ICOT Technical Report: TR-657

TR-657

Stochastic Decision Predicates; A Scheme w

Represent Motifs

by
A. Konagaya & K. Yamanishi (NEC)

Tune, 1901

© 1991, ICOT

Mila Kokusa Bldg. 21F (03)3456-3191 ~5

I :C] I 4-28 Miia 1-Chome Telex ICOT J32964
Minato-ku Tokyo 108 JTapan

Institute for New Generation Computer Technology




Stochastic Decision Predicates: A Scheme to Represent Motifs

Akihiko Konagaya!
Kenji Yamanishi?
C&C Systems Research Labs., NEC Corporation’,
C&C Information Technology Research Labs., NEC Corporation?

1-1, Miyazaki 4-chome, Miyamaeku, Kawasaki, Kanagawa 216, Japan
TEL:(044)856-2126, E-mail:konagayaf@csl.cl.nec.co.jp yamanisi@ibl.cl.nec.co.jp

Ahstract

Thiz paper presents a new scheme for classifying
genetic sequences, called Siochastie Decision Predi-
cates, A stochastic decision predicate consists of Horn
clauses and their probability parameters, and repre-
sents a (stochastic) motif that denotes a probabilistic
mapping from a genetic sequence to a set of categories,
such as protein families. For the selaction of stochastic
decision predicates, quantative evaluation is possible
from the viewpoint of predictive performance for un-
known sequences as well as diserimination performance
for the given genetic sequences. We employ Rissanen's
Minimum Description Length (MDL) principle in order
to avold overlearning caused by the statistical fluctu-
ation. Our experimetal resulis demonstrate that the
MDL prineiple produces motifs with less predictive er-
rors than the maximum likelihood method.

1 Introduction

Recently, several biologists have focused on
searching for common patterns in genetic se-
quences which have been preserved in the evolu-
tion process. Such patterns are called “motifs” in
the biology community, and are considered to rep-
resent special biclogical functions (e.g. Serine pro-
teinases and Cysteine proteinases) and/or special
structures (e.g. Zinc fingers and Leucine zipper
consensus)[AA 90].

In this paper, we are focusing on motifs from
the viewpoint of computational analysis. From
our viewpoint, a motif is considered as a map-
ping from genetic sequences to certain categories
such as globin, cytochrome c, trypsin, ferredoxin,
etc. The mapping greatly reduce the search time
in genetic databases by using the motifs for the
discrimination of genetic sequences instead of dy-
namic programming matching which has become

a time-consuming operation due to the rapid in-
crease of the size of the databases.

As a representation of the motif, one might
use an inference rule that discriminates the given
genetic sequence, as follows: “If the pattern
«+CAQCH --- is included in the sequence, then
it corresponds to eytochrome ¢ --.." However, in
actual cases, one would soon notice that it is very
hard to find such a determministic inference rule,
becanse of the existence of noise, or uncertainty,
due to the variety of biological species.

To overcome this difficulty, the following type of
rule is more appropriate to express the mapping
from a genetic sequence to some categories: “If the
pattern -- -“CAQCH - - - is included in the sequence,
then it corresponds to cytochrome ¢ with proba-
bility 4/5 and otherwise with probability 1/5." We
call this kind of mapping a stochastic motif. Here,
it should be noticed that we are interested in ex-
tracting a stochastic motif that performs well for
unknown sequences rather than a motif with high
discrimination performance, that is, with a dis-
crimination probability closer to 1.0 for the given
SEQUENCEs.

In this paper, we will propose a new scheme to
represent such stochastic motifs and methodology
to select ‘good’ stochastic motifs, but mention lit-
tle about the probahility structures of the stochas-
tic motifs. See the paper[YK 91] for the for-
mal approach to learning stochastic motifs. First,
we propose a new representation of stochastic
motifs, which we call Stochastic Decision Predi-
cates. Then, we apply the Minimum Description
Length{MDL) principle developed in ([Ris 78, 89],
([WB 68]), and ([Sol 64]), to the selection of an
optimal hypothesis. This principle gives a strat-
egy of selecting an optimal rule on the basis of the
trade-off between the simplicity of the model and



its fitness to the given examples.

The MDL principle has been widely applied
to the genetic information processing in [Mil 90},
[CK 90], and [BOP 30] for the purpose of ‘cate-
gorization.' In this paper we will apply the MDL
principle to a new ‘supervised’ learning problem in
genetic information processing. Further, we will
demonstrate the validity of the MDL priciple in
our learning methodology by showing experimen-
tal results applied to real genetic data. Our ex-
perimental results show that the MDL principle
produces motifs with less predictive errors than
the maximum likelihood method.

The organization of the rest of this paper is
as follows: Sectiom 3 gives a representation for
stochastic motifs, which we call Stochastic Deci-
sion Predicates. Section 4 gives a strategy for
finding optimal stochastic decision predicates us-
ing the MDL principle. Section 5 presents experi-
mental results on learning genetic motifs based on
vur proposed strategy. Section 6 gives a discussion
on our methodology.

2 Stochastic
cates

Decision Predi-

In this section, we propose a new scheme, which
we call Stochastic Decision Predicates, for repre-
senting stochastic motifs. The stochastic decision
predicate consists of Horn clauses with probability
parameters. The zeneral form is the following.

motif(S,C;) (withp) =@ A - AQL).
m‘?t:-fislczj {wlth pg:l Q(:’] ""‘QE:}-

motif(S, Cm-1) (with pm_1} ==
motif(S,Cm) (with pm) - Q™A -

er"'”h-' AQm1),

k--!.

AQm.

Here we call each “motif(5,Ci)  (with pi)
;” A e A ";'5:.-"“ a stochastic clause. The
clause can be read as § is categorized into C
with probability p; if Q1 A+ A QY are all true.
We assume sequential interpretation of the clauses
in this paper. That is, motif(5,C;) is selected
after motif(S,Ch), - maf.:f{.&' Ci-q) are exam-
ined. The body goals QA --AQY (i = 1,---,m)
represent a condition to d.tscm:u.;nate a ca,tegory
C; when given §. Each goal QE_-‘]' consists of the

disjunction of goals Rm ;RE’} where Ri':} re
resents some predma,te that discriminates a cate-
gory C;. R\ is of the form contain($, o) which is
true when 5 contains a pattern o. In this paper,
we deal with a simple pattern that may contain
anonymous variables denoted by ‘X, For example,
if A={AG,CT}, “AAGXCX" and “XCGXT"
are patterns. Note that the first X does not neces-
sarily identify with the second X. In addition, our
scheme can deal with any patterns and predicates
if we can specify the complexity of the patterns
and predicates as seen in the next section.

The notation for the stochastic decision predi-
cate is summarized as follows.

[Notation]
+ A : alphabet, a set of letters appearing in ge-
netic sequences
{ For example, for nuclelc acids, | Ap, |= 4, for
m’na acids, | Aaa |= 20, respectively)

g &f {51, -85} ¢ the set of sequences
£ {C‘;, +Cr} : the set of categories
. S(E S) : sequence

¢ T : positive integer

« Ci(e C) (i =1,---,m):

stochastic clause

o motif(5,C;) : predicate that is true if and only
if § belongs to C;

. Q'[l Ao -'"'-Q[:} (i=1,---,

category in the ith

m): conjunction of

(l} ’Qiﬂl
. R}‘]' (i=1,oym, L= 1, by, 5= 1,000, k)
: predicate of the form : contain(s, 5)

» contain(§,c): predicate that is true if and only
if § contains the pattern .

« 2 the set of patterns

» o(e T): pattern

¢ p; €[0,1] (i=1,---,m): probability that
moztj{.ﬁ' Ci) 15 true for § such that
Qm A Q is true

L {P“l, TPm} : probability parameter

# M: the set of linearly ordered Horn clauses
s M(e M): Linearly ordered Horn clauses .

21 Semantics of Stochastic Decision
Predicate

The semantics of stochastic decision predicates is
given from the viewpoint of computational learn-
ing theory of stochastic rules[Yam 90]. A stochas-



tic decision predicate defines a probablistic map-
ping from genetic sequences to categories. The
probabilistic mapping can be regarded as a condi-
tional probability distribution over the categories
when given an sequence, by introducing a proba-
bility structure on the sequence—category pairs.

In this interpretation, the problem of extract-
ing motifs in genetic sequences can be regarded as
the problem of learning stochastic motifs, which
denote econditaional probability distributions, in
a probability structure on the sequence—category
pairs. In addition, the learning problem can be
also reduced to a learning problem in some hy-
pothesis space if the hypothesis space contains a
rood approximation of the target stochastic mo-
tif. We consider the set of conditional probability
distribution defined by stochastic decision predi-
cates would be one of such hypothesis spaces for
learning stochastic motifs. See the paper [YK 91]
for the formal approach to learning stochastic mo-
tifs.

3 Selection of Stochastic De-
cision Predicates Using the
MDL Principle

In this section, we describe a methodology for ap-
plying the MDL principle to learning stochastic
decision predicates. On the basis of the MDL prin-
ciple, the best stochastic decision predicate that
one should select in the given examples is the one
that minimizes the total description length, that
is, the description length of the stochastic deci-
sion predicate and the description length of the
examples relative to the predicate.

The deseription length of the examples is given
by the logarithmic likelihood of categories when
the sequences in the examples are given. Given N
examples (SN, CN) def (5, C) (8w, Cw). Let
£; be the set of examples which are false for the
1,---,f — 1th clauses and are true for the jth
clanse. Let N; be the number of sequences in F;
and let N} be the number of examples which are
in E; and belong to C;. Then the likelihood of O
when given SV with respect to a stochastic deci-
sion predicate with probability parameter # and
linear ordered Homn clauses M, which we denote

P(ON | 5V .8 < M), is calculated as follows:

.o m +
PN SN o< My=T]n° (1—p)¥
=1

The description length of the examples (S, C™)
relative to the stochastic decision predicate P with
an estimated parameter # and M, which we denote
HON | N 8 < M), is given by —log P(CV |
SN 8~ M), which can be caleulated, as follows:

HeN | SN« My= 3 N{H(E)+ DG 8} (1)

where f; = N7 /N; and fi; is an estimate of
the true parameter p!, which is unsually set to
be N /N;(the maximum likelihood estimator) or
%{the Bayes estimator). In addition, H{#)
and D(p; || p;) are entropy function and Kuilback-
Leibler divergence defined as follows.

H(p) = =filog fi ~ (1 — fi) log(1 — 5;)

1—pi
1-pi
The description length £CV | §V . 8« M)
indicates the number of bits required to encode
the distribution ol positive examples and nega-
tive examples relative to the stochastic decision
predicate, The length varies from 0 bits, when
pi = 0or 1.0 (i = 1,---,m), to N bits, when
pi = 0.5(i = 1,--+,m). The former occurs when
the stochastic decision predicate completely dis-
criminate the target categories in the given exam-
ples. The latter occurs when the stochastic deci-
sion predicate does not contribute to any discrim-
ination of the given examples.

Let E{Ei | M) be the description length of the pa-
rameter & = (1, - Pm ) for a fixed m Horn clauses
M. Since the accuracy (variance) of the maximum
likelihood estimator is O(1/+/N), £(6 | M) is given
by:

D{#: || ) =15.-1ng:;—: +{1—5i)log

WMy =3 —’”EEH" @)
l=1

Letting £(M) be the description length of the
set of stochastic clauses M, £( M) is given by:

HM) =

" E; L
S[lee* (D b))+ (3 ki —1)
i=1 i=1

1=l



+30 Zung( 1) ®

J=1 Im]l
+{L{ (i)

where L]({) and X (i) are the number of letters

and of variables, respectively, in the I—th predi-
cate in the j—th disjunction of the i—th clause.
Other notations follow those defined in Section 2.
On the righthand of (3), the first term denotes
the description length of the number of contain
predicates in the i—th clause. For any d > 0,
log™ d denotes logd +loglogd + « - - where the sum
is taken over all positive terms {Rissanen’s inte-
ger coding scheme [Ris 83]). The second term
of (1) denotes the description length of the se-
quence ¥, A, N,--- in the i—th clause. The third
term denotes the description length of the posi-
tions of variables in the predicates in the pat-
tern ¢ appearing in the predicate ‘contain(S, o).’
The fourth term denotes the description length
required to describe letters themselves (not vari-
ables) included in the pattern ¢ appearing in the
predicate ‘contain($, o). The last term logr de-
notes the description length of the category C ap-
pearing in the predicate ‘motif(5,C)".

The description length (M) denotes the num-
ber of bits required to represent a predicate M
by means of some encoding scheme. The scheme
ought to be designed so that the description length
can reflect the complexity of predicates,

By summing (1}, (2}, and (3), we have the fol-
lowing total description length I{C” 6 < M|

S¥) relative to the parameter § and the set of
stochastic clauses M:

HON -6 < M| 5N (4)
LHCN 1SN 6 < M)+ MEE | M)+ (M)

where A is the adjustment parameter. The

MDL principle asserts that one should select the

stochastic clauses M which minimize the total de-
scription length. That is, M is given hy:

= X7 (1)) log(] A| =1)} + logr ]

y . N.3 N
4M=ME£ELEEC (B < M| S5 {(5)
We call the hypothesis specified by M and the es-
timated parameter § for M—P(C | 5 : 6 < M)—
the MDL hypothesis . Notice here that it may be
computationally intractable to find M that mini-
mizes the total description Jength when all pos-

sible combinations of Horn clauses MM is large.

We call the strategy for finding hypotheses with
smaller total description length (4) the MDL strut-

egy.

4 FExperimental Results

We will apply our methodology to learning
stochastic desicion predicates for discriminating
“mitochondria cytochrome c.” Here the mitochon-
dria cytochrome ¢ refers to a subclass of cy-
tochrome ¢ protein which carries an electron in
the respiratory chain. Let S bhe the set of all
sequences appeared in the Protein Identification
Resources HI8.0 that contains 6158 amino acid
sequences, and C be a set {meyt.c, others}. We
assume the sequences consist of the twenty-letters,
each of which represents an amino acid. Hereafter,
“meyt.c” denotes the mitochondria eytochrome c.
Let the {ollowing three stochastic decision pred-
icates (SDP, for short) given as candidates for the
representation of the optimal motif.

s molif{S meyt. ¢) (with py) =
contain(S, “CIICE").

maotif(5, others) (with ps).

o motif(5, meyt. ¢) (with p;].‘-
contain(S, “CXXICH" JAcontain(S, “PGTEM" ).

motif(S, others) (with p,).

* matif(S, meyt. ¢} (with p';]l:-
contain({5, "CRXCHE" JAcontain(5, “GPXLXG")
Acontain(S, “PGTKN").

motif( S others) (with p, ).

" These three SDPs are obtained from the train-
ing examples by using some heuristics (e.g., DP
matching, genetic algorithm etc.).

Table 1 shows the distribution of the training
sequence observed through these three SDPs. In
Table 1, the motif patterns described in the first
column are those of the SDPs described above.
For each pattern on the left, the number of target
sequences for discrimination and the number of
positive examples that contain the corresponding
pattern(s), are shown.

In Table 2, Ly, L, L4, and Total denote the
description lengths caleulated by (13,(2),(3), and
{4), respectively, where A is set to be 1. f; and
fiz denote the Bayes estimates of the probability
parameters in the first and second clauses, respec-
tively.



Table 1: Distribution of Mitochondria Cytochrome C Sequences

Motif Pattern Nyand Ny [ N and NV [y and o
CXXCH 188 67 (.356
others i 5064 (1.9993
CXXCH and PGTHM T3 67 | 0.906
others 60835 6082 | 00.5993
CXXICH and GPELYG and PGTHEM 71 a7 0.932
others 6087 6084 0.99093

Table 2: Description Lengths for Stochastic Decision Predicate

Motif Pattern Li| I Ia “Total
CXXCH 214.7 | 10.1 | 29.7 | 255.5
CXXCH and PGTEM 67.5 94534 1313
CXXCH and GPXLXG and PGTEM | 59.9 | 9.4 | 76.2 | 146.5

Here, the columns in Ly, [5,La, and Total denote the description length of the examples relative to the predicates,
the description length of estimated parameters of the predicates, the description lengths for the stochastic
decision predicates that contains the pattern in the column Motif Pattern, and the total length of Ly,Lg,La,

respectively.

Table 3: Cross Validation Estimates for Prediction Error for Mitochondria Cytochrome C Motifs

MDL principle

ML method

Aver. Pred. Error Rate

0.0008

0.0013




We can see [rom Table 2 that the second SDP
containing “CXXCH"” and“PGTKM" is optimal
in the sense of the MDL principle. The first SDP
containing only a pattern “CXXCH" is consid-
ered as too simple for discrimination of the mito-
chondria cytochrome ¢, On the other hand, the
third SDP containing “CXXCH,” “GPXLXG,”
and “PGTKM” can discriminate the given se-
quences best but is considered as too complicated.
This suggests that the MDL strategy possibly
avoids the overfitting problem; the rule which best
fits the given example is sometimes affected by sta-
tistical irregularities, and thus, such a rule is not
always best in terms of predicting the labeling of
future data.

Table 3 shows the estimates of the average pre-
diction error rate for the SDPs selected by the
MDL principle and by the maximum likelihood
(ML)} method. Here the ML method refers to a
strategy which selects a stochastic decision pred-
icate such that minimizes the description length
of examples ignoring the description of the pred-
icate itsell, The estimates of the error rates
are obtained by applying the cross validation
method ([BFOS 84] p.75-76) to the original train-
ing sequences: We split the original set § of all
training sequences into 10 subsets §;,..-, 515 (|
Sy |= -+ =| 51 |). For each §;, we construct
a SDP from § — &;, then transform it into a de-
terministic rule by letting all probability parame-
ters be 1, and test it on 5;. We denote the num-
ber of prediction errors on §; of rules obtained
by the MDL method and by the ML method
as Errorypr(S;) and Errorprr(S:). Let Rpapr
and Rprr be the cross validation estimates of er-
ror rates for the MDL principle and ML method.
Ryror and Epep are given by

_ ;o
Rypr = ¥ S Errorypr(S:)
=1
1 10
Ryer = ¥ E Errorpp(S;)

i=1

where N = 6158, The numerical result shown in
Table 3 demonstrates that the SDPs selected by
the MDL principle have less prediction errors than
those selected by the ML method, in average.

5 Discussion

Let us mention that the motif extracted by our
method is not only computationally meaningful
but also biologically meaningful. Actnally, in the
case of mitochondria cytochrome ¢, the cysteines
(C) appearing in the pattern “CXXCH" denote
binding sites for a heme ¢, and histidine (I} in
the *CXXCH” and methionine (M} in the pattern
“PGTEM” denote regands to the iron molecule
in the heme ¢. These amino acids are called fune-
tional sites which play the most essential role in
protein activity and tend to be preserved in the
evolution process. The motif extracted by our
methad is sound in the sense that it contains all
of these functional sites. However it should be
noted that we cannot always extract biologically
meaningful motifs by means of statistical analysis
of genetic sequences. For this purpose, we have to
consider the properties of nucleic acids and amino
acids, and the structural information of proteins,
such as a—helixes and f-strands. The following
work remains to deal with actual genetic sequences
on the basis of our methodology.

e An efficient algorithm to find an optimal
stochastic decision predicate automatically:
A prototype system is now being developed
in the fifth generation computer systems
project. According to our experience so far,
stochastic search algorithms such as the ge-
nelic algorithm seems to be effective for our

purpose.

s The handling of point mutations and experi-
mental ambiguity: For example, actual amino
acid sequences contains mutation information
and special characters that represent ambigu-
ous elements, such as B for asparagine or as-
paratic acid, and Z for glutamin and glutamic
acid. The disjuction form of stochastic deci-
sion predicate may help this to some extent.
However, such information should be counted
for the calculation of description length of the
given examples.

¢ The handling of category hierarchy: The
current MDL strategy might select a mo-
tif pattern which has nothing to do with
the upper category of the target category.
For example, the MDL strategy might se-
lect only “PGTKM™ instead of “CXXCH"



A “PGTEM™ where "CXXCH” represents a
motif pattern for eytochrome ¢, a parent cat-
egory of mitocondoria cytochrome ¢, Such se-
lection is tolerable for the purpose of database
search, but might be dangerous in the sense
that it might lose biological meaning,.

6 Conclusion

We have proposed a new methodology for learn-
ing stochastic motifs from given genetic sequences.
Our proposed methodology is characterized by
the new representation of stochastic motifs using
stochastic decision predicates (SDP) and by the
MDL learning strategy. Our experimental results
show that the methodology actually produces a
computationary and biologically meaningful motif
for mitochondria cytochrome ¢, whose good pre-
dictive performance has been statistically proven
by the cross validation method. We believe the
methodology can also be applied to the various
kind of diserimination problems on genetic se-
QUENCes.
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