimate of the true
parameter pf, which is usually set to be ¥ /N (the
NEEL

maximum likelihood estimator) or 7 (the Bayes es-

timater). H(f) = —filogfi — (1 = Billeg(l — &)

D(5: || Bi) = Bileg P+ (1= fi)log (=55 (i = 1, m).

Let £{6 | M) be the description length for the param.

eter 6 = I[ﬁrl,---ﬁ.-.,e relative te the fixed model Af.
Since the accuracy (variance) of the maximum likeli-

hood estimater is Of1/V'N), £(6 | M) is given by:
x = log IV;
(i My = Z% (3)

i=1
Let £ M) be the deseription length for the countable
mode! M, satisfying the prefix the Kraft inequality:
E-’“’EM 2=HM) < 1 We calculate A{A1) by:

() = 3 lug‘{i hy) HEIJ‘-; ~ 1]

B by i
£35S e 40) )
T f
o ) = X)) < leg(l A =1} + 1]

where Li(i) and X7({) are the number of letters
and of variables in the I-th predicate in the j—th
disjunction of the i—th clause, respectively. On Lhe
righthand of (4), the first term denotes the descrip-
tion length for the number of contein preditates in
the 1—th clause, Here for any d > 0, log”™ d denotes
log e+log d+loglogd+- - (&= 2.865) where the sumis
taken over all positive terms (Rissanen’s integer coding
scheme (Rissanen 83)). The second lerm denotes the
description length for the sequence W, A A --- in the
i—-th eclause, The third term denotes the description
length for the positions of variables in the pattern o
appeatring in ‘contain{S, a).' The {ourth term denotes
the deseription length for latters (not Uariahle? spec-
ifying the patlern ¢ appearing in “contain{S,¢)." The
last 1 bit denotes the description length [or the cale-
gory C € C appearing in the predicate ‘metif(5,C).'
See (Konagaya & Yamanithi 81) for the biclogical

meaning of the encoding scheme for £{M).

By summing (2), (3), and (4), we have the following
total description length J(CN 1 § < M | S¥) relative
to the parametes § and the madel Af:

gov g < Mmps™) (3)

O 1SV M) A | M)+ £A1)}
where A is the adjustrent parameter. The MDL prin-
ciple asserts that one should select the model M such
that minimizes £(CY : 8 < M | 5¥). We call the
strategy for finding hypotheses with least {or neacly
least) total description length the MDL strategy.

The optimality of the MDL strategy has been theoret-
ically proven in terms of their convergence to the true
model ((Rissanen 78, 83), (Barron 85)). Further, Ya-
manishi proved in (Yamanishi 80: a full version) that
the upper bound on the sample complexity neaded for
the MDL estimale Lo converge Lo Lhe troe madel within
given accuracy and confidence.parameters, is less than
that for any other estimate (e.g., maximum likelihood
estimate, AIC estimate etc, .



Takle 1; Disteibution of Mitochondria Cvtoehrome C

Motii | Ny and N | Ny and N3 || by and fn
SDF 1 159 BT 0.356
596D 5966 0.9993
SDP 11 73 BT 3810
6085 G082 9983
SOF I 1 a7 0.532
GOAT G084 0.9993

5 EXPERIMENTAL RESULTS

Inn this section, we apply our methodology to learning
stochastic motifs for discriminating “mitochondria cy-
tocheome ¢ Here the mitochondria cvtochrome ¢ 42 a
subelass of eytochrome ¢ protein which earries an clee-
tron in the respiratory chain. Hereafter, “meyl.c” de.
notes the mitochondria eytochrome ¢. Let the domain
S = A9 and the range be € — {meyi.c, others]),
where the alphabet 4 is the twenty-letter alphabet of
amino acids ples the gap =" (ie, | A |= 21) 2nd the
length of cach sequence is adjusted to 1000,

Let the following three simple SDPs be given as can-
didates for the representation of the optimal motif.

SDP I
meti f(5, mept, ¢ (with py) @ =
contain(s, "CXRCH"),
matif(5, sthers) (with pa).

sDE 11
moli f(5, meyt. ¢) (with py) - -
eontfain(®, "CXXCH") A contain(5, “PGTEN").
moti f( 5, ethers) (with pq)

SDPF III
moti f{5, meyi. &) {with py): =
contein(5, "CAXCHE") A contain( 5, "GPALAG")
A contain(S, "PGTEN").

mn‘!il,l'lzs, aiher.s} I:v.-'it.h p;]

These three SDPs are obtained from the training ex-
amplés by using some heuristics {eg. DP matehing
ete.). In this study, ignoring the eomputational com-
plexity of finding the three SDPs, we concentrate on
the problem of how to selecl the SDP with the “lzast”
predictive error rate, from among them.

Table L shows the distributisn of the training se-
queness observed through the these SDPs and esti-
mates of probability paramaters, in Table 1, for each
S0P in the first eclumn, the second ealumn shews MV (:
the number of the examples which make the 15t clause
true) in the upper row and Na{=N — V) in the lower
row. The third column shows N,"'[: the number of
examples which make the 1st clause true and belong

Table 2: Deseription Lengths relative to Meotifs

Metil | Ly L L3 | Total
SDP T || 2147 | 101 | 207 | 2555
SDPIL || 675 o4 [ 5341313
SDFIT ] 588 54 7637 1455

Table 3: Estimates of Prediction Errer Rates

MDL ML
0.0008 | 0.0013

Estinated Error Rate

to meyd.e) in the upper row and M) (: the number of
examples which make the 15t clause false and don't
belong to meyl.c) in the lowsr row. The fourth column
shows the estimated paramelers: fiy in the upper tow
and faoin Lhe lower row. §y and gy denote the Bayes
estimates of the prebability parameters in the first and
secobd |:'|a|.15i:sJ respectively.

Table 2 shows the description lengths relative te the
three SDFs, In Table 2, Ly, Ly, L, and Total dencte
the description lengths ealenlated by (2),(3),(4), 2nd
(5), respectively. Here X in {3) is sel to be 1.

We can see from Table 2 that the SDP Il contain-
ing "CXXCH" and"FPGTHM" requires the least to-
tal deseription lengih and thus is optimal in the sense
of the MDL principle, The SDP | containing only a
single patiern "CXXCH" is considered as too simple
for diseriminetion of mitechendria eytachrome ¢ On
the other hand, the SDF 1II containing “CXXCH,"
YGPELXKG" and "PGTEM" can discriminate the
given sequences best but s considered as too compli-
cated to give a good model of the target molifl

SDP 11, which is selected as the best hypelhesis by
the MDL strategy, is biologically meaningful. Indeed,
in the case of mitochondriz r:ytcc]'lrnme ¢, cysteinsas
(C) in the pattern "CXXCH" denote binding sites
for a heme ¢, and both of histidine (H) in the pat-
tern "CXNCH" and methionine (M) in the petlern
“PGTERM" denote regands Lo the iron molecule in the
heme ¢ These amino acids are called functional sifes,
which play the most essential role in protein activity
and have been presecrved in the evolution process. Ses
(Ranagaya & Yamanishi 81) for more detailed discus-
sion on the biclogical meaning of the matifs extracted
by our methodology.

Maotice that an SDP can be transformed into a deter-
ministic rule by letting all probability parameters {p;}
be 1. Such a deterministie rule can predict whether
or not the given sequence belongs to mitochondria ey-
tochrome c. Table 3 shows the estimates of the predic-
tion ercocr cates for the deterministic transformations
of the 5DPs selected by the MDL principle akd by
the mazimum likelthood (ML) method. Here the ML
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methed refers to the strategy which selects & rule that
minimizes onky the description length for examples, ig-
noring the description length for the hypothesic itself.

The estimates of the error rates shown in Teble 3 are
obtained by applying the cross-validation method to
the origmal training sequences: We randomly divide
the o:iginat set 5 of Lraining sequeuc&u into 10 sub
sets §y,---, 510 (| 51 [= --- =| 510 [). Using each
5 — 5; as a Lraining e‘f.an"p]a- we construct an SDP
by the MDL or ML method, then transform it into
a deterministic rule by letting all probability param-
eters {p }(i = 1,-.-,m) be 1, then lest it on 5, We
denocte the number of prediction errcrs for the MDL
motif on 5 as Error,  {5.) and that of the ML mo-
tif as Evror,,, (5] Let Bynp and Harp be the cross
validation estimates (Breiman, Friedman, Clshen, &
Stone 84 p.753-T6) of ercar rates for the MDL principle
and ML method, respectively. furpr and Rurp are
given by
.
RuoL = ‘&r Z Erfm‘m:u :S:]
i=1
1 i
Rt = 7 L Errar,,, (50
it

where & = §158. The numerical result shown in Table
3 demensirates that the MDL principls produces arule
with less prediction errors than selested by the ML
method, in average.

6 CONCLUSION

We have proposed a new methodolegy for learning
stochastic molifs from genetic sequences. Our pro-
posed methodolagy is characterized by the new repre-
sentation of stochastic motifs, SDP, and by the MDL
leacning strategy. The experimental results show that
the MDL stratezy actually produces a motif for dis-
criminating mitochondria cytochrome © with less pre-
dictive error than the maximuom likelihcod methed. In
this paper, we have concentrated on the issue of how
to select the best motif. The issue of how to design an
algorithm of finding appreximately minimum deserip-
tion length motifs is left for future study.
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