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Abstract

We consider the meta-level representation of Guarded Horn Clauses (GHC) first. We
implement GHC meta-computation system by enhancing the simple 4-line GHC meta-
program. Then we describe Reflective Guarded Horn Clauses (RGHC) system, where
reflective tower can be constructed and collapsed in a dynamic manner. This system
has the following two features comparing to the previous approaches: First, this system
is formulated without using quofe. Secondly, it has the reflective mechanism in which
reflective tower can be constructed using reflective predicates. RGHC has actually been
implemented. A simple execution example is also shown in this paper. This paper assumes
a basic knowledge of parallel logic languages.

1. Introduction

If we look for an ideal programming language, it must be simple and, at the same
time, powerful language. Looking back the history of programming language, we note
that the developments of the programming language are generated by the repeated trials
which look for such languages within a limitation of the available hardware.

Recently, it seems that the mechanism, called meta or reflection, is attracting wide
spread attention in programming language community [Maes 88]. We have already pro-
posed to introduce reflection mechanism into parallel logic program language GHC [Ueda 83
[Tanaka 86] and shown several examples, mainly from application aspects [Tanaka 88a)
[Tanaka 88b] [Tanaka 90]. However, the reflection mechanisms have been introduced in
an ad hoc manner and they lacked the generality as seen in 3-Lisp [Smith 84]. There-
fore, we would like to describe Reflective Guarded Horn Clauses (RGHC), which has the
expressive power compatible to 3-Lisp, in this paper.

The organization of this paper is as follows. In Section 2, we try to describe the
meta-computation system of GHC. After considering meta-presentation of the object-
level system, we describe GHC meta-computation system by enhancing the simple 4-line
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GHC meta-program. The language features of RGHC and several reflective programming
examples are described in Section 3. RGHC implementation is described in Section 4. An
actual program execution example is shown in Section 4. Related works and conclusion
are described in Section 6.

2. Meta-computation system in GHC

A meta-system can be defined as a computational system whose problem domain
is another computational system. The program and data of the meta-system model
another computation system. This another computational system is called the object-
system. Especially, the program of meta-system is called meta-program and it models
the algorithm of the problem solving at the object-level. On the other hand, the data
of meta-systerm models the structure of the object-system, ie., the data of meta-system
contains the representation of the object-system.

2.1. A simple GHC meta-program
In Prolog world, a simple 4-line program is well-known as Prolog in Prolog or vanilla
interpreter [Bowen 83]. The GHC version of this program can be described as follows:

exec(true) :-true|true.

exec((P,0)) :=truel|exec(P),exec().

exec(P) :-user_defined (P} |reduce(P,Body) ,exec(Body).
exec{P):-system(P) |sys_exe(P).

Using this meta program, we can execute a goal as an argument of “exec.” This
program tries to execute the given goal in an interpretive manner. We can see two levels
here, meta-level, where the top level execution is performed, and ebject-level, where the
goal execution is simulated inside the meta-program.

The meaning of this meta interpreter is as follows: If the given goal is “true,” the
exccution of the goal succeeds. If it is a sequence, it is decomposed and executed sepa-
rately. In the case of a user-defined goal, the predicate “reduce” finds the clause which
satisfics the guard and the goal is decomposed to the body goals of that clanse. If it is a
system-defined goal, it is executed directly.

Though this 4-linc program is very simple, it certainly works as GHC in GHC. How-
ever, this GHC in GHC is insufficient as a real meta-program because of the following
reasons.

e There is no distinction between the variable at the meta-level and the one at the
object-level. Therefore, we cannot manipulate or medify object-level variables at
the meta-level. For example, we cannot check whether the given variable is bound,
nor can we check whether the given variable is identical to the other one.

s The predicate “reduce(P,Q)" finds polentially unifiable clauses for the given ar-
gument “P.” In this case, object-level program must also be defined as a program.
Therefore, we cannot manipulate the object-level program without using assert or
retract.



o This program only simulate the top level execution of the program and we can-
not obtain the more detailed executing information such as current confinuation,
envirenment or erxecution resulf,

Therefore, we would like to propose the real meta-computation system which does not
have the disadvantages described above.

2.2. Meta-level representation of the object-level system
First, we consider how the object-level construct of GHC system should be represented
at the meta-level. Those can be summarized as follows:

2.2.1. Constants, function symbols and predicate symbols

We assume that constants, function symbols and predicate symbols are expressed by
the same symbols. The other possibility is using queofe to distinguish the level. In this
approach, "3 (quote three) corresponds to the 3 at the object-level. 3-Lisp and Gadel
[Lloyd 88b] adopt this approach. However, we do not adopt this approach.

In Lisp, both of programs and data are expressed as S-expression. In evaluating a
program, quofe is essentially used to separate data from the program and to stop the
evaluation. However, in logic programming languages, there exists a clear separation
between predicates and functors. Logic programming languages do not have a notion of
evaluation. They simply find out the binding of variables contained in the initial query.
Thaugh the implementation of guote is not difficult, our claim is that there is little merit
in using guofe in logic programming languages,

2.2.2. Variables and variable bindings

As explained previously, we cannot manipulate object-level variables well if it is ex-
pressed as vanables., To manipulate object-level variables, we need the information about
the representation of variables, i.e., we need to know where and how the given variable is
realized.

Therefore, we use a special ground term to express an object-level variable. This special
ground term has a one-to-one correspondence to the object-level term and is distinguished
from the ordinary ground term.

An object-level variables are expressed as “Gnumber” at the meta-level. A unique
number is assigned for each variable. Though we are afraid that this representation of
variables is not abstract enough, comparing to the approach using quote, we have chosen
it for implementation simplicity. Similarly, we also assume that the object-level variable
is expressed as “0!'number” at the meta-meta-level, “@' 'nunber” at the meta-meta-meta-
level, and so on.

The variable bindings at the object-level, i.e., environment, can conceptually be repre-
sented as a list of address-value pairs at the meta-level. The followings are the examples
of such pairs.

(@1, undf) ... the value of €1 is undefined
(@2, a) ... the value of @2 is the constant '‘a’?’
(3, ©2) ... the value of @3 is the reference pointer



to 02
(04, f(01,02))

. the value of @4 is the structure whose
function symbel is ‘'f,'’ the first argument
iz the reference pointer to 01, and the
second argument is the reference pointer to 02

We can regard these pair as expressing the memory cells of the object-level. Similar to
the ordinary Prolog implementation, reference pointers are generated when two variables
are unified. Therefore, we need to derefer pointers when the value of a variable is needed.

2.2.3. Terms and object-level programs

Kecping consistency with the notations explained before, we denote object-level terms
by corresponding meta level special ground terms, where every variable is replaced by its
meta-level notation.

For example, the object-level term “p(a, [HIT] ,£(T,b))" is expressed as
“pla, [01102],£(02,b))" at the meta-level. It is also expressed as
“pla,[0t1l@!2] ,£(0!2,b))" at the meta-meta-level.

On the other hand, the program of object-level, 1.e., the collections of guarded Horn
clause definitions, are expressed as a ground {erm al the meta-level, where all variables are
replaced by “var(number)” notation. For example, the {ollowing “append/3" program

append ([AlB],C,D) :-truel
D=[AlE], append(B,C,E).
append([],A,B) :-truelA=B.

is expressed as

((append,3),
[(append([var(1) |var(2)]},var(3),var(4)):-true|
var(4)=[var(1)} |var(5}], append(var(2),var(3),var(5))),
(append([],var(1),var(2)):-truelvar(1i)=var(2))1)

at the meta-level,

2.3. An enhanced meta-program

The simple GHC meta-program in Section 2.1 can be enhanced to fit to the require-
ments of the real meta-program using the meta-level representation in Section 2.2. The
enhancement can be done by making ezplicit what s implicit in the simple GHC meta-
Program.

s There was no distinction between the variable at the meta-level and the one at
the object-level. We express object-level variables as special ground terms at the
meta-level.

¢ We manipulate object-level program as a ground term at meta-level. “exec” keeps
it program as its argument.



¢ “exec” also keeps its goal queue and variable bindings for expressing continuation
and environment in its arguments.

The top level description of GHC meta-system can be written as follows:

m_ghc(Goal,Db,Dut) :- truel
transfer(Goal,GRep,1,Id,Env)},
exec([GRep] ,Env,Id,Db,NEnv,Res),
maka-result (Res,GRep ,NEnv,Out) .

For given object-level goal “Geal” and given object-level program “Db,” “m_ghc” puts
out the computation result to “Out.” “transfer” changes given goal “Coal” to object-
level representation “GRep.” In “GRep,” every variable in “Goal” has been replaced to
“@number” form. The third argument of “transfer” stands for the starting identification
number which is nsed to transfer the given goal. The fourth argument contains the
identification number which should be used next. The fifth contains the variable bindings
of this goal representation.

For example, if we input “exam{[H|T],T)" to “Goal,”
“transfer(exam([H|T],T),GRep,1,Id,Env)” is executed. The computation result be-
comes

GRep = exam([01]|02],02)
Id = 3
Env = [(@1,undf),(€2,undf)].

The cohanced “exec” executes this goal representation and the computation result
“0ut” will be generated by “make_result” predicate.

The enhanced “exec” has six arguments. These six arguments, in turn, denote the
goal gqueue, the environment, the starting identification number, the program, the new
environment and the erecution result. The enhanced “exec” can be programmed as
follows:

exec([],Env,Id,Db,NEnv,R)

1= truel
{NEnv,R)={(Env,success).

exec{[true|Rest] ,Env,Id,Db,NEnv,R)

t= true|
exec(Rest,Env,Id,Db,NEnv,R).

exec([false|Rest] ,Env,Id,Db,NEnv,R)

1= truel
{NEnv,R)={(Env,failure).

exec{[CRep|Rest] ,Env,1d,Db,NEav,R)

:- user_defined(GRep,Dh) |
reduce(GRep,Rest,Env,Db,NGRep,Envi, Id1),
exec(NGRep,Envi,1d1,Db,NEnv,R).

exec([GRep|Rest] ,Env,Id,Db,NEnv,R)

:= system(GRep) |
sys_exe(GRep,Rest ,Env,NGRep ,Envil),
exec{NGRep,Envl,Id,Db,NEov,R).
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Though we omit the detailed explanation, the meaning of this program is self-explanatory.
We easily notice that this is the extension of the simple GHC meta-program in Section
9.1. Note that the use of list for expressing goal queue Imposes us inefficiency and some
sequentiality. The difference list is used in the actual implementation. Also note that the
use of shared-variable and short-circuit techniques [Hirsch 86] [Safra 86] might be effective
in a truly parallel computing environment.

3. Reflective Guarded Horn Clauses

Reflection is the capability to feel or modify the current state of the system dynami-
cally. The form of reflection we are interested in is the computational reflection proposed
by [Smith 84] and [Maes 86]. A reflective system can be defined as a computational system
which takes its computation system as its problem domain.

In 3-Lisp, the meta-system and the object-system are exactly the same computation
system. A meta-system is dynamically created when reflective procedures are called at
the ohject-level. However, there is a possibility that reflective procedures are called while
executing the meta-system. In this case, the system creates the meta-meta-system and
the control transfers to that system. Similarly, it is possible to consider the meta-meta-
meta system, the meta-meta-meta-meta-system, and so on. Conceptually, it creates the
infinite tower of meta.

If a computational system has such reflective capability, it becomes possible to catch
the current state while executing the program and takes the appropriate action according
to the obtained information.

3.1. Two approaches in implementing reflection

There exist two approaches realizing such reflective system. One is utilizing a meta-
system. We modify the meta-program and add the means of communication between the
meta-level and the object-level, namely, we prepare a set of built-in predicates which can
catch or replace the current state of the object-level system. If we adopt this approach, it
becomes possible to catch or modify the internal state of the executing program by using
those built-in predicates.

In {Tanaka 88b] and [Tanaka 90], we proposed several reflective built-in predicates,
such as “get_q,” “put_q,” “get_env” and “put_env.” “zet_q” gets the current goal
queue of “exec.” “put_q” resets the current goal queue to the given argument. Similarly,
get_env” and “put_env” operate on the variable binding environment. Though this
approach has a merit that the implementation is relatively straightforward, we should
note that this approach is not the accurate implementation of reflection. It 1s becausc the
internal state is always changing, even while processing the obtained information at the
object-level.

The other way is to creatc meta-system dynamically when needed. Tf a reflective
predicate is called from the objeci-system, the meta-system is dynamically created and the
control transfers to the meta-level in order to perform the necessary computation. When
the meta-level computation terminates, the control automatically returns to the object-
level. This mechanism was originally proposed by B. C. Smith in 3-Lisp. Comparing
to the first approach, this method has the merit that the distinction of levels are more
clear. Also this is the more accurate implementation of reflection because the object-level



system is frozen while performing the meta level computation. Note that we can realize
the meta-system and the object-system using the same computation system. In such case,
it becomes possible to execute reflective predicates also at the meta-level and dynamically
create a meta-meta-level. Conceptually, it is possible to imagine the infinite tower of
meta, i.e., infinite reflective tower.

We adopted the second approach in implementing Reflective Guarded Horn Clauses
(RGHC). RGHC is the reflective eztension of GHC and can he defined as a superset of
GHC. Language features and the outline of the implementation are shown in the follow-

ings.

3.2. Reflective predicate

Reflective predicates are user-defined predicates which invoke reflection when called.
Reflective predicates can be defined quite easily. It can used wherever we want, in the
user program or in the initial query. Similar to 3-Lisp, it is possible to access or modify
the internal state of the computation system by this predicates.

For example, reflective predicate for goal “p(A,B)" can be defined as follows:

reflect(p(X,Y),(G,Env,Db), (NG,NEnv,NDb)):- guard | body.

We should note that “p(4,B)" is changed to “p(X,Y}” and two extra arguments, i.e,
“(G,Env,Db)” and “(NG,NEnv,NDb)" are added. When the goal “p(A,B)" is called at the
object-level, we automatically shift one level up and this goal is executed at the meta-level.
(See Figure 1.) At this level, “p(A,B)" is transformed to “p(X,¥),” where “X" and *Y" are
the meta-level representation of the arguments. The computation state of the object-level
fs also expressed as“(G,Env,Db),” where “G” represents the remaining goals which should
be executed at the object-level, “Env™ represents the variable bindings and “Db” represents
the object-level program. “(NG,NEav,NDb)" denotes the new computation state of the
object-level to which the system should return when the meta-level execution finishes.
We assume that the value of these variables are instantiated while executing meta-level
goals, When we finished executing this reflective goal, we automatically shift one level
down and “(NG,NEnv ,NDb)” becomes to the new object-level state.

For example, a reflective predicate “var(X,R),” which checks whether the given argu-
ment “X” is unbound or not, can be defined as follows:

reflect(var(X,R},(G,Env,Db), (NG,NEnv ,RDb)})
+= unbeund(X,Env) |
add_env({(R,unbound) ,Env ,NEnv),
(NG,NDb)=(G,Db) .

reflect(var(X,R), (G,Env,Db), (NG,NEnv,NDb)}
:= bound(X,Env) |
add_env((R,bound) ,Env,NEnv),
(NG ,NDb)=(G,Db) .

Since an object-level variable is handled as a special ground term and its value is
contained in the environment, we examine the representation of environment to check
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Figure 1: Execution of the reflective predicate

“whether the variable is bound or not and the result is added to the environment list as a
value of “R.™

Note that the value of “R” may be the reference pointer to another variable. There-
fore, the “add_env({R,Value),Env,NEnv)" predicate need to derefer “R" first. Then it
replaces the value of the derefered address. It can be written as follows:

add_env({N,Value) ,Env,NEnv)
:= true |
deref{H,Env,H!} .
remove(NZ,Env,Env2)},
NEnv=[(N2,Value) |Env2].

The “current_load(N)" predicate, which obtains the number of goals in the goal
queue of the object-system, can be defined as follows:

reflect{current_load(N},(G,Env,Db), (NG,NEnv ,NDb))
- true |
length(G,X),
add_env{(N,X),Env ,NEnv),
{NG,NDb)=(G,Db).

We shift up to the meta-level and computes the length “X" of “G." This value “X" is
contained in the environment list as a value of *N.7



The “add_clause(CL)" predicate, which adds a given clause definition to the program
of the object-system can be defined as follows:

reflect (add_clause(CL), (G,Env,Db), (NG,NEnv ,NDb))
= true |
add_db{CL,Db,NDk)},
(NG ,NEnv)=(G,Env).

The next example is the “interpretive” predicate which execute a given goal “p” in
an interpretive manner.

reflect(interpretive(P),(G,Env,Db), (NG,NEnv,NDb))
1= true |
exec([P] ,Env,Db,NEnv, ),
(NG ,NDb)={(G,Db).

Note that this interpretive exccution can be executed in parallel with other exccu-
tion. Therefore, it is possible to execute the specific goals in an interpretive manner and
execute others directly, One possibility is modifying this “exec” to keep the debugging
information. In such case, this predicate can be used as a “debugger.” These kinds of
modification can be performed in a quite straightforward manner.

3.3. Shift-down and shift-up

It is explained that, when a reflective predicate is called, the system is automatically
shifted one-level up. When the execution of the reflective procedure finishes, the system
is automatically shifted one-level down. In that sense, shift-up and shift-down are auto-
matically carried out by using reflective predicates and we do not need to specify them
explicitly.

However, we sometimes need to obtain the information about the represcatation, not
the information itself. This typically happens when we want to implement a reflective
system. For such purposes, we prepare two built-in predicates, i.e., “shift_down” and
“shift_up.” _

“shift_down (Exp,Down_Exp)” transforms the given expression “Exp” to the one-level
lower expression “Down_Exp.” “shift_up(Exp,Up_Exp)” transforms the given expres-
sion “Exp” to the one-level higher expression “Up_Exp.” Vor example, if we shift-down
“p(a, [01]02],£(02,b))” we obtain “p(a,[e!1le!2],£(Q!2,b})."

Though the use of “shift_up” and “shift_down” is not recommended for the casual
user, we can use these predicates and obtain the information about the representation if
we want. For example, “get_q" predicate which obtains the content of ezecution goals as
its representafion can be defined as follows:

reflect(get_q(Q), (G,Env,Db), (NG,NEnv ,NDb})
i~ true |
shift_down(G,Down_G),
add_env((Q,Down_G) ,Env,NEnv),
(NG,NDB)=(G,Db).



We need to shift down the erecuiion goels because we want to get the content of

erecution goals as ils representation.
On the other hand, “put_q" predicate, which replaces the contents of goal queue to
the given expression “Q," can be defined as follows:

reflect(put_q(Q),(G,Env,Db), (NG,NEnv,NDb))
1= true |
shift_up(Q,NG},
(NEnv,NDb)=(Env,Db} .

Note that we cannot get the expected result, il we forget to shift-up “Q.7

3.4. Meta-level databases
It is explained that reflective predicates are executed at the meta-level. The remaining
question is how to build a meta-level computation system dynamically when the reflective

predicate is executed.

Please see Figure 1 again. In general, a computation system of GHU consists of three
elements, i.e., goal queue, environment and database. We have already explained how the
meta-level goal queue is created, i.e., it only consists of the reflect goal. The meta-level
environment only contains the binding information of this goal.

How about daiabase? Tt must be different from the object-level database. If all
of guard and body goals of the reflective predicate consist of system-defined goals, no
problems occur. If it includes user-defined goals, they must be defined in the database at
the meta-level.

" How can we create meta-level database different from object-level database? We as-
sume that initially only object-level database exists.

We have prepared “meta” and “glcbal” predicate for such purpose. For example, if
we would like to define a clause

G :- H | B.
at the the meta-level, we define it as
meta(G):- H | B.

at the object-level. When the meta-level is dynamically created by executing the reflective
predicate, all meta definitions are searched from the object-level definition. Top level
predicate “meta” is removed from those definitions and they are copied to the meta-level
database. Similarly the meta-meta-level predicates can be defined as

meta(metal(G)):= H | B.

We also assume that reflective definitions are all copied to the meta-level, since they
can be used recursively. The global predicate

glabaI{G):— H | B.
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is also prepared to define user-defined predicates which arce common to all levels.

4. RGHC implementation

In implementing RGHC, there exists several possibilities. The most efficient imple-
mentation is re-designing the abstract machine code, which corresponds to Warren code,
for ROHC. In this case, the abstract machine code must have the capability to handle
system’s internal state as dafa, or, conversely, to convert the given data into its internal

state.
The other possibility is realizing RGHC system as an interpreter on top of an ordinary

GHC system. Though we cannot expect too much for the execution efficiency in this
case, this method has a merit that the implementation is relatively simple. We actually
implemented RGHC using this method.

4.1. Description of RGHC
The top level description of RGHC can be expressed as follows:

r_ghc(Goal,Db,Out)

;= true |
transfer(Goal,GRep,1,Id,Env),
exec([GRep] ,Env,Id,Db,NEnv, Res),
make_result (Res,GRep,NEnv,Out) .

Note that this code is exactly the same as that of “m_ghc” in Section 2.3. This
means that we realize a reflective system as a object-level system in the meta-computation
system,

However, “exec” must be enhanced to realize reflection. This can simply be performed
by adding one program clause to the “exec” program in Section 2.3, as shown below.

exec( [GRep|Rest] ,Env,I1d,Db,NEnv,R)

:- reflective(GRep,Db)|
create_meta_db(Db,Meta_Db),
shift_down((GRep,Rest,Env,Db),

(D_GRep,D_Rest,D_Eav,D_Db)),
exec([reflect(D_GRep, (D_Rest,D_Env,D_Db),(01,02,83))],
[(@1,undf), (02,undf), (03,undf)] ,4,
Meta_Db,New_Meta_Enw,_ ),
deref variable(01i,22,83) ,New_Meta_Env,
(D_Rest2,D_Env2,D_Db2)),
shift_up((D_Rest2,D_Env2,D_Db2),
(N_Rest,N_Env,N_Db)),
exec{N_Rest ,N_Env,Id,N_Db,NEnv,R).

This program definilion clause takes care of the creation of the reflective tower.
“create_meta_db” creates the meta database from the object-system database.
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Figure 2: Constructing and collapsing a reflective tower

“{GRep,Rest,Env,Db)" is shifted down and the representation
“{D_GRep,D_Rest,D_Env,D_Db)" is generated. Then “exec” staris the meta-level com-
putation using thesc arguments.

When the meta-level execution finishes, “@1,02,83" must be instantiated. We derefer
these variables, shift up this information and get “(N_Rest,N_Env,N_Db)” which denctes
the new object-level information. Then we return to the object-level execution using tlis

‘information.
Figure 2 shows how the reflective tower is constructed by calling reflective predicates

and how it 1s collapsed by finishing up their execution.

4.2, RGHC implementation on PSI-II

We have already finished up the prototype implementation of RGHC using PSI-II
[Nakashima 87] sequential Prolog machine. We used KL1 [ICOT 89] and ESP [Chikayama 84]
as our implementation programming languages. KL1 is the exlension of GHC, running
on PSI-II hardware. Various extensions has been made to GHC, considering the actual
program development on PSI-IL KL1 is used to describe the core part of the program.
On the other hand, user interface and i/o part are written in ESP, the object-oriented
dialect of Prolog. The total size of the program is 1530 lines, where KL1 part consists of
985 lines.

Though the RGHC system can conceptually be described as shown in Section 4.1,
this implementation is very cxpensive since list is used for expressing envirenment. It
sequentially searches the element and it leads to the inefficiency when the length of the
list becomes long.

Therefore, we used vector data type instead of list for internal implementation. KL1
provides us with vector data type, where the indexr search is possible. Figure 3 shows the
veclor representation which corresponds to the variable bindings shown in Section 2.2.2.
This veclor implementation is initiated by [Fujita 90] and it has turned out to be very
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@1 undf
@2 a
@3] @2
|. @4] H@1.@2)
@5 undf
@6 undf

Figure 3: Vector representation of variable bindings

efficient.

In KL1, a vector can be created by cxeculing “new_vector(Vector ,N)" goal, where

“N" is the input for specifying the vector size and “Vecter” is the vutput keeping the
reference pointer to the vector. The content of i-th element can be examined by
“yactor_element (Vector,T,Element).”
. “set_vector_element (Vecter,I,01dElem,NewElen,NewVactor)” is used for setting
value “NewElem” to the i-th element of vector “Vector.” We should note that the old
value of i-th element is given as “OldElem” and the new reference pointer to the modified
vector is given as “NewVector.” As you see, this “set_vector_element” predicate is
defined in a quite declarative manner. However, at the language implementation level,
KL1 system is managing the reference count for the vector and destructive assignment is
performed when no other goal is pointing the vector.

Our policy for RGHC implementation is as follows: We use vector instead of list for
internal implementation. However, we still continue to use list structures for the ezter-
nal representation. Therefore, reflective programming examples shown in the previous
sections are still effective. On the other hand, erec must be modified slightly to handle
veetors, though we omit the implementation details because of the space limitation.

Note that the use of the internal database, such as seen in DEC-10 Prolog [Bowen 83],
may also be effective for the more efficient implementation. If we use the internal database,
fast program look-up becomes possible using the key. Though we have not used the
internal database in representing programs, these kinds of considerations become more
important, especially when the size of the object-level program becomes larger.

5. Program execution example

We show the program execution example in Figures 4 and 5. When we start up
the RGHC system, it automatically opens “I1/0 WINDOW Level 1, where “level 1"
means the object level. We can type in the initial query from this window. In this case,
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Figure 4: Execution example of RGHC (1)

we typed in “<- test(Q,A,B).” We showed the definition of “test” predicate in the
“smacs_window,” located to the right side of Figure 4, for the reference.

As you see in this program, “get_q(Q)" is defined as a reflective goal. When this
“gat_q(Q)" goal is executed, the meta-level computation system is dynamically created
and “I/0 WINDOW Level 2" is opened.

Figure 4 shows the instant when the meta-level computation has just finished up.
“reflect(get_q(...)...)" in “I/0D WINDOW Level 2" shows the reflective goal to be
executed at the meta level, This window shows that the execution of this goal has been
finished successfully by 42 steps. The bindings of variables allocated at the meta-level
are also shown. As you see, variables at the mela-level is shown by @(1),2(2),e(3)
and the object-level variables are shown by @!5,@!7. These represeniations are slightly
different from those explained in Section 2.2.2, since it includes () at the meta-level. The
differences mainly come from the regulations of our GHC system and are not essential.

When the meta-level computation terminates, “I/0 WINDOW Level 2" also disap-
pears. Pigure 5 shows the instance when the whole computation lerminates. The final
computation result is shown in “I/0 WINDOW Level 1.” It shows that the execution has
been terminated successfully by 57 steps and the bindings of variables are also shown.

6. Related works and conclusion
As mentioned before, meta and reflection are attracting wide spread attention. Though

the concept of computational reflection goes back to [Weyhrauch 80] and [Smith 84], this
concept arc becoming popular especially in object-oriented language community [Maes 88]
[Tbrahim 90].
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Figure 5: Execution example of RGHC (2)

In logic programming field, [Bowen 82] provides us the starting point for meta-programming
research. There exists several related research, such as [Porto 84], [Eshghi 86] and [Lloyd 88b).
Two workshops, i.e. Meta 88 and Meta 90, have also been held in relate to meta-
programming in logic programming [Lloyd 88a] [Bruynooghe 90]. However, it seems that
their interests mainly exist in the reconstruction of Prolog which has cleaner semantics.

Regarding to reflection in logic programming, there exists few research works so far.
The exceptions are Reflective Prolog [Costantini 89] and R-Prolog* [Sugano 90]. It seems
that the interest of Reflective Prolog mainly exists in controlling the program execution
by re-defining solve predicate at the meta-level. In spite of his claim on computational
reflection, his system has only a very limited expressive power,

On the other hand, R-Prolog* [Sugano 90] assumes the similar kind of reflective pred-
icated as proposed in this paper. However, his interest exists mainly in semantics. Not

much consideration has done on the actual implementation and for the execution effi-
clency.

The features of our RGIC system can be summarized as follows:

1. Simple formulation of reflection in GHC. Especially, we have formulated reflection
without using quofe. This is the eritical difference from Lloyd's approach.

2. Ground representation of variables. In our system, variables are expressed as special

ground terms. This representation essentially corresponds to quoted form in other
systems.

3. Complete handling of database. In our system, we can define the meta-level database,
which is completely different from the object-level by “meta” predicate. It is also
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possible to define the arbitrary layers of databases.

4. Dynamic constructing and collapsing of a reflective tower. In our system, a new
level is generated when a reflective predicate is called. When finished, that level is
collapsed and the system automatically returns to its original level.

Though we have not mentioned about the declarative semantics of RGHC, we imagine
that the exiended Herbrant base with ifo pair [Sugano 90] fits to the GHC semanties.
This direction matches to the effort to define GHC semantics in a denotational manner
[Murakami 90].

QOur final goal exists in building a sophisticated distributed operating system on top
of the distributed inference machine such as PIM [Uchida 88]. Some trials for describing
such systems can be seen in [Tanaka 88b] [Tanaka 90|.
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