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Chapter 0

Preface

$0-0. Introduction

There are many concepts Al scientists have been trying to capture within
their own frameworks or more specifically by their programming languages.
Among them are those symbolized by the terminologies “uncertainty”,
“negation,” “learning”, “commuon sense” and “creativity” ete. For example,
concerning the notion of uncertainty, many challenged through a variety of
approaches. Some generalized the notion of truth value to many-valuedness and
some others borrowed such techniques as probability, modality and fuzzyness
ete. Here, we would like to propose a paradigm for Al which, we believe, may
contribute not only to the notion of uncertainty but alse to those cited above. We
call this paradigm “LIFE-Q", the naming comes from “Logic-oriented Inferential
Framework Extensions—infinite series” or “Logic-oriented Intelligence for
Future Environment.” To constitute the paradigm, we have borrowed and
transformed the idea of Boolean-valued universe in set theory, In section 1, we
see some properties LIFE-Q can provide as a paradigm. Then, we present a
Boolean algebraic semanties of pure Prolog as a language scheme in section 2
and in section 3, we relativize this semantics to get the procedural semantics of
LIFE- I (Logic-uriented Inferential Framework Extension--class 1), a
Boolean-valued logic programming language scheme which belongs to the
paradigm LIFE-Q. In section 4, by generalizing the idea farther, we propose
some olher pussible categories, on the ground of which we can construct a series
of language schemes LIFE-X (1] = X < o2) as exlended versions of LIFE- 1 . The
theoretical background of the third scheme LIFE-III is the main topic in this
paper.

The broadness of the topics which LIFE-Q mighl cover states the fact that

this 1s rather a meta-scheme than a particular scheme. This fact is partially



supported by the idea of Boolean-valued universe itself. The most crucial point
concerning Boolean-valued technique is that this is not a mere aim to represent
many-valuedness of our belief but rather a means to express the semantical idea
of Forcing methodology and so is different from the other many-valued logics
from the viewpaint of possible applications. [18]is a standard textbook for those
who are not so familiar with the notions of Boolean-valued model, Forcing etec in

set theory,

§0-1. The Idea of LIFE-Q

In the field of set theory, there is a notion called “Boolean-valued
universe”, This notion is the semantical version of Forcing technique and has a
resemblance with fuzzy set theory to the extent that both essentially treat
many-valuedness of membership relations, though they are different in many
important ways. The idea of LIFE-Q springs from the methodology of Boolean-
valued universe. In the following, let's list up typical properties that LIFE-£)
can serve when it is applied to the world of logic programming. For those who
are familiar with Boolean-valued model in set theory, the philosophical and

methodological similarity must be obvious.

1. Employ a complete Boolean algebra B and generalize the notion of truth-
value from 2 to B, By doing so, contribute to the notion of negation.

2. Using B, extend the world of logic programming to the world of Boclean-
valued logic programming within the paradigm of LIFE- (.
The extended framework in the most simple case may be illustrated as the

following figure [1].
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Given a logic programming language scheme for Al, we can obtain a
Boolean-valued logic programming language scheme LIFE-X by applying
the Boolean-valued technique considered in the paradigm LIFE-(..

To define procedural semantics of LIFE-X (I=X <), essentially follow
{he original construction method used in a (2-valued) logic programming
language schemec except generalizing the technique used at each
derivation step.

By choosing B+ B, we can construct totally different (P, ([ Tlp) and (P,
(l 1lg). The choice of B depends on which knowledge we want to
formalize. The crucial point is that, firstly choose the concrete knowledge
K we want to formalize, then construct a suitable Boolean algebra B which
is hoped to reflect the essence of K. Next, construct (P, [ ]l using this B
and check whether this (P, ([ 11} can serve to represent the wanted
knowledge K. If (P, [[ 11} can represent K usefully, then o.k. Else,
consiruct a different 13 to apply as the second candidate.

The purpese of our considering Boolean-valued logic programming
language scheme LIFE-X is to manage new environments which usual
logic programming language scheme can't attain or (by deciding a concrete
language based an it) to formulale elegantly some knowledge which may
(or may not) be expressed by the usual (2-valued) language but need an
elaboration,

Let G be a goal for a logic program P and suppose there is an output A of
PU{G}. Then, there is a certain kind of output & of PU{G} with respect to
(P, [l 1) with the Boolean value v(£;)€B. The point is that v(&) is a new
output which assert something different from the original answer A
concerning G. (& may be or may notbe A.) Since [{ ]]dependson B, there
is a possibility that v(£3) has a new important meaning for a certain B. Of
course, there should be some connection between G and wv(§). After all,

whenever we have an output A of PU{G}, by using Boolean-valued method,



we can automatically obtain the output v(fy) for each different B we
choose.

8. There are cases that we can obtain meaningful outputs of PU{G} w.r.t. (P,
[t i) for certain kinds of goal G and map [[ 11, though there is no
substantial output of G w.r.t. Pin the 2-valued sence.

9. The method can be iterated, and a variety of techniques can be used for the

iteration,

In the following, as a simplest example that we can obtain within the
paradigm LIFE-Q, we briefly sketch the procedural semantics of Boolean-valued
logic programming (language) scheme LIFE- | , which is a direct generalization
of pure Prolog scheme. Before doing so, let's reinterprete the procedural

semantics of pure Prolog from a Boolean algebraic viewpoint.

§0-2. Boolean aigebraic semantics of SLD-resolution

—a preparation for LIFE- | —

Let P be a pure Prolog program and G=+Aq, -, A be a poal, Suppose
there is a SLD-refutation R of PU{G} with the sequence of mgus <8i, -, 8>
and the sequence of input clauses <y, -, Cn>. Then, we can interpret this
refutation procedure from a viewpoint of 2-valued Boolean algebra in the
following way.

I. Thereisamapl({ ]1:Bp—2={1,0}such that, for any clause C in F,

(vCli=1, ie., f?i [{ Cpi 11 = 1, where {p; |i€1}is the set of all ground

substitutions for C.
This means, of course,

A ([[C*pill e[ Cpili) =1

el



1.2.,

[C*pl}= ([C-pll forany ground substitutionpforC, D
where [[ C-pll = [[ Bip I A=A [[Bap 11 if C has the form C* «By, -, Bn. So,
especially in casc of C~ =@, that is, in case that  is an unit clause, @) becomes
the form

[Crpli=1 foranyground substitution p for C.

Roughly speaking, this Boolean interpretation of P means that any clause
C in D represent either a true assertion or a true rule with respect to 1l
1:Bp—2. In other words, (Up, [[ 1] ) becomes a Herbrand model of P where, as
usual, Up is the ITerbrand universe of P and the assignment is defined by (Up, {L
= wCiff[[VC ]l = 1.
So, we can say that the mapping [{  J:Bp—2 should be determined so that the

program P becomes a consistent formal theory from a sermantical viewpoint.

(Usually, the least Herbrand model of P implicitly plays the role of [ ]], though

the originally intended model may be different.)

II. By refutation, when R ends with the empty clause [J, we get the following
sequence of (inJequalities.
By definition of unification.
[ Artip 1] AveATT AgBp 1]
@ — = [ABpNA-ATLAR18p 1] A [[C178pl] A [T Am+18p IIA-A
([ Akbp 1]

I

1 5
where An€G is the selected atom for 81, 8=018, and p is a suitable ground
substitution. For @, we use the fact (U, Ending with the empty clause means

we must substitute each Boolean element in the right hand side eventually by a

--



Boolean value of a certain unit clause (groundly instanciated by 8p}, i.c., 1. Se,

we get the last inequality “= 17,

Now, deducing the empty clause from PU{<A;8p, -, ABp} means
PU{«A0p, -, AxBp} is inconsislent from a viewpoint of Gentzen style proof
theory. Translating this fact to Hilbert style, we get the fact that
PU{T(A{8pA--AAKBp)} becomes inconsistent as an axiomatic formal theory.
Since we already know that (VCEP)([[WC ]] = 1) by definition of [ ]]: Bp—2,
in order to get a contradiction,

([ T{A8pA--AALOp) 1] should be 0.
So, [[A18p J]A-A[[ARBp 1= 1.
Thisis what the above sequence of inequalities asserts. From now on, under this
semantics, let's define
pure Prolog = LIFE-0
as Boolean-valued logic programming language scheme for the sake of

conceptual consistency.

§0-3. Boolean-valued logic programming language scheme LIFE- |

—a skelch of its procedural semantics—

In this section, as a direct relativization of 2-valued Boolean algebraic
semantics of SLD-resolution, we give a brief sketch of the procedural semantics
of LIFE- 1. {In the literature, this scheme is called “Boolean-valued Prolog (of
the first kind)".) The precise definitions and some related topies including both
soundness and completeness are discussed in [33],

First of all, we generalize 2 to a complete Boolean algebra B. Then, choose
a complete [iller F over B. Let P basa Prolog program and G= <A1, -, A be a
goal. Suppose there is a SLD-refutation K of PU{G} with the sequence of mgus

<81, Bn> and the sequence of input clauses <Cjy.. Cp>. Then, we can



interpret this refutation procedure in the [ollowing way from a viewpoint of B-

algebra.,

| . Thereisamap([[ ]]:Bp—B such that, for any clause Cin P,
(MvCleFie, A ([[CHpIl«[[Cpll)eF. (1)

ot prouzd
So, especially in case of O~ =@, (I becomes the form

A ([C*pll€F.

p: ground

Roughly speaking, this Boolean interpretation means that any clause Cin
I’ represents either a true assertion or a true rule to the extent of F over B with
respect to [| )] : Bp ~B. In other words, {(Up, [[ 1] ) becomes a B-valued
Herbrand model of P modulo F.

[I. When R cnds with the empty clause O, we naturally get the two Boolean

values
v} = D:Eﬁmldﬁﬁlﬁpu A AlTAKER]T) (2
and
WRY= (A [ICHH81pT1 A = AL A TICutbapl) @

where O =Hy6,.

LIFE- | isthe class of all languages having the organization < (P, [[ 11),
B, F' = which use the similar derivation method to pure Prolog and evaluate the
resulting values u(8) and v(R) at the end of each refutation, or more precisely,
calculate

MG 8;pl] ) for 1=i=n

e Eroand
at each unification step. Here an ohservation gives us the fact that
viR) = v(f)

and



vl € K Rty

The latter result is a straightforward relativization (module Flof the 2 valued
casc discussed in the previous section. Here, let’s call a Boolean-valued program
(P,[[ 11)"a F-program”i[f(Up,[[ ]])becomes a B-valued Herbrand model of P
modulo F. Then the fact that
(P,[[ 1])isaF-program = v{B)€#

shows the relativized soundness properly of Boolean-valued derivation. For
precise relations between this fact and the original soundness property of SLD-
resolution, the reader are recommended to consult chapter I. Here a natural

queslion is “Is there any relation between the notion of F-program and v(i2)?"

The positive answer is also found in chapter I as a strong soundness property.
Moreover, a variety of Boolean-valued versions of completeness properties are

discussed later, too.

§0-4. Generalizations
The Boolean-valued refutation discussed in the previous section depends
on the syntactical unification in the usual sense, that is,

BunifiesAandB iff AO=B6.

Let's call this sort of unification with additional computation /A [[ Abpl]

o proundg

“Boolean-valued unification of the first kind.”

Now, by using [[ 1]1: Bp—B, we can generalize the notion of the 1st kind
unification and enter a new derivation world where conventional unification
methods have never experienced by themselves. For example, we can define

0isa higher kind unifier for A and B iff

([ ABp 11 = [[ BOp ] for any ground substitution p for A< B0, where AD

and Bf satisfy a certain unifying condition concerning a relation ~ over the set

-10-



of all (not necessarily ground) atoms gencrated from P. Whal we really perform
by employing this kind of abstract unification is that we devide Bp into a set of
classes using both~ and [[ ]]. Tn this paper, we discuss one simple example of
this kinds of generalized unification and show that the generalized Boolean-
valued derivation still preserve both the soundness and the completeness
properties in their suitable sense. Of course, the purpose of our employing this
kind of generalized derivation is we would like to obtain the case that, for a
suitable program P and a goal G, there is a higher kind refutation of PU{G} with
respect to a suitable F-program (P, [ 11}, though there is no SLD-refutation of
PU{G) at all. (If there is a SLD-refutation of PU{G}, then there always exists
any higher kind of refutation of PU{G} with respect o any Boolean-valued
program (P, [[ 1)) As a consequence, a higher kind unification can influence
CWA, inductive inference, universal unification, gqualitative deduction,
quantitative deduetion or Fuzzy inference, semantical negation, parauniflication
including non-transitive deduction, ete. A few examples are discussed later,

So far, we have been considering only the unification-generalizing
direction starting from L1FI- | which depends on the organization < (P, [ 113
B, I, = >, where P is a Prolog-type program, that is, a set of Horn clauses.
Another interesting direction is the one which generalize the type of P. Coming
soon LIFE-1V will belong Lo this category. As the basic type of P, we will allow
the set of Horn clauses with constraints which is the most simple but rather
useful generalizing way, However, there is no reason we should restrict our
attention only to those specialization of LIFE-Q whose object-level program P
has the Lype of Prolog-extension (and so whose derivation kind depends on
unification technigue).

Farthermore, we can choose the third route to generalize LIFE- T, whose
signpost shows the notice stated in 9 in section 1. The shortest distance to reach
the destination is to choose finite different Boolean algebras By, -+, By, at the

same time for one object-level program P and consider independent maps ([ 1i:

-11-



Bp—Bi(1=i=n). Any concrete logic programming language which belongs to
thus obtained scheme < (P, [[ 11.), B, Fi, ~i > 1=i=n will bc able to be managed
by the meta-level parallel processing method in an essential manner.

The fourth generalization depends on the choice of B. Instead of choosing
B as a set of simple structured symbols, objects or propositions, we can make use
of abstract data types or even more abstract and complex partially ordered
structures as candidates of B. If we employ this sort of complex-structured B, we
ought to regard the resulting value v(fy) as a new object to be analized by the
subsequent inferential steps or by object-oriented manners.

Of course, there should be many other possible paths which generalize the
idea of LIFE- 1 within the paradigm LIFE-Q. Moreover, we must be able to
exploit totally different frontiers from those cultivated by the tools of logic
programming, because the spirit of LIFE-Q should be as free as human
intelligence. Thus, the truely new formulation of knowledge we can't capture

today shall be done under the flag of LIFE-Q in future, we hope.

30-5. Concluding Remarks

In this chapter, we have presented the philosophical background of LIFE-(
as a (language) paradigm for Al. LIFE-{ is the transcendental notation of the
series LIFE-X (| =X <), Each LIFE-X is a logic-oriented inferential
framework having an abstract organization O with an inferential method D
based on 0. Asdiscussed in this chapter, for some X, O may have the form <(P,
(L 1D, B,F,~, >, whereDisan object level program, B is a complete Boolean
algebra, F is a complete filter over B,[[ J]I: Bp—Bis a map and ~ is a relation
over the set of all atoms generated from P, etc. Though 1) is a purely logical
derivation, each computation concerning [[ ], ¥, ~, etc may depend on other
programming technique. In this sense, each concrete programming language

belonging to a certain LIFE-X will be the fusion of different programming taste.

12-



This is the reason why we employ the terminology “logic-oriented” instead of
“logical”. However, at the same time, this terminology suggests that the hero of
LIFE-X should be the logical and other approaches are byplayers.

Many languages so far exist can be reinterpreted by Boolean valued
technique and so belong to our scheme LIFE-X for a certain I= X< o0, Here, we
dare say that the generalizing methods we present above have not yet exhausted
the possible schemes in LIFE-Q. From the nature, it is the destiny of the scheme
LIFE-X cver to evolve in order to cover new topics in the field of Al and to be
combined with related (language} schemes in the ocean of Al frameworks untila
completely new methodology which exceeds this paradigm will appear someday

in future.
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Chapter L.
Definition of LIFE-Ill and Its Theoretical Background

§1-0. Introduction

Nowadays, there are many logic programming languages which are
considered to be extensions or gencralized versions of Prolog. In this situation,
the appearance of [13] ete powerfully suggests the trend that logic programming
theorists gradually begin to build a language scheme which governs many
concrete logic-oriented (Prolog-type) programming languages instead of
constructing an individual programming language. The project of our proposing
paradigm LIFE-{ (Logic-oriented Inferential Framework Extensions-infinite
series) is planned (o be une rank higher, that is, {o synthesize these tones of
schemes with the harmony of Boolean-valued semantics and thus to compose an
abstract (or rather transcendental) level of lugic-oriented programming
symphony. This means we not only rearganize logic programming language
schemes so far exist but also create new categories from a viewpoint of Boolean-
valued universe. In other words, by abstractly determining the characters of
Boolean algebra B, map[[ 11:Bp—B, filter ¥ over B, relation ~ over the set of
all atoms and a “kind” of unification in addition to the type of a (object level)
program P in LIFE-Q, we can obtain a language scheme. (The novelty and the
philosophical background of LIFE-{ is discussed in the previous chapter.) Thus
obtained scheme is and will be named LIFE-X (Logic-oriented lnfercntial
Framework Exlension-class X) where variable X ranges from 0 to @, As the
starting point, let's define LIFE-O=pure Prolog as a language scheme. The
main purpose of this paper is to defline LIFE-IIl as a direct generalization of
LIFE-0 and to give the theoretical background. (For definitions of LIFE- 1 and
LIFE-II, see [33].) What is the advantage of our invesligating this sort of highly
abstract schemes? There are two merilts we dare point out. The first concerns

with the theoretical aspect and the second with the practical facet.
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Take a logic programming language L. We should check both the
soundness and the completeness of the procedural semantics of L in its suitable
sense, if L is regarded as a logic programming language at all. However, for an
Al language programmer in general, verifying the soundness and the
completeness for each L is rather tedious. Instead, if we prove the soundness
and the completeness of LIFE-X as a scheme, then we can assure the theoretical
background of each individual programming language belonging to this
category, Of course, in order to assure the theoretical aspects of L, we ought to
check whether L€ LIFE-X or not for a cetain 1= X < oo, Pragmatically, the check
amounts to (try to) give a Boolean algebraic semantics of L by determining B, [[

11, F, ~, unifier kind, the type of ' in the framework of LIFE-{}. So, the essence
of the first merit becomes the {ollowing. If one can directly and rather easily
prove the soundness and the completeness of L, then there is no problem.
However,there somectimes happens the case that it is difficult to prove the
theoretical background of an extended logic programming language. In this
case, Boolean-valued technique reveals its real power, Thus, the first merit is of
a bottum-up nature, Tls necessily arises out of each already existing (or planned)
programming language and the stuff (theoretical background} is lifted to the
dining reom LIFE-X, where it is cooked following a recipe of Boolean-valued
semantics.

On the other hand, the second merit is of a top-down nature. By properly
choosing P, B, [[ ]I, F, ~, uniflication kind ete, we can define a logic
programming language scheme LIFE-X as an example of LIFE-{}, so that no
logic programming extension of pure Prolog so far exists bhelongs to this
category. The pointis, first we choose a property = whose color can’t be obtained
by the simple mixture of the conventional logic programming paint but is
expected to be represented by a logic-oriented programming language. Then,
decide the above Boolean-character in LIFE-Q in order that the resulting

compound LIFE-X can express or at least approximate the color of 2. As a



consequence, every concrete programming language L as a projection of LIFE-X
equips this desired property = and we need not worry about the logical
background of [..

We begin section 1-1 by defining the declarative semantics of Boolean-
valued model. In section 1-2, we define the procedural semantics of Boolean-
valued unification. The main target of section 1-3 is to prove the soundness of
Boolean-valued derivation of LIFE-IIl. Section 1-4 deals with the fixed point
semantics and finally in section 1-5, we prove the completeness of Boolean-
valued derivation of LIFE-IIl in a certain form. Since there are many definitions
which are necessary to state new conceptls, we have devided the study of the
theoretical background of LIFE-IIl into a few parts. The successive chapter 11
handles Boolean-valued logical completeness in relativized situations, Expected
instanciations of LIFE-ll as an Al language are discussed in chapter [V and
chapter V.

Except the new notions defined, we have employed conventional

terminology used in [21). For example, a program P is a set of Horn clauses and

(1)  Xpand llp mean the set of all function symbels (including constants) and
the set ol predicate symbols used in P respectively and Up, Bp mean the set
of all ground terms (Herbrand universe) and ground atoms (Herbrand
base) generaled from Zp and [Ip respectively. More generally, let T(Ep, V)
(A(TIp, V) be the set of all terms (atoms) generated from Ip{Ilp) whose
variables are picked up from V. Then, obviously, UpCT(Zp, V) and
BpCA(llp, V).

(2) LetC be aprogram clause of the form
A«<By, -, By
Then, C*=A and C~ ={Bj, =, Bgl.
So, for any substitution 8, C* 0 means A0 and C-0 means B0, -, Bqgb.

16-



In addition to the above, let's employ the following abbreviation

throughout this paper for the sale of convenience.

Definition L-0 -1,

For any atom A in P, A* € IIpis such that A is an instance of A", —~
£1-1. Declarative semantics of Boolean-valued model
Definition 1-1-1. Let B be a complete Boolean algebra.

(1) (U, isa B-valued interpretation with the universe U iff
i) term assignment is the same as (usual) two-valued case
i} forany (ground) atom P(ty, -, tw), Pt tu)) €EB.
11i) for an arbitrary formula y, {{yy)€B is defined by the usual induction

on logical symbols,
eq. f(¥Vxplx)) =n=:~“ﬂp(a}?,i"£"-q:] = " fly), ete,

(2) Let S be a set of closed formulas in I. and (U,f) be a B-valued
interpretation. Then, (U, {) is a model of S with respect to a complete filter
Fover Biff (Wo€S)(flo)€F).

In the following, we call this sort of model “F-model”. Especially, when

we take F={1}, F-maodel is called “B-valued model”. -

Note: A filter I over B is “complete” iff (VXCFIAXEF). If B is finite, then, of
course, every filter becomes complete. Moreover, for any B, every principal
filter obviously becomes a complete filter and vice versa. In the following, we
exclusively use symbols F and B to denote “complete filter” and “complete

Boolean algebra” respectively. —

17-



Definition 1-1-2. Let S he a set of closed formulas.

(1} Sis F-zatisfiable iff there is a F-model of S.
(2)  Sis/-unsatisfiable iff S is not /-satisfiable.
(3) Letlo be aclosed formula. Then,

v isa F-logical consequence of S iff

(YM)IMisaFmodel of 3—M i5 2 F-model ol ). —

Note: This is the starting point where generalized B-valued notion becomes
essentially different from (usual) 2-valued notion.

For example, let M be a F-model of 8, Then, there may be a closed formula
o¢8 such that neither (M is a F-model of o) nor (M is a F-model of —g) holds.
This is simply because B-(F"UI) may not be empty in a general situation, where /
isanideal dual to F. —i

However, the next relation, which is a Boolean-valued version of a well

known result in usual 2-valued case, holds.

Proposition 1-1-3. Let SU{o} be a sel uf closed formulas. Then, o is a F-logical

consequence of S iff SU{ — o} is F-unsatisfiable.

Proof: (=) Let (LI, [) be & F-model of S. Then, (U, f) iz a F-model of 0. This means
filma)="flo)¢F. So, from the arbitrariness of (U, ), there is no F-model of
SU{—a}.
{(+=): Suppose v is not & F-logical consequence of 5.
This means (U, 1)} ((U, §) is a Fmodel of S and f{o)gF),
Let (U, f) be as above.
i) Thecaseof flo)€l, where [ is the dual idea of F.
Then, fl—g)=—figl€F. So, (U, {) becomes a witness of SU{u}'s F-
satisfiability.

18-



iit)  Thecaseof flo)€l,ie. f{o)CF,
In this case, since f(0)€FAf —a)¢F, neither o nor —o is a F-logical
consequence of 8.
Now consider a complete ultrafilter ultrafilter F including FU{{—a)}.
Let 2= B/F be the quotient algebra of B and
h: B—2' be the corresponding complete homomorphism.
Then, (U, h= {) becomes a 2"-model of SU{ 10} because,
(V€S theflt)=1") ah=f{Da}=1"
Here, without loss of genrality, we can consider 2'isa subalgebra of B, since
2'=2CB. Let g: 2'—B be the natural embedding. Then, (U, g he f) becomes a
B-model of SU{— 0} such that (V1€3) (g he flyy=1) , geh- flo)=1. So, of
course, (U, g° he £ isa F-model of SU{ 7ol
SU{—o}is F-satisfiable. O

Definition 1-1-4. We can define both Herbrand universe and Herbrand base

just the same as usual. In this situation,

(1) (U, f) is a B-valued Herbrand interpretation iff (U, f) is a B-valued
interpretation and U is a Herbrand universe and the term assignment is
the same as usual Herbrand case.

(2) M=(U, § is a Herbrand F-model of S iff M is a B-valued Herbrand

interpretation such that Misa I maodel of S. -1

Note: For B-valued Herbrand interpretation (U, f), the term assignment is fixed
(and each logical operation is interpreted as a Boolean operation). So, (U, f) is
completely determined by fIB :B,—B, where B, is the Herbrand base. An
interesting fact is that we can weaken the condition “completeness” of F' to “R,-
completeness” in case of Herbrand F-model, because |L|= X, and so U =R,
|B,|=R,. In this case, there may be a ®,-complete filter which is not principal if

B|ZX,. 4
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Proposition 1-1-5. Let S be a set of clauses. If S has a F-model, then S has a

Herbrand F-model.

Proof: Let (U, [J be a F-model of S. Let M=(1J", g) be a B-valued Herbrand
interpretation such that (Vo€B; ) g(o)=1(o)), where B, is the Herbrand base.
Since (U, f)is a F-model of 5, M is also a F-model of 8.

(For example, fiVxp(x)) = g(Vxp(x)).) O

Corollary 1-1-6. Let S be a set of clauses. Then, S is F-unsatisfiable iff S has no
Herbrand F-model.

Proof: {=): Obvious.
(«=): II'S is F-satisfiable, then § has a Herbrand F-model by the above

i

Proposition 1-1-5. <

Proposition 1-1-7. (F-model intersection property).

Let Pbhe a program and {(Up, f;)| 1€1} be a non-emptly set of Herhrand F-maodels of
. Then, M={Up,D is also a Herbrand F-model of P, where [ is defined by
(Vo€ Bp)ifla) = A fila)).

Prool: Let C€P. Then, fIVC)=Afi(VC)€F, because I is complete.
-.(Up, fis a Herbrand F-maodel of P, O

Definition 1-1-8. T.et P be a program.

(1) (Up, p)isthe least Herbrand F-model of P iff (Yo€ Bp)(p(o) = Afi(o)), where
{(Up, f;) | 1€I} is the set of all Herbrand F-models of P.

(2) Forany f:Bp— B, Bf '] ={o€Bplflo)€ 4}, —
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Theorem 1-1-9, Lel P be a program. Then,
Bu[F]={ocBp|o is a F-logical consequence of P}, where (Up, p) is the least

Herbrand F-model.

Proof: Let oCBp. Then, 015 a F-logical consequence of P

= (WM(Up, f;)) ((Up, §;) is a llerbrand F-model of P—fj(o)€F) - (1)

LE

o f‘-il'g[U}EF, where {(Up, [})i€l} is the sel of all Herbrand F-models
& plo)EF, where (Up, p} is the least Herbrand F-maodel
& aéBplFl.

To see the converse of (1), suppose (W(Up, fi)) ((Up, f;) is a Herbrand F-
model of P—fj(g)€F). Toshow that o is a F-logical consequence of P, assuming o
isnot a /-logical consequence of P, we will get a contradiction. Now, oisnota F-
logicai consequence of P
= (AU, gh (U, g)is a F-model of P but (U, g) is not a F-model of o)

Here, define a Herbrand interpretation (Up, h) by (Vo €Bp) (h{o) =g(o)).
Then, by Proposition 1-1-5, (Up, h) is a F-model of P. However, by definition of

h, hio)=glo)€F. This contradicts the assumption. [l

Definition 1-1-10. Let I’ be a program, G be a goal «<A;, -, Ay and 0 be a
substitution for G. Then, 8 is a F-correct answer substitution for PU{G} iff

V(A a-.AALB) isa F-logical consequence of P. -]

Theorem 1-1-11. Let P be a program, (& be a goal <A1, -, Ay and 8 be a ground
substitution for G. Then, the following are equivalent,.

(a) BisaF-correct answer substitution for PU{G}.

(b) (A8 A AfTARBNER for any Herbrand F-model (Up, f) of P.

(e} (plA DA AplAKDDEF w.or.t. the least Herbrand F-model (Up, p) of P.

Proaof:
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(a)—(b). Suppose B is F-correct. Let (Up, f) be a Herbrand F-model of P. Since &
is ground, (Up, f) is a F-model of (A ... adik)0.

SO A-a fLALE)) EF.

(b)—=(c). Obvious.

(c)—{a). Let {lIp, p)be the least Herbrand F-model of P. Suppose plA18)a..A
plARGIEF. Then, by Theorem 1-1-9,

A;Bis a F-logical consequenceof Plor I =15 k

= A0s .4 AyBisa F-logical consequence of P

= (Apseon AR)0 is a Flogical consequence of I

]

=  Hisa F-correct answer substitution for PU{G}.

§1-2. Procedural semantics of Boolean-valued unification

In this section, we define the procedural semantics of Boolean-valued

uniflicalion,

Definition 1-2-1 Let[[]:Bp —~ Band A, B €A(lIp, V).

Let =~ he a reflexive, symmelric relation over A(Ilp, VL

(1} ~--is“substitution transitive” iff
for any atom A, B and any substitution p,
A~B =2Ap~Bp.
(2} A substitution 8 is called “a B-valued unifier for A and B with respect to

[[ j]and a substitution transitive relation~"

Lff A~ BH and
A (TABpll«<[(Bopli)=1 - (1}
1 ground

where 1€ B is the greatest element.

Ilere, we should notice that the condition (1) isequal to
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[[ ABp 11=[[ BBp 1] for any ground substitution p for Af—BD. —

Throughout this chapter, we assume that the substitution transitive
relation ~ needed for B-valued unification is arbitrary but fixed. Of course,

when we decide a concrete lunguage, we should define ~ according to the aim.,

Note: Ifwe use B-valued unification, we can unify, say, ground atoms Afla)and

Bib) such that
A* = BY but [[Ala)]l=[[Bib)]] and A{a) ~B(b).

To tell the truth, B-valued unification is a formal definition ol Lthe unification

scheme including the notion of both universal unification and semantic

unification in ils general sense. —

Once we obtain the notion of B-valued unifier, we can define the notion of
“H-most (or maximally) general unifier (B-mgu in short)”. First of all, given A
and B, the notion of B-mgu for A and B may not be uniquely determined even

modulo renaming substitution.

Example 1-2-2 Let A(X,, Xg) and B(Y,Y2) be such that

W¥s,t: ground terms) { [[ Ala,s) 11=11 Bla,t)]])

(s, t: ground terms) ([ A(s,b) [T=[1 Bit,b) 1]}

1(W¥s,L: ground terms) ( [[ Ala,t) 1] = {{ B(s,0) ]])

1(V¥s,t: ground terms) ( [[ A(s,t) ]] = [[ Bla,t) 1)

T(¥s,t: ground terms) ( [[ Als,t) ]] = [[ B(s,b) ]])

1(Vs,t: ground terms) { [l Als,b)1] = [ Bis,t) [])

1(¥s,t: ground terms) ([ A(s,0 1] = [[ Bls,t) 1)
(Vt: ground term) ([{ Ala,t) 1]=1[ Ba,t) 1]} ~ (Ala,Y) ~B(a,Y])
(Vt: ground term) ( [[ Alt,b) [J=[[ Bit,p) 11} A (A(X,b) ~B(X,b))

> > > > > > > >
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where a helUp.
Then, both 6={X /a, Y /a, Y/X,} and 8 ={X,/b, Y, /b, Y /X } become possible
candidates of B-mgu for A(X,, X,} and B(Y,, Y ). However, 8 is not a renaming

substitution of &', -]

The erucial property concerning (usual) mgu is that “For any syntactical
unifier 8 for A and B, there isa mgu 6 for A and B, and a substitution ¥ such
thal 8=8"," because this is used to prove mgu lemma (and so lifting lemma)
which is used to show the completeness property of syntactical unification. With
this fact in mind, we ought to expect that B-mgus also have the same propety.

To see this, we need a little preparation.

Let Kp be the set of all substitutions based on Up. Let's define relations
=, =g < on Kpin the following manner.

Forany 6, 8'€ Kp,

=0 f (3yeKp)ia=08%)

=0 iff 0=8 A 0=

0’ 40 iff '=0 A %0

Consider Kp={Kp/=;) and define a partial order £, on Kp so that, for any [ 0],
[B"]EKp,

[B] (0] iT 08 =,0
for suitable representatives 6, 6" for [ 6 1, [ 8 ] respectively. (Obviously, the
choice of a representative 6, 8’ for [8], [6'] does not affect the definition of €;. So,
this is well-defined.)

Using this notation,

Definition 1-2-3. A B-valued unifier 8 for A and B is a B-mgu iff
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UI0°NE is a B-valued unifier for Aand B A (6] <5 01]), where [8'] <400 i
means, as usual, [ ]F [0 IA[8] €01, —

By this definition, we get;

Lemma 1-2-4. For any B-valued unifier 6 for A and B, there is a B-mgu 8’ for A

and B, and a substitution 7 such that =0y,

Proof: Let 6 be a B-valued unifier for A and B. Consider

1(6) = {107 eKp|(e] =s (6] }.

A crucial property concerning I(0) Is that I(8) has the minimum element [¢]

w.r.t. <s, where ¢ is the empty substitution. From this lact, we at once notice
that I{0) is a finite set. This is because each term t;(12= {2 n) is built by a finite
step through a finite (possibly different) paths modolo =s by definition of terms,
where 8={X1/t1, =, Xn/tn}. (For example, without loss ol generality, we can
assume dome (()C dome (8) for a suitable representative 8 of [('] for each

[6'1€1(8).) So, for any subset Y CT(A) s.t. Y= @, we can always find a minimal

element of Y w.r.t. €s.

By especially taking

Y ={[F1€1(0) | ' is a B-valued unifier for A and B} # @,
we geb the required result. O
Note: Compared with the universal unification based on an equational

theory K, the result of lemma 1-2-4 seems to be remarkable from a viewpoint
that B-valued unification is more general than universal unification, because it
declares that B-mgu always exists in the above sense. The reason is that the
definition of = is independent of [[ 1] and ~, and so essentially different from

the similar relation éﬂbasud on E. |

Deflinition 1-2-5. A program Iis B-valued
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iff 31(1):Bp— B. 2

In the following, when we write “(P, [[ 11", (P,[[ 1) always means a B-

valued program I’ with respectto [[ ]] € BB,

Definition 1-2-6. Let (P, [[ 1]) be a B-valued program.

(1) LetG be a goal «<Aj, -, Ay, C be an input clause where C is a variant of a
clause in P, Then, we say G’ is B-derived from G and C using B-valued
unifier & with the value b€ B, if the following conditions hold.

(i) Am€{Ay - Ak} isthe selecled atom.
(ii) fisaB-mguforApandC*h.
(iii) G'is the goal
— (A A, C L A e, - AL B
ivl b =F5;xmﬂ‘ﬁm[3p 1.
(2) LetG beagoal. Then, a B-derivation of PU{G} consists of
a sequence of goals
G - GD\ Glr e
a sequence of input clauses
C1, Cg, -,
a sequence of B-valued unifiers
By, Bg, -,
and a sequence of B-values
by, b, -,
such that each Gi4 1 is B-derived from G; and C;j+1 using 8;+1 asa B-mgu

with the value b; 4 1. —

Definition 1-2-7. Let (P, [ ]]) be a B-valued program and G be a goal <Ay, -,
Ay,



(1) A B-refutation R of PU{G} is a {inite B-derivation of PU{G} which has the

empty clause [ as the last goal Gy, and the resulting B-value
u(R) = by by

In this case, we say R has length n and o(R) is called “a refutation value (of
G wrt (D017

(2) A B-answer substitution 8 for PU{G} is the substitution 0184 (obtained
by restricting Lo the variables in G), where <81, -, x> is the sequence of
B-valued unifiers appeared in a B-refutation R of PU{G}

In this case, the B-value
ul) =r:;’;\m(ii[ Arbplin-—nallAxBpll)

is called “an answer value (of G w.r.t. (P, [ ]D).7 -

As for a relation between v(R) and v(B), we get

Lemma 1-2-8 Let 0 be a B-answer substitution of a B refutation R of PU{G}.
Then,
v(R) = ulf).

Proof: Let © be a B-answer substitution of a B-refutation R of PU{=Ay, -, Ak},
where <05, —, 0,3 and <<Cy, -+, Cp> are B-valued unifiers and input clauses
used in K.
Let {B,,.8,} C {8y, , 0y} and

Cj,.~.C,t © {Cyp,-, Cn} besuch that
(85, Cj;) is used to eliminate A for 1=1=Kk, thatis,
0j. is a B-valued unifier for C;;” and AiBy -+ 8j. 1 for 1=i=k.

Then, for1=i=k,

;;’;}..HA"BP]] = pfund ([Aj8) - Bnpll
(«61--;, is an initial segment of 8.)
E A ([Aif - 80l
= by
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E U(B}=P;;:~“J{{[A15plln---n[[hhﬁp]]3' = bjaenby,
= bisopby=viR).

Definition 1-2-9

(1) An unrestricted B-refutation K, is a B-refutation except that we weaken
the restriction of B-mgu to a B-valued unifier at cach B-derivation step.

(2) A special (ground) B-refutation Ry is an unrestricted B-refutation such
that we specify B-valued unifier to a ground B-valued unifier at each B-
derivation step. —
As stated before, mgu lemma is essential to prove the completeness of

syntactical unification. This lemma also holds for B-valued casc.

Lemma 1-2-10, (B-mgu lemmal.

Let (P, [[ 1) be a B-valued program and G be a goal. If PU{G} has an
unrestricted B refutation with B-valued unifiers <8, -, 8, >, then PU{G} has
a B-refutation of the same length with B-mgus <0y’ -, 0,/ > such that

{ 3y :substitution ) ( Oy = Uy = Uy’ = ty' )
Proof: Using B-mgu and B-valued unifier instead of usual mgu and unifier, the
proof goes through just the same as the 2-valued case. (In this proof, we need the
result of Lemma [-2-4)) O
Contrastingly, the following specializing direction holds, too.
Lemma 1-2-11. (Specialization lemma for B refutation).

Let (P, [[1]) be 2 B-valued program and G be a goal. IFPU{G} has a B-refutation
with B-mgus < 8, -, 8, =, then PU{G} has a special B-refutation of the same
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length with the same input clauses and ground B-valued unifiers < ', -, 8" >
such that

( 3y : substitution ) (B = Bpy = B¢ 6,7).

Proof: Let (P.[l 1) be a B-valued program and G be a goal. Suppose PG} hasa
B.refutation & with B-mgus <@y, -, 6,> and input clauses <<Cqp, =+, Cpn= and

the resulting goals <Gy, -, Gp=1=>. We can assume that C; has no variable
common with dom (61--8i.1). Asa resull, we can assert that
Ci=0i=Ci 65~ 8116 = (1)

forl=iZn.

Lol W be the set of all variables appeared in G, Cy, -+, C, and et 7 be a grou nd
cubsitution such that WCdom () and 810,y becomes ground.

Now, let AmEC be the selected atom for §1. Since 8 is a B-valued unifier
for C1' and Ay, of course, 8 - 0,y becomes a ground B-valued unifier for C; "
and Ay, Let

Gi=—(Ay,  Ap—1,C17 Ame 1, ALY BBy = GiBur-Ony.

Let AnB1€G be the selected atom for G2.. Since 82 B-valued unifies Ayt and
Co*, Ho--B.y B-valued unifies An9; and C2*. So, O2-6py B-valued unifies
ApfituUpr and Cg*. Here, by (1), Co~ 8z--8qy =Ca™08182-Unp. So, the
resulting goal G2’ from G’ with the ground B-valued unifier 88,y for the
selected atom A 8920y and Ce* becomes

Gy =«  (A10p-Bar, =, Apo181-0uy, CothOnr, ApsabrUay, o

AkOy0nr)
= {(Ar, A1, Com A, A8 8oy =GBy By
Repeating this process, we get the sequence of goals

G G Gy
such that

Gi=G;if;+1 By forl=i=n-1
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and

. =Gpr=0L.
Here, for each 12 1= n, the input clause is C; and the B-valued unifieris 8;---0,7,
which should be ground by definition. Finally, with this special B-refutation R
for PUIG), we notice that the B-answer substitution become {B81---O9n7)
(Do-0,7)(An7) =018y, (In this proof, we essentially use the substitution

transitivity of ~ for the first time.) a

In the following, we shall use this kind of derivation. This means, we
construct a kind of B-valued logic programming language scheme. Lel P be a
program. A logic programming language scheme is called “LIFE-Iiff it is the
class of Boolean-valued logic programming languages <(P, [l 1, B, F, ~>

based un B -derivation. 9

£1-3. Soundness of LIFE-III

So far, we have been defining general notations used in a B-refutation.
The next nolions are those that are used mainly to maintain soundness and

completeness of LIFE- 1.

Definition 1-3-1

(1) (P, [[ 1Disa# program iff (U, [[ 1]} becomes a F-model of P.

(2) A (unrestricted) B-refutation R is a (unresiricled) F-B-refutation iff ulR) €
F.

(3) A B-unswer substitution 8 is a F-B-answer substitution

iff w(B) € F.



(4) A substitution 8 for G is an Herbrand F-correct answer substitution for
PU{G} iff for any Herbrand F-model (Up, D of P, (Up, ) is a F-model of
viGa). -

Note: The above notion of Herbrand F-correct answer substitution is a little
weaker than that of F-correct answer substitution defined in Definition 1-10,
herause we restrict our attension only to Herbrand F-models of P instead of

(general) F-models of P. -
Now, as a direct consequence of Lemma 1-2-8, we gel;

Proposition 1-3-2. Let (P, [ 1)) be a B-valued program and G be & goal. If
PuU{G)} has a F-B-refutation Rt with the B-answer substitution 8, then 8 is a F-B-
answer substitution,
Proof: By Lemma 1-2-8, we already know u(R) = v(@). Sinee o[RIEF, so v(B)EF.
]
Next, the relation between F-program and F-B-answer substitution gives

the soundness theorem for LIFE-1IL

Theorem 1-3-3. (Soundness theorem of LIFE-TIL)
Let (P,[[ 1) bea F-program and G be a goal. Then, every B-answer

substitution 8 for PU{G}is a F-B-answer substitution.

Proof: Let (P, [[ 11 ) be a F-program and (i be a goal <A, -, Ak and <0y, -,
B,> be the sequence of B-valued unifiers used in a B-refutation of PU{G}. We
have to show

o(8)= A, JLLA18p]] A-AlAKBpII] €F
where 0=07 - 8.

The result is proved by induction on the lengthn of the refutation.
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i} Thecaseofn=1.
This means that G has a form <A and (A« )€P such that 8; B-valued unifies
A and Aq. Here, since (A«)€Pand (P, [[ ]]}isa F-program,

(Up, Il IDEY(AB]),

F:;}HHJ{"[AHIP]D €F. - (1)
oov(B) = P__{:’;“{JLA]UW'J €F,
i Remark:
Let p be such that A;0;p is ground. Extend this p, if nceessary, to p” such that p’
is a ground substitution for A10j«<+A6;. Then, by definition of B-valued unifier,
A8 TI=[1ABp']]. Moreover, since Al p’is ground, [[ABp'|Jef" by (1).
So, [LA101p")]=[[A6pl]l €F . L

11y General case

Suppose that the result holds for the case of n—1. Let <0y, -+, 0> be the
sequence of B-mgus used in a B-refutation of PU{G} with length n. Let C; be the
first input clause and Ay, be the selecled alom in G. Since

—(AL v An-1L,C1 L Amg o AllB)
has a B-refutation of length n—1 with B-mgus <02, ---, 85>, by induction
hypothesis,
F__‘;ﬁ_J ([[A18162 - Bapl]l A - A 1Am=1010g - 8np]] A [[C178182 - Brpll A

([[Am+18182 = Bapl]l A A [[AKE102 - Onpl] JEF

So, M . (([C1-BplleF - (2)

p: pron
and

F:F{‘;m; (A 18P A A LA 181 A lLAR 1 0pll A A LTARBPI]) €EF . - (3)

Here, since C1€P und (P, [[ ]] }isa F-program,
(Up, [[ 11)=¥(C8)

392



1.o.,

A LIC18p]l = A ([[C1*8p]) (C1Bpl) €F . - (4)
F:‘-I‘ﬂ‘lﬁl‘l F:!rnun
(2)+(4) gives
A, [C176pl €F. - (5)
F:%rﬂﬂ-ﬂ

(Here, we tacitly use the similar reasoning as in the above Remark.)

Since 01 isa B-valued unifierof Ay and G,
[[ALA1pl]=[[Cy101p]] for any ground p

= [[A08g o Bupl]=11C1* 6182 Byupl] forany ground p

= [[Apbpll=1[C1*6p]] for any ground p

= p:;:-\uund ([[Ambpli€lF by(d). - (6)
(3)+1(6) gives

EF:{:J[[MEP]] A A AR 18p1) A [Am+18p]) A A TTAKER]])

M iP__{r‘;“H[meF}p]] JEF.

So, u[ﬁ}=r_{xw1’illﬁlﬂp]] A-en [[ARBpl]) €T

Ll

Note: I'rom this fact, we notice that, if B is a B-answer substitution for PU 1G}
w.r.t. a F-program (P, [[ ]]), then
u(8) =p:{\m-d (LGoOp ]

never becomes 0in B, —

Definitions 1-3-4. Let (P,[[ 1])be a B-valued program. Then,

i) A subset Spof Bpisthe success set o[ P, that s,
9p={u€Bp|PU{«0} has a reflutation in the usual sense .

i) AsubsetSp(ll 1], ~)of Bpisa B-success setof (P, ([ 1])ill
Sp([[ 71.,~) = {0 € Bp|PU{«0} has a B-refutation w.r.t.[[ 1] and ~}.
By definition, SpCSp(l[ 11, ~) for any [[ ]Jand ~. -4
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Using this notion, as a direct consequence of Theorem 1-3-3, we at once

notice that

Proposition 1-3-5. (Soundness theorem of B-derivation —the ground form—)
Let (Up,[[ 11)be a Herbrand F-model of P. Then,
Sp(ll 1.~ CB,  [F]

Proof: By Theorem 1-3-3,
) afpl] € F,
pigronnd [{oap]]
Since o is ground, this means

o]} € F.

Corollary 1-3-6. (Soundness theorem —the least Herbrand F-model form —)Let
(Up, p) be the least Herbrand F-model of P, Then,

Splp, ~) C BulF].

Proof: Direct consequence of Proposition 1-3-5. 0

By the way, by taking ~ such that (VA, BeA(Ilp, V) ) (A~-B iff A=B), B-
valued unification becomes the syntactical unification as a speceial case except

additional B-value evaluations. From this fact, we obtain

Corollary 1-3-7. (Soundness of usual derivation)
Let (P,[[ 1] ) be a F-program and G be a goal. Then, every answer substitution 6

for PUIG) w.rt. (P, [[ 11)isa Herbrand F-correct answer substitution.
Proof: Let (P, [[ 1]1) be a F-program and G be a goal. Let 8 be an answer

subsitution for PU{G)}. Then, for any F-grogram (P, [[ 11}, 6 become an answer

substitution for PU{G}, because the construction of § does not depend on [[ 1],
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[[ 1I' €B®, In other words, for any Herbrand #-model (Up, f} of I, 6 hecomes a B-
answer substitution for PU{G} w.r.t. { and the above special ~. By theorem 1-3-
3, thismeans

F;;“:GU“J{TG{BF} ¢ I for every Herbrand F-model (Up, f) of P, where f(GBp) is an
abbreviation for “[LA1Gp) A A HAKDR)" MG =(—=My, -, Ak

= {(VGA) € Florevery Herbrand F-model (Up, [ ol P,

= Hiza Herbrand Fcorrect answer substitution. Ll

Here, we can ask the following stronger question.

“Let( P, il 1) beca¥ program and G be a goal, 'U'hen, every answer substitution
B for PUIGw.rt. (P, [{ 1])isa F-correct answer substitution.” (1)

To prove this extension form of Corollary 1-3-7, we need a little wider notion of

B-valued program.

Definition 1-3-8, Leti (D, ) be a F-model of a program P. Then, (P, (D, ) is

called F-program in a wider sense. —

Using this wider notion, we can define
B-valued unifier, B-refutation, B-answer substituiion ete

in a wider sense, For example,

Bisa B-valued unifier for A and B in a wider sense
iff fiviAG«< BO)) =1, where A ~Bf,
Aisa F-B-answer substitution in a wider sense

f wl@) = f0vGU) ) el

ate.

With these wider notions, in order to see (1), 1t is enough to check,



Theorem 1-3-9. (Soundness theorem of LIFE-1Il in a wider sense)
Let (P, (D, f)) be a I"-program in a wider sense and G be a goal. Then, every B-
answer substitution 0 for PU{G} w.r.l. (P,(D,0} is a F-B-answer substitution in a

wider sense,

Proof: Using wider notions, the proofis similar to the proof of Theorem 1-3-3.

n

Then, we can obtain the prool of (1) through the similar argument to the

proof of Corollary 1-3-7, using wider notions.

Note: The above situation typically shows that, considering B-valued concepts,
we can always transform a result to the corresponding result in a wider sense.
For this reason, we omit the investigation of B-valued concepts in wider senses.
To tell the truth, as you know, in almost every case, the notion of Herbrand
model is sufficient to say something positively about logic programming. (See,

for example, Theorem 1-1-9.) I

Now, by Proposition 1-3-2 and Theorem 1-3-3, we already know the
relations

F-B-refutation = F-B-answer substitution
and

F-program = F-B-answer substitution
Here, a natural question is “Is there any relation between the notions of F-

program and F-B-refutation?” The following lemma, combined with

specialization lemma, answers this question.
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Lemma 1-3-10. Let (P,{[ 1)) be a F-program and G be a goal. If PU{G} has a

special B-refutation R, then R becomes a F-B-relutation.

Proof: Let(P,[[ 11) be a F-program and G=(<A|, -, Ag) be a goal and <6y, -,
8>, <Cy, =, C, > be the sequences of ground B-valued unifiers and input
clauses used in a special B refutation R, of PU{G} We have to show

uRy) = A G Biplla -l F;QH}ICH "Onpll)

={[Cy Ol A TG Ba]] € F.
As usual, the result is proved by induction on the length n of the B-refutation.
i) Thecaseofn=1I
In this case, since v(Rs)=[[C1*8;]]=0v(f), the prool is the same as the case of
n =1 in the proof of Theorem 1-3-3.
ii}  General case
Suppose the result holds for the case of n=1. Let Ay, be the selected atom of G.
Since

Gr=«AAy, ~ An-1, G A, L AR Dy
has a special B-refutation Rg of length n—1 with the input clauses <Cg, -,
Cn =, by induction hypothesis,

vlle's) = {[Ca*Ogll n o ATIC ™8R] € F. - (1)
By Lemma 1-2-8, 0(Ry) = v(fg - 8y). So (1) gives v(Bg -~ 8,)€¢F. This means

P_#{}MJ ([[A16162 - B,pl] A o A [[Am—18182 - Bnpll AlIC178102 - Onpll A
[[Am+ 18102« Onpll A ATTAKS18g - Bnp]] ) € F.
Putting =01 -8,
P__QHJ WC,~6pl]l €F. - (2)

Now, since C1€Pand (P, [[ 1])1isa F-program,

(Up, [[ 1EVIC8),
ie.,
hw* (({C170pl] [C1-0pJ)) € F. - (3)

pigro
{2)+(3) gives
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P;{;‘;M ([C: opll € F.
Here, since 0 1s a ground B-valued unifier for Ay, and Cy ', C1'6p=C170; -~
Bop=C1%98, for any ground substitution p
HC T 0 EFL - (4D
So, (1) +{4) gives

U[Rsi}:{[[cl‘ﬂlljﬁ---ﬂl[ciliel]]:'EF. O

Note: Roughly speaking, LLemma 1-3-10 asserts the following.
Let ({P,[[ ]1)bea F-program. Then, for any ¢lause C¢P and for any ground
substitution 8 for C,
(Up, [l ]1)ECB,ie., [[CO]]EF,
However, this fact does not necessarily ussert that
(Up, [ HIECT8,ie, [[C*O1cF.
Bul, whenever 8 occurs as a ground B-valued unifier for the input clause C
during a special B-refutation o[ PU{G} for a suitable goal 3, if possible, then
([[CTa]]EF. —
As a corcllary of this lemma, we get the following strong soundness
theorem for B-valued derivation, which embodies the fruitfulness of B-valued

concepts.

Theorem 1-3-11. (Strong soundness theorem of LIFE-II)
Let (P, [[ ]1) be a Fprogram and G be a goal. Suppose PU{G) has a B-
refutation R with B-answer substitution 8, then PU{G} has a special F-B-

refutation Rg with B-answer substitution 07 for a suitable .

Proof: Suppose PU{G} has a B-refutation R with B-answer substitution 8. By
specialization lemma (Lemma 1-2-11), PU{G} has a special B-refutation R with
B-answer substitution 8y for a suitable 7. Then, using the above Lemma 1-3-10,

we notice that Re isa F-B-refutation. (1
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§1-4. Fixed point semantics of LIFE-III

In this section, we give a fixed point characterization of the least Herbrand
F-model for the preparation of a proof of the completeness theorem of LIFE-1II.

Fist of all. for the sake of convenience, let’s define;

Definition 1-4-1. LetI" be a program.
For any o€ Bp, let Clo)={C€P|(30: ground substitution for Clo=C+0]}}. =

Now, since we are going to define B-valued fixed point semantics, we ought

to begin to consider BB instead of the power set p(Bg) of Bp, 1.e., 28y,

Definition 1-4-2. Let I’ be a program.
Define relations = pand = over B" by, for any [,g€BP:,

[ =.g iff “x’;' (flo)—glo)) el
and

f=,g iff f=,g A g=.f
Let Py = { BB =p). Define a partial order < over Pp by, for any [{], [g] € Pp,

fl € dg] iff [ = gfor suitable representatives f, g for [f], [g]
respectively. ~
Obviously, the above definition of € does not depend on the choice of

representatives f, g for [f], [gland so is well-defined.

With this notation, we get;

Proposition 1-4-3. LetP be a program. Then, (Pp, <,) is a complete lattice.
Proof: It is obvious that (Pp, <p) is partially ordered. Let X be a subset of Pp.
Define

wX =gl by  (Vo€Bp) (gloy= v flu))

iy
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and

AX =[h] by (Vo€Bp) (hiol= A flo)).
LfiEx

where fis a suitable representative of [f]. Then, itiseasy to check that X is the
lu.b. of X and AX is the g.L.b. of X. (Again, the definition of \/ and /A does not

depend on the choice of each representative fof [{].) O

Note: The top element of (Pp, £ Jis|T]such that
(WoeBp){ Tol = 1)
and the bottom element 1s [ L) such that

(VYo€Bp)( Lo} = 0)

Definition 1-4-4. Let P be a program. The mapping
Te:Pp== Pp
is defined as follows. For any [f1€ Pp, Tp([f] ) = [g] such that
1 , ifthereisan unitclause in Clo)
glo) = t:fuq flC;—8;) , ifClo)= @ and there is no unit clause in C (o)

0 , otherwise,

where f(C;=8) = [(A10:) AAf{ALD;), when Ci- = [Aq, -, Ak tand C;78; =0.
_||

There 15 another characterization of Tp: Pp— 1’p.

Lemma 1-4-5. Let P be a program and Tp: s+ Ppbe as above. Then,
Te(tfl ) = A{lg]| (VCEPHYE: ground substitution for C)
({g(C*B) «f(C B))EF)}.
Proof: Let Tp: Pp—Pp be as above. Let [f1€ Pp, Tp([fl) =[G],
X ={[g]|(YCEP) (V4: ground substitution for C) ((g(C*B)«fC-8)EF) }, and
(h]=AX



We want to show [G]=[h].
To show [h] <r[G], it is enough to check [G] € X.
Let CEP and 8 be a ground substitution for C. LetC*8=0.
By definition, since Clo)= &,
1,if there is an unit clause in Clo)
GIC ) =Glo)=
v fIC;-6;)) = HC-8), otherwise.
tiellr)
So, (GICTH«NC-BN=1.
<Gl € XL
Next, to show [G] < [h], we devide the argument into two cases. Let c€Bp be

arbitrary.

I.  Thecasethat Clo)= @
i) The case that there is an unit clause in Clo).
Let{g] €X be arhitrary. Since
(WCEP) (¥Y: ground substitution) { (g (C*8)«HC-B)EF),
especially taking C={A<}and 0 such that AU=0, we notice that
glo)=gl(ABJEF.
hig)= E’.—;hg{n] € I, because I is complete.
So, (h{o)eGlo))EF.
i) Otherwise
Let [g] € X be arbitrary. Since
(VCEP) (VO: ground substitution) (g (C*0)«fIC-0)) € F),
(glo)«—HC;~8;) €F for any Ci€ Clo) and 0 such that 6 =G;*6;
= (glo)e— v fIC;i=6;)) € F.

Liele)
= (gla)e= Glo))eF,
So, (( &A’;\*‘E{U]}*—G{ﬂ] JEF Le., (hio)=G(o)) € F. —

II. The other case, i.e,, Clo)=&



By definition, G(a)=0.

So, I+ gives [G] <p[h]. L

In the following, we will use these two definitions of Tp interchangeably.

Lemma 1-4-6. LetP be a program. Then,

Tp: Pp— Ppis monotonic.

Proof: Let [fl, lgl € Pp be such that [f] €5 [gl. We want to show Tp ([f] ) <
Tptig)), thatis, AYy<, A Yy, where
Ye={[h] | (VCEP)(V¥0: ground substitution) ( (h(C*H)<fC-0)EF ) }
and
Yo={[h]| (VCE€P) (VO: ground substitution) ( (h(C"8)«g(C-ONEF) }.
To show this, it is enough to check Yr 2 Y,
Now, by definition,
(VoeBp)({flo})—gla) £ F).
(WCeP) (WH: ground substitution) (({C-8)y=glC-B8)E F). - (1)
Let [h] € Yg. Then, for any C€P and any ground substitution 0,
(R(CHQ)e—g(C 0N EF
= (W{C*@)«fC-0) € F by(l)
So, [h]1€Yr . YOYy -

Proposition 1-4-7. Let P be a program and (Up, f) be a B-valued Herbrand
interpretation of P. Then, (Up, ) is a F-model of P T Tp(lf]) €¢ [f].

Proof; (=) Let (Up, f) be a F-model of P. Then,

(YCE€P) (¥8: ground substitution for C) ({(C* 8)<-((C~8)) € F).
= [f] € X, where

.



X ={ig] | (VC€P) (¥6: ground substitution for C) ((g(CHe)<—flC-8)) € F)}.
= Tp(lf]) ¢ (1l
(<) Suppose (Up, f)is not a F-model of P. This means
(ICEP) (J0: ground substitution) (fICHO)—f(C-B)EF). - {1}
Let X ={[g] | (VCE€P) (V8. ground substitution) ((g(C*0)«fC"8)) CF) |
Then, 1pl[fl)=AX. Let AX=[hl
Here, using Cand 8 in (1), we get
(W[gl€X) ((g(C*BIFICONEF.
= (A gCrE)«—HC-B)IEF.
Lilex
= (h(C'B)fC-0peF. - (2)
(1) +(2) gives (NC*8)«h(CONEF.
= (( A (Ro)e=hle) €F.
TEEp
< [h]l £y[fl

L1

¢ Tpilf) £rlfl.

As a corollary, we get the following fixed puint characterization of the least

Herbrand F-model.

Theorem 1-4-8. (A fixed point characterization of the least Herbrand F-model)
Let P be a program and (Up, p) be the least Herbrand F-model of P. Let Tp:
Pp—Pp be as before, Then,

ip] = the least fixed point of Tp.

Proof: Let (Up, p) be the least Herbrand F-model of a program P. Then, by
definition,
(Vo€Bp) (plo)= A ifi(o)|(Up, fi) is a Herbrand F-model of I'} ).
Let X ={[f;] | (Up, i) is a Herbrand I"-mode] of P}. Then,
ml = AX
= A{ | Tp([fi] )< il }, by Proposition 1-4-7
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=  theleast fixed pointof'I'p,

because Pp is a complete lattice and Tp is monotonie.
Lemma 1-4-9. Tpis continuous,

Proof: Let[gol<rlg1]l<r —<rlgn]l <r - be an increasing sequence of Pp.
We want show

Tpl v [gn]::H;l‘pELgl1J}.

LW

Let[G]=Tp ( v [gu])and {H] = v Tpllgal). Let 0€Bp be arbitrary.

mLa) oL

enough to check (Glo)=H(o))EF.

i) Thecase that C{o)={&
By definition of Tp, G(o)=0=H(u).
ii}  The case that there is an unit clause in C{o).

By definition of Tp, Gla)=1=Hio.

1ii)  The other case.
Glo} = v hiCi~8y) , where[hl= v [gal.
LikClg) A e
(¢ use the fact that - <¢[gn] <p- areincreasing)
= t;}{ul[] :{’#g.-.[Ci'Hi]' yoooeeild
Hio) = HWTP ( [gnl])
= v ivgnCi~0)). &

Asw prgtia)

It is

Here, the equality (1) =) can be shown easily, using the fact that B is complete.

Definition 1-4-10. Let Pp and Tp: Pp— Pp be as before.
Define Tpto=[1]
TpTn+1=Tp(TpTn)

O



Tplw= v Tpin. —

Lemma 1-4-11.

(Vns=w)Wao& Bp) (falo) = 1y fulo) = 0 ), where [ is a suitable
representative ol Tp Tnforn = w.
Proof: Obvious. (By induction on the construction of Tp Tn.) O
Proposition 1-4-12. (¥n=<w)(TpTn+l Zplp Tnl
Pruol: Since Tp is monotonie, this is obvious. L

As a corollary, we notice

Corollary 1-4-13. Tp T w is the least fixed point of Tp.

[

Proof: By continuity of Tp, thisis obvious.

§1-5. Completeness of LIFE-III

In this section, we prove the completeness of LIFE-lll in its B-valued sense.
First of all, using the results of theorem 1-4-8 and corollary 1-4-13, we can
shiain the following completeness theorem of the least Herbrand F-model

Version.

Theorem 1-5-1. (Completeness theorem of LIFE-ll—the least Herbrand F-
model form—). Let P be a program. Then,

Bu[F] = Splp, ~),
where (Up, p}is the least Herbrand F-model of P and ~ is arbitrary.



Proof: By soundness theorem (Corollary 1-3-6), we have already obtained the
direction

Splp, =ICBp[F]. - (a)

Let a€BulF], Le., plo)eF. We aleady know that [p]=the least fixed point of
Tp=Tp T w.
(In<w) (fL{c)EF), where [{,]=Tp | n.
(Remember f,(oj=10or 0).
In the following, we prove by induction on n that
fulo)€F, ie., fnlu}=1=>0£8p, where Sp is in Definition 1-3-4.
First of all, by assumption that f,(0) =1, we notice that C{o)¥ © by delinition of

Tp. In the following, w use this fact without mentioning.

i) Thecaseofn=1
Let o€ Bp be such thatfi{a)=1¢€J"
By definition,

1, ilthereisanunitclause in Cla)

[lu) =
W L G681}, otherwise.
CLECIE)

Since L (Ci~8) =0 for any C{£C(o) and 8; such that 0 =C;*8;, C(o) has at least
one unit clause because f(o)=1.

Let {A«}€C(a) and 8 be such that e = Al

Then, Pi}{« o} has a refutaticn of length 1. -

117  General case

Suppose the result holds for n —1. Let o € Bp be such that fp(o)=1€F.

Claim. (ICE€Cla)) (J10: ground substitution for C) (o=C*8 A
(C =@l 1(C-8) = 1)



| Suppose (VC¢ C(o)) (V8: ground substitution for C} ((o=C*8)—(C~# @
Fy_1(C-8)= 1)),
Then, by definition,
falo)= Vv I 1(Ci6;)=0.

LieCia)
This contradicts the assumption fy(a}=1. — |

{ The case of (F(A«) € Clu) ) (38: ground substitution) (o= Af).
In this case, PU(«o} has a refutation of length 1 with the input clause {A<}and

the syntactical unifier 6. —

(IT} The other cases, thatis,
(3CEC(u) ) (38: ground substitution) (c=C"8af; _1(C-0)=1}. = (b)
Let C- ={Aj, -, Ai} Dyinduction hypothesis,
Ajje Splor1=i=k
because [ (A1) A a fnc1(ARBI =10
So, PU{+0o} has a refutation with the first input elause C and the syntactical

unifier 8, where C and 8 are as in the above (b). —
(I 4+ (1T} gives f(o)F—a(Sp.
What we have shown is

BplFICSp. - (e

(a)-+(c) pives Bp[F)LSplSp (p, ~) € BulFl.
So, Bu[F]=8p (p, ~). U

As a direct consequence, we notice

Corollary 1-5-2. LetP be a program. Then,
Sp = Splp, —,
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where (Up, p) is the least IHerbrand F-model.

C

Proof: Obvious.

Now , to prove a completeness theorem for F-program (P, [[ 11) in a general
situation, we need a few lemmas. The first one is a direct generalization of the

famous result in pure Prolog.

l.emma 1-5-3. (Lifting lemma for B-derivation)

Let(P,[[ 1]}beaB-valued program, G be a goal and 0 be a substitution. If there
is a B-refutation of PU{GH} with B-mgus <8y, -, 6,>, then there exists a B-
refutation of PU{G} with B-mgus <281',--, 8,,'= such that

(37 substitution) (B8 =0;"-0y"7 ).

Proof: Using Lemma 1-2-10 (B-mgu Lemma), the proof is just the same as usual

case, L
T'he second also comes from the corresponding resultin SLD- resolution.

Lemma 1-5-1. Let (Up, p) be the least Herbrand F-model of P. Suppose V(A) isa

F-logical consequence of P. Then, there is a (usual) refutation of PU{«A} with

the identity substitution as the answer substitution.

Proof: Let V{A) be a F-logical consequence of PP, Then, using the same argument

as in pure Prolog case, we can assert that there is a refutation of PU{«<A} with

the identity answer substitution by theorem 1-5-1 and Corollary 1-5-2. M

Now, we are ready to prove
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Theorem 1-5-5. (Completeness thearem of LIFE-III)
Let (P, ([ 11} be a B-valued F-program and G be a goal. For every F-correct
answer substitution § for PU{G}, there is an answer substitution 0" for PU{G}

and a substitution 7' such that 0=86%".

Proof: Using Lemma 1-5-4, the proof is similar to the usual 2-valued case. il

Corollary 1-5-6. Let (P,[[ 11)be a B-valued F-program and G be a goal. For
every F-correct answer substitution § for PU{G}, there is a refutation of PU{GHO}
with the identity answer substitution,

Proof: This proofis included in the above proof of theoreml1- 5-5. (.

Corollary 1-5-7. Let (P, [{ ]]) be a B-valued F-program and G be a goal. For
every F-correct answer substitution 8 for PU{G}, there is a B-refutation of PU{G}
with B-answer substitution 8 with respect to [{ 1] and an arbitrary ~ such that

(3" ) (B=87%7.

Proof: Since every refutation is also a B-refutation w.r.t. any [[ 1] and ~, thisis

a direct consequence of the above theorem 1-5-5. 0

So far, for any program P, we have obtained the inclusion relations

BulF]=Sp=Sp(u,~) T Sp(([ 1],~)C B IF]
D @ @ @

L

where (Up, p) is the least Herbrand F-model of P and (Up, [ 1]) is an arbitrary
Herbrand F-model of P and ~ is arbitrary.

Reasons:

T Theorem 1-5-1

(& Corollary 1-5-2

(3 Obvious



ey Proposition 1-3-5. —

Here, a little observation tells us that equality relation in (2 and (& does nol
hold generally. To tell the truth, the possibility of equality in &) and @ heavily
depends not only ~ and [T ]]: Bp—B but also the type of a program P itself.
Precise arguments concerning the equality at @ are discussed in the next

chapter.

In this chapter, we have defined the notions of Beolean-valued logic
programming language scheme LIFE-II as components of LIFE-© and proved

hoth the soundness and the completeness in their suitable senses.
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Chapter II Relativized Completeness

£2.1, Preliminaries

Definition 2-1-1. Let Mp(B, F)={[fi€ Pp|[(Up, ) is a Herbrand F-model of P}. —

In chapter 1, we showed that, for any [f] € Mp(B, F),
Bu (Fl= Sp = Splp, =) C Splf, ~)C Br[F].
T & 3 ey
The above resulls assert that:
@ The least Herbrand F-model is the standard model concerning usual
syntactical unification over P,

At the same lime,

& The least Herbrand #-model (Up, p) is the standard model
concerning B-valued unification over Pw.r.l. p and ~, where ~ is an

arbitrary substitution transitive relation. That s, for any o€ Bp,

((Up,p) Ea  iff) o € Bu(F] iff o€ Spip,~)
(iff (P,p) Fo) where “(P, p) " is the B-derivation from P

hased on B-valued unification w.r.t. pand ~,

3 Lel [[] € Mp(B, F) and ~ be arbitrary. Then, B-valued unification
over P w.r.t. fand ~ is richer than B-valued unification over P w.r.t.
pand ~, Thatis, for any c€Bp,

(Ppj-o = (P,Fua.

However, the converse does not always hold.
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@ Let[f] € Mp(B, F) and ~ be arbitrary. Then, for any o€ Bp,

(P,Hio iff o€ Spif,~)
= gEBAF] il (Up,fHiea.

e
Eh ol

) claims the fact that the least Herbrand F-model is essentially the same as

the least Ilerbrand model in the usual 2-valued sense.

@' suggests that Boolean valued unification w.r.t. the least (n] € Mp(B, F)
and an arbitrary substitution transitive ~ is essentially the same as the

usual syntactical unification for any B, F.

30, on the other hand, asserts the fundamental difference between the usual
syntactical unification and Boolean-valued unification w.r.t, arbitrary [f]
€ Mp(B, F) and substitution transitive ~. So, @ asserts that [u] works, in

a sense, as an extreme case concerning B-valued unification.

@ finally claims the logical soundness of the inference based on B-valued
unification w.r.t. an arbitrary [f] € Mp(B, F)and an arbitrary substitution

transitive ~ for any B, F.

Here, a natural question 1s;

“Fxcept the above case (), under which condition over [ and ~, can we

obtain the equality?”
The main purpose of this chapter is to present reasonable and useful

conditions over (f, ~) which become answers to the above question. The

advantage of the results should be clear. Theoretically, it offers a class € of B-
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valued program (P, [ 11} with certain kinds of properties which can never be
characterized by the usual 2-valued philosophy, and the logical soundness and
completeness assures the existence of the standard element of C just in the
same sense as the least Herebrand model is the standard element of the total
class {(P, ) | (Up, ) is & Herbrand model of P in the 2-valued sense}.

For this purpose, borrowing the technique which is used to show that the
least element [p] of Mp(B, F) satisfies Bu[F]= Sp(p, ~) for any ~, we employ
the following strategy. First of all, define ~, B, F which are expected to be
suitable for our aim. Secondly choose a proper subset N C Pp such that (N, <)
becomes a compicte sublattice. Tastly, take the least clement [p,] of
NOMp(B, F) and compare By, [F] and Sp(p,, ~}.

In the next section, we propose a general and systematic method which
can characterize N L Pp such that

Spipy. =) = BuylF]

for any kind of —, I3, &, where ~ becomes an equivalence relation.

§2-2. J-faithfulness

Definition 2-2-1, Letd : Bp~—-Byp be an idempotent function,
ie., (Yo €Bpi(JJie)) = Jla)).
{1 Let —~ be an equivalence relation which is used to define B-valued

unification. Then,
J satisfies B-valued unification condition w.r.i.~ iff

(V oéBp){a-=Jal

(2) fe B jsJ-faithful iff
(W o€ Bp}(flo) = {Jw)).
(3) A B-valued program (P, ([ ]])isJ-faithful iff
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(6)

[ Tisd-faithful.

A Herbrand Frmodel (Up, £) is J-faithful iff

fisd-faithful.

A subset Tp(J) of Ppis defined as

I'pld) = {[f] € Pp|{isJ-faithful }.

{Up. n,) is the least J-faithiul Herbrand F-model of P

iff [p,]is the least element of ( Mp(B, F)NIp(J), <g ), that is,
(Vo€ Bp)p,lo) = A{fla)| (Up, ) isa J-faithful Herbrand
F-modelof P} ). —

Throughout this section, we always assume that B, F, ~ and J defined as

ahove are arbitrary hut fixed and J satisflles B-valued unification condition

w.r.t. ., Inaddition, we assume that

(W [f] € Tp(d) ) (arepresentative [of [{] is J-faithful ).

Proposition 2-2-2. T'p(J)is closed w.r.t.\/, A\, that is,

{T'pld), <p)isacomplete lattice.

Proof: Obvious. o

Definition 2-2-3. Let Tp(J) : Pp — Pp be such that, for any [{] € Pp,

Tpd) ([[1) = [G], where

1 , il there is an unit clause in D{ J(a) )

Gla) = v T(C;=8;) , if D(J(o)) #* @ Athereisnounitclausein

£ e 0Tl
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Did(o))
0 , otherwise

and D(Ja))={CeP|({36: ground substitution) (J (C*8) = J(a) and C'6 ~

Jla)}. —

Proposition 2-2-4.  Forany[f] € Pp, TplJ) ({{]) € Ipld).

Proof: Let[f] € Ppand Tp(d) (1) =[G].

For any c€Bp, G(o) is defined by means of the terminology D(J{a])
and J(o) =J%0) by idempotentness.

Gla)=G(J(0)) for any c€Bp.
[Glelpid). M

Lemma 2-2-5. Let Tp(J): Pp—Pp be as above. Let [f] € Tp(J) and Tp(J) (I
= [G]. Moreover, let

[h] = A {[g] ¢ Tp() ! (¥ C € P)(V8: ground substitution for C)
({g(C+8) «—fC-0)) e F}}

Then, [h] =[G

Proof: Let Tp(J}, [G], [h] be as in the assumption,
Let X ={[g]€Tp(])|(¥CEP) (v0: ground substitution for C)
((g(C*O)«—fC-B)CF) |

To show [h]<p[G], it is enough to check [G]€X.
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Let CEP and 1) is a ground substitution for C. Let CY8=0. By dellnition, since

CeD(J(a)), DiJ(0)i7 @. So,

G(C*8)=Gla)

1, ifthereis an uniteclause in D(J(u) )

f{Ci~8;) , otherwise,

1

A
S ERLTR))

In anyway,
(GICTH)«fAC-BNEF.
[GleXx.

Next, to show [G]<plh], it is enough Lo see

i)

!

(VoeBp)((h(ol—G{o))CF).

Let ¢ Bp be arbitrary.
The case that there is an unit clause in D(J(0)).

Let C€D(J(0)) be such that C={A<«} and 0 be a ground substitution
such that J(AB)=J(o). Then, for any [g]€X, glo)=glJ{v))=g(J(AB))=
glAD) =g(C*D)EF by delinition of X,

Se, hioy= A glo) CF
Chley
= (h(g)=Gla)IEF.

The case that D(J(0)) ¥ @ but there is no unit clause in D{J{a) ).

Let [gl€ X be arbitrary. Since (VCEP) (VD; ground substitution)
((glC™8)«fC B)EF),

(g(C;i* b)) +fIC;~0)EF for any Ci€ THJI () and 6; s.t. J(C;* 6;) =J(0)
(g(J(Ci 7B« f(C;~8:)) € F for any Ci€ D(J(o)) and 8; s.t. J(C;*6;) =J(a)
(g(J(a)) < Nﬂﬁﬂj—ﬁa}}ﬂf‘

Lie

(g(J(o)) « Glu)eF
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=  (glo) « G(0))EF

[ f'\gﬂcr]l — FoeF
[§ 1€
= {hig) «— Glo)lEF.

iii) The other case.

By deflinition, since G(o) =0,

(h{o) « Gla))€F is obvious.

i)+1ii)+1iii) give the required result. U

In the following, we consider only the case of Tp(J)| T'p(J) without noting
“ I'ptd)" explicitly and use the above two definitions interchangeably.
Proposition 2-2-6.  Tp(J) is menolonic.
Proof: Similar to the proof of Lemma 1-4-6 in chapter . [
Proposition 2-2-7. Let (Up, f} be a B-valued J-faithiul Herbrand
interpretation of P. Then,

(Up, f}is a F-model of P iff Tp(J) ([f]) < . L.

Proof: Similar to the proof of Proposition 1-4-7 in chapter 1. 0
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As a corollary, we get the following fixed point characterization of the

least J-faithful Herbrand F-model.

Corollary 2-2-8. Let P be a program and (Up, p,} be the leasl J-
faithful Herbrand F-model of P. Let TpiJ) : Tp(J) — T'pid) be as above.
Then,

[p ] = the least fixed point of Tpd(J).

Proof: Similar to the proof of Theorem 1-4-8 in chapter 1. O

Lemma 2-2-9. Tp(J) is continuous.

Proof: Similar to the proof of Lemma [-4-9 in chapter 1. O

Definition 2-2-10.  Let Upld) and Tp(d) : UplJ) — T'pid) be as before.

Define  TplJ)T0=[L], where (Vo€ Bp)( Loy =0).
TpJ}Tn+1l=TpJ)(TpJ) Tn)
Tptd) taw= v Tp)tn -

T w

By definition of L and Proposition 2-2-2 + Proposition 2-2-4 + Proposition 2-2.

61-
(Wn = w@)(Tp(d) T n€Tpld))

and

(Vo<w)(Tp(d) T n+12.Tp(J) T n)
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are ohvious. Moreover,

(¥n = w)(Vao€Bpl(fylo) = lorfylo)=0)
where [, is a suitable representative of Tp(J) T nforn= w, is also cbvious.
So, combining the above facts with Lemma 2-2.9, we obtain
Proposition 2-2-11. Tp{J] T w is the least fixed point of Tp(d).
Proof: Similar to the proof of Corollary 1-4-13 in chapter . L
Now, we are ready to prove a completeness theorem for J-faithful programs.
Theorem 2-2-12. Let P be a program and (Up, ;) be the least J
faithful Herbrand F-model of P, Then,

Buy[F1=5p(u,, =~).

(Compare Theorem 1-5-1in chapler 1.)

Proof: By the soundness theorem, we already know that

Sply,, ~) By, LF].

So, itis enough to see

HFJLF]:SP[H.]? ~].



As stated hefore, we tacitly assume that J satisfies B-valued unification
condition w.r.t. ~. Let 0 € By [F], thatis, pylo)efF.
We already know that [p,]=Tp(d) T .
(In<w)( fulo)=1), where [f,]1=Tp(J) T n.
In the following, we prove by induction on n that

fulo}=1=> o€ Splu,, ~}.

Since (o) =0 for any o€ Bp, we can start the induction hypathesis from
the caseofn=1.
i) Thercaseofn=1
First of all, by assumption that f1({¢)=1, we notice that D{J(o))# @ by definition

of TpidJ).

| Jifthere s an unil clause in I{J(a))
filg)=
W L(Ci76;) , otherwise,
Crep|Tie)
Since L(C;-9;)=0 for any Ci€D(J(a)) and 6;, D{J(o)) must have at

least one unit clause, because f1(o)=1.

Let {A«}€D(J(0)) and 6 be such that J(o)=J(A0) and J(o)~A0L.

Since [pylelpld),
palo)=p;d(o))=pJlAB)) = p (AB).
Here, both ¢ and A8 are ground, and o~J(o)~AQ,

So, 0 B-valued unifies o and A w.r.t. u; and ~.

a€Splpy, ~).
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i1y  General casc

Suppose the resuit holdsforn—1 and [(o)=1.

By definition,

1 ,if there is an unit clausc in D(J(g))
fnlo)=
AR wUCi—ey) L DIJ(0))# @A there is no unit clause in
e Did{al).

I. The case that there is an unit clause in D(J(a)).

Using the same argument as in i), we notice that

o€Splp,, ~1.

II. Theother cases, thatis,
(3CCD(J(o))(IB: ground substitution) (J(o) =J(CHO)aAd(o)~CHia
fa-1(Ci~8)=1). -+« (1)
Let C-={Aj, -, Ay}. Byinduction hypothesis,
AsBeSplpy, ~) for1=i=k,
because i 1(A10) Acon T —1(ARDY =1,
So, using the same argument as in case i), we notice that PU{«o} has a B-
refutation with the first input clause C and B-valued unifier 6 w.r.t. u; and ~,

where Cand 8 areasin (1),

[+1I gives fpla)=1—0€Spip,, ~).

So, we get the required resuit. O
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§2-3. (A, A)-absolutleness
In this section, we propose another class O of complete sublatiices of Pp
such that
(v N €0)(the least element [px] of Mp(B, FINN satisfies the econdition
Spluy, ~)=Bp I,
For this purpose, we need the following notion.
Definition 2-3-1.  Let A={W,, --, W} be a finite family of pairwise disjoint
subsets of Bp. Let A={by, -, b,} be asubsetof B. Letl fe B, Then,
i) [iscalled (A, A)-lixed” iff
(Wo€W)iflo)=b) for 1=i=n
i) Asubset Ep(A, A)C Ppis called “(4, A)-absolute”

iff

Ep(d, A} ={[f]€¢Pp|fis(a, A)fixed}. 1
Note: In the following, without loss of generality, we implicitly assume
that, for any [f]€Ep(A, A), a representative fof[flis (A, A)-lixed. -

Proposition 2-3-2.For any (4, A), (3, A)-absolute subset Ep(A, A)of Ppis a
complete sublattice of P'p.
Proof; Easy [l

Note: The top element [Ty, 4] and the bottom element [La 4l of (Ep(A, A),
<) are such that, for any o€ Bp,
bi , if u€W,
Ta alo)=
1 , otherwise

and
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Jbi . if oeW,
-J-,:-..f-.{[ﬂ=
l 0 , otherwise . =

Definition 2-3-3. Let ~ be a substitution transitive relation over A(Ilp, V)
which is used at B-valued unification. Then, A satisfies B-valued unification
condition w.r.t ~ iff

(Yotr EW;}(o=t) for 1215 n,

where A={Wy, -, Wy} —

Throughout this section, we assume that — is arbitrary hut fixed and we
consider only those {Ep(A, A)| A satisfies B-valued unification condition}. In

this sense, each Ep(A, A) dependson ~.

Definition 2-3-4. Let Ep(A, A) be as above.

Define Tpla, A): Ep(d, A)—Ep(A, A)so that, for any [{] € Ep(4, A),
Tpla, A ([£l)=[G], where
[ bi |, if o€W, for 1=i=n.
1, if o€ UW, andthereisan unitclause in Clo)
Glo)= { l<i=n
r‘~._,r’ flC,~8y, if‘UE.L'iLF'T‘ and Clo)+ ¢ and there is no unit
e clause in Cla)
\ o, olherwise,
and
Cla)={C€P|(38:; ground substitution)} (C*8=gl}. o

So far, we have not restricted the possible values in A={by, =, by} .

However, as the next simple example typically shows, A must satisfy a certain
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kind of canditions w.r.t. F in order that the target program (P, [[ 1] ) becomes a
F-program.
Fxample 2-3-5. Let

P={W(a)—} and A={W,} where W, ={W(a)}

and A={b;}. Let B={1,0} and F={1}.

Then, for anv || 11 €Ep(A, A), in order that (P, [l |] ) becomes a F-program,

by should be 1. i

With the above observation in mind, let's say
Definition 2-3-8. Forany P, Ep(A, A) satisfies F-program property
iff LEpld, A)NMp(B, F) # ¢, -

What kind of Ep(A, A} satislies F-program property? The simplest case 1s,
of course, that ACTF. A little more interesting case is;
Example 2-3-7. Let Hp={c€Bp|(3C € P){ 30: ground substitution) (o=C*0) }.
(The “headquarter” of P.) Let A={W,, -, W,} be such that, for some i
(1=i=n), {W,, -, WCp(llp) and {Wi,y, -, W )L p(Bp—Hp), where p(X) is the
power set of X. Then, if {by, -, b}CF, the corresponding Ep(4, A) satisfies F-
program property. —
A little more complex case is,
Example 2-3-8, Let A={W,, -, W} be such that, for any i s.t. W,N(Bp—
Hp)# ¢ and for any C€P s.t. C~ witnesses an element of W,N{Bp—Hp),
either [CY]IC(Bp—UW))

or [CYICW, U UW; st bj, = b, for 1=i=k,
where [C*]= {0€Bp|(38: ground substitution) (o =C* &)},

Then, EplA, A) satisfies F-program property. i
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To present more complex cases, we need a systematic study of the
structure of P. However, the following stronger notion is the one that we want
in order to continue the argument.

Definition 2-3-9. Let Ep(A, A) be arbitrary, Then, Ep(4, A) satisfies Tp(A, A)-

consistent property iff, for any [f] €Ep(A, A),

X[fl={lg] € Ep(A, A)|(VCEP)(VY: ground substitution for C)
((g(C*B)«i(C-H))EF} #g ~

The relation between these two notions is that
Ep(A, A) satisfies Tp(A, A)-consistent property ¢ Ep(A, A) satis{ies F-
-,

program property.

The direction % is easy to check. Forexample,
Example 2-3-10. Let P={y(p)eyiq)}and A={{¥(p)}}and A={0}.
Then, by taking [[ 1] €B®?s.t. [[w(g)]]=0, we notice that
[I[ 11 1€ EplA, A)NMp(B, F). So, Ep(A, A) satisfies F-program property.
However, fora [f] € Ep(A, A)s.t. flglg))=1,

X[{]=p because, for any [g]€Ep(4, A),

(glylp)) —=flplq) )} =0+1=0 € F.

So, Ep(A, A) does not satisfy Tp (4, A)-consistent property. —

The converse direction “=" will be shown soon,

By the way, the naming of “Tp(4, A)-consistency” comes from the following
observation.
Lemma 2-3-11.  Let Tp(A, A): Ep(A, A)—Ep(A, A) be as above. Suppose
Ep(A, A) satisfies Tp(A, AJ-consistent property.

Then, for any [fI€Ep(A, A), Tp(A, A} ([f] }=AX[f].



Prool: Similar to the proof of Lemma 1-4-5 in chapter 1 except the case of
UEJH}EL. .

In the following, we exciusively consider the case that Ep(4, A) satisfies
Tp(A, A)-consistent property. Under which condition does Ep(A, A) satisfy
Tp{A, A)-consistent property? By the above relation, we notice that more
systematic study is needed to investigate the condition than the case of F-
program property. However, it is also easy to see that the condition stated in
Example 2-3-7 isenough to preserve Tp(4A, A)-consistent property. Now,
Definition 2-3-12. Let Tpia, A): EpfA, A)—Ep(A, A) be as above.

Define

TplA, A)TO=|Ls sl

TplA, A} Tn+1=TplA, &) (Tpla, A) Tn)

Tpla, A)Tw= v Tpla, A) Tn. —

NG

Lemma 2-3-13. Tp(A, A) is monotonic and continuous.

Proof: Similar to the proof of Lemma 1-4-9 in chapter 1. .

As a direct consequence, we obtain, as usual,

Corollary 2-3-14.Tp(A, A) T @ is the least [ixed point of Tp(4, A).

L)

Proof: Similar to the proof of Corollary 1-4-13 in chapter 1.
Proposition 2-3-15. Let Tp(A, Ak Ep(A, A} —Ep(4, A) be as ahove,

Suppose [f] € Ep(A, A). Then,
(1€ Mp(B,F) iff Tp(a, A)([f]) <plf].
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Proof: Similar to the proof of Proposition 1-4-7 in chapter 1. d

From this proposition, we at once notice that

Mp(B, FINEp(a, A) 3 Tp(a, A) T w. Thus we have shown

Tpla, A)-consistent property = I'-program property.

Moreover, we obtain
Corollary 2-3-16.Let Tp{A, A) be as above and [ps 4] be the least element of
Mp(B, F)NEp(a, A). Then,

THa al = the least [ixedpoint of Tp(A, A).

Proofi Similar to the proof of Theorem 1-4-8 in chapter 1. i

Before stating relativized logical completeness w.r.t. Ep(A, A), we need two
mare properties.
Nefinition 2-3-17. A satisfies F-consistent property iff, for any disjunctive
B-valued=d; v v dy where each d, (1=i=k) has a conjunctive normal form
generated from A W40, 1}
(, that is di=hi, A - A by s.t. bi,;=bj, v = v by and (b, , -,
by _yCAU{0, 1} for I=15]),
ifd € F,then(1=3i=k) (d; € F). —

We have already obtained the property of Tp(A, A)-consistent property of
Ep(A, A). These two properties are irrelevant in the following sense.
Ep(A, A) satisfies Tp(A, A)-consistent property

a5

&
A satisfies F-consistent property.

The check is easy. For example,



Example 2-3-18.

yip) <= wiq)
1. Let P= CA={{wip)t, hptg)h , A={0 1]
wig) <~

st y{p)— 1, wig— 0
Then, Ep(A, A} is not Tpla, A)-consistent for any ¥ over any B. However,
M satisfies IF-consistent property.

wip) « pig)
2. LetP= CA={{wle)}, {wr)}} A={a, b}
pip) < ylir)

st ylgl-a, wr— bavheF adF, bl

(For example, take B={1, b, =b, 0}, F={1}, a=—"h.) Then, for any
[fl€Ep(A, A), by taking lgl€Ep(A, A) such that

g (plp)) =1, we notice that X[{]=e. So, Epla, A) satisfies Tp(a, A)-
consistent property. However, by the choice of a and b, A does not satisfy

F-consistent property. —

The second property is;
Definition 2-3-19. Ep(A, A) claims the existence of eliminators iff, for any W, €
A such that b;€F, there is an atom ;€ W, such that P contains the assertion g+

Fach ¢, is called “an eliminator”of Wi —

By definition, we permit the case that there might be two different
eliminators g;, g’ for the same Wj. That

existence of eliminators % Tpl4, A)-consistency of Epla, A)
a

and

existence of eliminators 4 F-consistency ol A
&

is too obvious to check.

Now, we are ready to prove the main theorem in this section.
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Theorem 2-3-20. Let ~ be a substitution transitive relation over A(Ilp, V).
Let B be a complete Boolean algebra and F be a complete [ilter over B. TLet
Ep(A, A) be a complete sublattice of Pp such that

1.  Ep(A, A)satisfies Tp{A, A)-consistenl property and claims the existence of

eliminators

ta

A satisfies B-valued unification condition w.r.t.—~

3. A satisfics F-consistent property.

Let [12a 4] be the least element of Ep(A, A} Mp(B, F7).
Themn,
Splia a, ~)=By, 4 [F], where py aisald, A)-fixed representative of [py 4]
Proof: By soundness theorem
Splpa s, ~)CBuy, 4 [Flisobvious,
So, we want to show Bua 4 [(F1C Splpa,a, —)
Let o € By, 4 [Flbearbitrary. We already know that
[us A]=TplA, A) T w.
(In<w) (f(e)EF), where [[,]=Tp(A, A) T n.
In the [ollowing, we prove by induction on n that
f Ao} F = o€ Splpa,a ~) -
I)  Thecaseofn=0,
By definition of [fy] =114, 4], since fy{o) € F,
g € W, forsome 1 suchthat b; € F.
So, using an climinator g, <, PU{«<u}hasa B-refutation of length [ w.r.t.
Ha, A, beCAUsE
pa.a (7)=ua s eil=biand o ~ &
IT) General case.
Suppose the result holds for n—1. Let f,(0)€F.

i)  The case that oW, for some 1=i=n.
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i1}

1)

Then, using the same argument as in 1), we notice that PU{«0} has a B-
refutation of length 1 wort. pa a.

The case thato € U W, and Clo) has an unit clause.

l=i1xn
Let A« €Clo) be such that
(38: ground substitution ) ( A8 = v ).
Then, it is obvious that PU{+0c} has a B-refutation (w.r.t. ps ») with the
input clause A« and the B-valued unifier 8.
The other cases.
Since f (0)€F, we notice that

faloy= v foq (Gi7H).

¢ £cto
ITere, we know that, for each Ci€ (C{n), the B-value f, ;(C,~8,) has the form
o (A0 A AT (AE)
where Cim=A,, -, Ay
Now, by the construction of Tp(A, A) T n-1, we notice that each f,; (A0)
(1=j=k) can be expressed as a conjunctive normal form
dj; A A
generated from (a subset of) AU{0, 1} , by using Booclean algebraic
transformation. Here, since A satisfies F-consistent property,
(3C;€Cla) )} (1 (Ci B)EF) e (D
= T CAGE) A A (AT €F
= flAf)EF for 12j= k.
So, by the induction hypothesis,
AB, € Splpg,a, ~) for 1Z2j=k,
PU{«=n} has a B-refutation based on pa , with the first input
clause C;in (I) and the first B-valued unifier @,
O

-70-



§2-4. More about Logical Completeness

In §2-2, we propose a subclass I'p(J) of Pp such that the least element [j;]
of I'p(J)NMp(B, F) satisfies

Bu;(F)=S8plpy, ~)
and in $2-3, we show that another subclass Ep(4A, A) of Pp also satisfies

Bua A (F)=Splua a, =)
where [pa 5] 1s the least element of Epla, A)NMp(B, F). Here, consider the
least element [ps o 51 of TplDINEpR(A, A)NMp(B, F). Does [ja a 4] satisfy the
condition Bpa n g (F)=Splpa s g ~) ?
The answer is negalive for general pair (T'p(J), Ep(4A, A)). However, with slight

conditions over (A&, A, J), we obtain the expected result.

Definition 2-4-1 Let's Ep(A, A) be as in §2-3 and J : Bp—Bp be an idempotent
function such that

1. (Yo €Bp)Jlo)~o) (Jsatisflles B-valued unification condition)

2, (VW € A){Fuie W) (VieW) (J(t)=a;)

3. (Vo {Bp-lsl,l;ﬁﬁ-’ﬂ}{r]'(o}f Wh''H)

Isisn
Then, J is called to be “consistont with A" —

T'hus, the effect of J is divided Inlo disjoint two parts J[i'-’_f's}*fi and J [{Bp—l}g}ﬁf. .
For J [IH}’GH J works as a choice function of a representative gj for each W,
Here, consider Ep(A, A)NI'p(J), where J is consistent with A, Obviously, Ep(4,
A) MI'p(d) becomes a complete sublattice of Pp. For Ep(A, A)NTp{J), we employ
the similar argument to the case of Ep{A, A) . The main differences are the
following.

Instead of Tp(A, A), we use

Tpla, A, J)H(Ep(A, A) N Tp(d)) — (Ep(a, A) N Tpld))

such that, for any [f]€Ep(A, A) N Tpld),
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Tp(A, A, J)([f]) =[G] such that, forany o € Bp,

[ b, , ifo€W, forl=iZ=n
1 , ifa§ UW, andthereisan unitclausein Di(J(a))
l=i%n
Giloy = AR fiCi-8i), if o ¢ U W;and D(J(0))7 ¢ and there
crepiTE) 1£isn
is no unit clause in IMJ (o))
| 0 , otherwise,

where D(J{o))= {C €P|(28: ground) (JIC*H)=J(v}and C*B~J(a) }.

Here, we can define the similar notation to Tp(A, A)-consistent property defined

in the previnus section.

Definition 2-4-2. Epta, A) N I'pld) satisfies TplA, A, J)-consistent property

iff, for any [f] € Ep(A, AY N Tpld),

{Ig] € Ep(A, A) M Tpld) [ (VCEP ) (V8 : ground substitution for C)
((g(CTO)«IC-R)EF} T ¢ —

In this situation, we obtain;
Theorem 2-4-3. T.et ~ be a substitution transitive equivalence relation
over A(lTp, V). Lect B be a complete Booleun algebra and I be a complete filter
over B, Consider

Ep(A, A) N I'ptd) such that

1. A satisfies B-valued unification condition w.r.t. ~.

2. Jisconsistent with A.

3. EplA, A) N U'pld) satisfies Tp(4A, A, J)-consistent property.

4. A satisfies F-consistent property

5. for any 1 =i~ n such thal bj€F, the representative oj of Wi by J becomes

the eliminator of W..
Then, Ep(A, A)NTplMMp(B, F)= 6.

Moreover, let [pa, a4 ] be the least element of
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Ep(A, A)NTpll)NMMp(B, F) , then
Splha, a0, ~)=By, , , [F], where py 4, ;5 is a J-faithful and (A, A)-fixed
representative of [pa, 4 ).

Proof: Combination of Theorem 2-2-12 and Theorem 2-3-20. O
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Chapter [II Some Remarks with Examples

yriple
Let P=
wig)e—wir)

In the following, for simplicity, we write p, q, r instead of w(p), wiq), w(r)
respectively. Let B be an arbitrary complete Boolean algebra whose cardinality is
larger than (or at least equal to) 2% and F be a complete filter over B such that {1,
a,bj_F. (17a7h)
Let ¢€ B be such that ¢e€FUT, where I is the dual ideal of F. Bp={p, q, r} and the
success sel Sp of Pis {p}. So, the least Herbrand model is {p}. Let T, L, p,f, g, h,i,j
he maps from Bp to B such that

Tipl=Tlg)=Tri=1

Lipi=Llig=Lin=0

pip)=1,plgl=nlri=0

fipi=Hgl=1,fir)=0

glp)=1,glq)=0,glri=1

hip)=1,hig)=c, h(r)=0

ilpl=1,ilgl=e,ilr)=c¢

itpr=jlg)=1,jr)=c .
By definition, we at once notice that

{[TLIL], [n], [£), (g], (h], (i}, I} C Pp <o (a)
and no two equivalence classes are the same.
Let T'€ BPr be such that

T(p)=1,T{q}=a,T(r)=h.
Then, by definition, T'€[T].
Similarly, there are many elements in each equivalence class [[[ 1] ]of Pp.
For example, if L', p'¢ B% be such that L'(p)=0, L'(g)="Ta, L’(r)=1b, and
pipl=aib, p'(q)=1a, p'(r)=0, then L’¢[1l] and p’€[u], ete.
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The importance is that
(W[ 1,00 welll BB, [(FI=DB,,[FD.
In this sense, B [F]is uniguely determined for cach [ [ ]]].
Here, the first fact we had better remark is
Remark 1.
There may be a class [ [ ]]]in Pp such that no representative of [ [[ 1] ] ean
be reduced to “two-valued.” —
In this example, [h] plays this role. In this sense, B-valued is essentially different
from 2-valued philosophy. That how [h] works will become clear soon. Next, for
some people who are not familiar with lagic, let's point the fact that
Remark 2.
Though [p]<elg] and (Up, p) is a Herbrand F-model, (Up, g) is not a
Herbrand F-model. This is simply because glqer)=0+1=0¢F. On Lhe
alther hand, (Up, h)issurely a Herbrand #-model as you can see easily. i
So, as candidates belonging to Mp(B, F), we can pick up
{[T1, Tpl, [, [R], (1L [j1 } © Mp(B, F) ()
from (u).
Among the list ([}, there is the least element of Mp(B, I). [i] is the one. The
crucial fact concerning the least element in general is;
Remark 3.
For any I, B, F, ~, the least element of Mp(B, F) has a representative who
takes {0, 1} as the range. -]
In this example, p as the representative of [u] works this task., This [lact is
interesting from the viewpoint of Hemark 1 and is already proved in chapter 1.
More generally,
Hemarlk 4.
For any P, B, F, ~, the least element [py] of Ip(d)NMp(B, F) has a J-faithful
representative who takes {0, I} as the range, where ~ should be an

equivalence relation and I'p(J) is as in chupter 11, §2-2. —
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This is the fact which is ohtained as a byproduct of the main results stated in §2-2
of chapter I1. The crucial point is the least element [p,] of Tp(J)NMp(B, F) may no
more be the least element of ariginal Mp(B, F). ([j,] depends on ~, J. Examples
will be discussed soon.)
However, on the other hand,
Remark 5.
There exist P, B, F, ~, A, A such that the least element [p,, 4l of Ep(4,
AYNMp(B, F} has no representative who takes {0, 1} as the range, where
Ep(4, A) is as in chapter 11, §2-8 satisfying the conditions stated in Theorem
2-3-20.
More generally, there exist P, B, F, ~, J, 4, A such that the least element
lua a 4] of PpldINEp(A, A)NMp(B, F) has no representative who takes {0, 1}
as the range, where p(J)NEp(A, A) satisfies the conditions stated in
I'heorem 2-4-3. -
So far, we have spotted our attention on the declarative semantics of B-
valued model which are classified by ¥, From now on, let’s begin to focus on
procedural semantics of B-valued unification. The fundamental fact we want to
pointis that
Remak 6.
Sp( ([ 1], ~) T By j[F] v (¥)
always holds if only (Up, [[ 11 ) is a Herbrand F-model. (Soundness of B-
valued unification. See chapter 1, §1-3.) However, the soundness does not
always hold if (Up, {[ 1] is not a F-model. This is the reason we should start
from a B-valued F-model instead of an arbitrary B-valued interpretation of
P in order to state something meaningfully. =
Here, since B-valued unification directly depends on both ~ and [ 1] by definition,
it is usual that

(300 20, [0 1€t N1 (SpCll 1, ~ = Splll I, ~)) - (A)
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for many [ [[ 11] €¢Mp(B, F). In ihis sense, the classification modulo F can't
catcgorize the procedural world except the fact (¥ ), which asserts that
B ,[F] becomes an upper bound of { Sp( [[ 11, ~ )| ([ 1I€[{[ 11} ie.,
By [F12 U {Sp(([ 11, ~ ) (L Nelll 1T
Nevertheless, there are some elements [[[ 111, in Mp(B, F) which satisfy the
relation
WI0 0L T0 ITel 0 DD SplIl 11 ~ )y =8pCIl i, ~) ). < -(B)
As candidates for such [ [[ ]] ] satisfying the relation (B), we have shown that
Remark 7.
For any P, B, F, the least element [p] of Mp(B, I) satisfies the relation (B).
More strongly, [p] satisfies
(W[ JTelpl) (Splll 1], ~ =By lF]) < (0)
(See chapter 1,§1-5)
More generally, for any P, B, F, the least element [y;] of I'p(J)NMp(B, F}
satisfies the relation
(VI0 I, 00 Welpg] ) ([0 Nand [ 1" are J-faithful—8p([[ ]}, ~)=
Splll 17, ~)) (B
where ~ is an equivalence relation and I'p(J) is as in chapter 11, §2-2.
More strongly, [p,] satisfies
(V[ €3 ) (0 J]is d-faithful—Sp([l 1], ~ }=Bp,F] (G
(See chapter II, §2-2)
Similar relations also hold for the least element [pa ] of Ep(A, A)Mp(B, F}
and the least element (g » 4] of Ep(a, AYATp(J)NMp(B, F) where Ep(A, A)
and Ep{A, A)nTp(J) satisfy suitable conditions stated in chapter I, §2-3 and
§2-4 —

That the relations (B) and (C) are not equivalent is easy to see. For example,
consider a program P={y(a)—w(b)}. Let [[ ]] : Bp—~B be such that

[[pla))]=[[w(b)]1=1. Let F be a complete filter over B which has at least two
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elements. Then, (Up, [l 11) becomes a Herbrand F-model of P and By y={w(a),
w(b)}. However, for any relation ~, (V[[ 17 €00 11 12 (SpCI 1], =~ )=9). So, for this
kind of [[ 1], (B) trivially holds but (C) does not hold. Note that, in general, the
relation

UH{SpCIL 13, ~ ) I NECLD N1 H=By ) lF] - (D)
and (C) is not equivalent (a witness will be given soon), though (C)=(D) is
obvious. Furthermore, Lthe above example also tells us that (B) % (D). That (D)%
(B) will soon be explained at the following I, ii).

Here, we should notice the fact that the least elements [pg], (s al, [Ba 400 In
the above Remark 7 satisfy the condition (D), not the original (C) itself. To be
more precise, they satisfy
(2 WL NDSpUL 1T, ~) =By y(F)) -+ (E)
where a witness of [p;] ([ta 4], [Ha, 4.s]) in the sense of (E) is a J-faithful ((A, A)-
fixed, J-faithful and (A, A)-fixed respectively) element of [uy] ([pa, a), [Ba, 451 )
Obviously,

(E}=(D) holds. An interesting fact is that

Proposition 8. (D)—(E) hols.

Proaf: Suppose (D). Itis enough to see that

(ICE[ T NIV el 11 (Spdl 1, ~) SSp(G, ~) ), cee (1)
because, if 50, then we get

UISPCIL 10, ~) 00 e OO0 1113 €Splg, ~IS B F].

(By (D), this means Sp({, ~)=B[F].)

For this purpose, we choose (€[ [[ 1] ] such that

(Yo, 1€Bp) ({o) = Ux) iff ({{o)e={(x) ) €F).

(Consider { [[o]]| o€ Bp}/F and let c be a choice function.

Then, for each equivalence class [ {[o]] ]r, let's define {(o)=c( [ [[0]] ]y } . Thus
defined { obviously satisfies the required condition.)

Then, all we need (o see is
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(Wil 1TE[ 1T 1N 1)(V o€Bp) {(PU{<u} has a B-refutation based on [[ ]] and ~ —
PuU{+o} has a B-refutation based on {and ~) .
Here, by considering special (ground) refutation defined in chapter I §1-2, we
notice that it is enough to check that
(WILJELLL 11 (¥ o, v €Bp) ([[o]] =[[x]]l—=Clu) =) ).
Let [[ 1160 [[ 111 be arbitrary. Let o, t € Bp be such that [{o]]=[[t]]l(=b, say).
Then, by combining ( [[0]]«*Z(0) )€F and ( [[t]]={(0))€F, we notice (({o)=>{(t) )CF
= {(o)=7{(). M

Thus, we obtain a diagram
(C)

7N

—— = (E)

Now, returning to our concrete example, lel's reopen our explanation by checking

the above fundamental facts 1~7.
I. For a while, for simplicity, let’s assume that p~g—~r.

i). For 6, justtake L, L'e[ L]

Then, Sp(Ll,~)={p, q, r} and Sp(Ll',~)={p}. However,
B,[FI=B,[F1={v€éBp|L(o)éF}=¢. So, [Ll] violates the relation 6. This is
simply because [L1¢ Mp(B, F).

ii)  Next, for (A), just take T, T'¢[T]. Then, Sp(T,~)={p, g, r}# Sp(T",~) ={p}.
This [T] also becomes a witness that (D)={B) and at the same time becomes a
witness of inequality of (D) and (C).

Here, for 6, check the fact that Sp(T,~)CB1[F]={o€Bp/T(o)€F}={p, g, r}.

iii). For 7, we already know that [p] is the least of Mp(B, F). Take p, p'€[pl.

Then, Sp(p, ~)={p}=Sp(y', ~) and Bp[F]={o€Bpjulo)€F}={p}. Here, it is
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easy to see that taking any other possible element 1" of [ ] will result Sp(p”,
~)={p}. So, we notice that, for any [[ ]] €{u], Sp([[ 1], ~)=B,[F].

iv). Let's consider the effects of J.
4 )The case thatJ isdefined by J(p)=p,J(g)=q,J(r)=

I.
|'/_/?p_ i,, @ : J refines ~ to pieces. \

In this case, by delinition, J plays no essential role at the stage of the

selection of a subclass of Pp. To be more precise, Pp=0p(J) and [p;]=[n).

U )The case thaldJ is deflined by J{p) =J(q) =J(r)=p.

< . i- (:D : p=q=r by ~andJ. >

In this case, by definition, {[T], [L]}CTp(J) and {[TI }CMp(B, #)ATp(J) in
the above example. (So, J essentially works.) Here, it is easy to check
that [T] becomes the least element of Mp(B, F)NT'p(d) . Now, as in ii), we
obtain

Sp(T, ~)=B1[F].

However, we can't choose T' as a representative of [T] because T' is not J-
faithful. Ilere, it is easy to see that taking any other possible J-faithful
element T" of [T] will result

Sp(T", =}=Bm[F].

So, we checked 4 and 7 in this simple example.

/+)The case that.J is defined by J(p)=J(ri=p, Jiq)=4q.

—_— @‘ : p=r by ~and.J.
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By ~ and J, equivalence relation over Bp is defined so that [p]-={p, r},
[qi={qk
Then, {[T]. [g], [L1}<I'p(Jd) but [gléMp(B, F) as is explained earlier in 2.
As above, [T] becomes the least element of Mp(B, F)Nl'pd). Neow,
consider T"¢[T] ..
Tpi=T"r)=1,T"q}=a.
As stated above, Sp(T, ~1=Sp(T", ~)={p, q, ri=B7[F] However, B-
valued unification based on T and B-valued unification based on T" have
different procedural semantics. Just consider a query {+-g}. In the usual
2-valued philosophy, this can never happen. In general, from a viewpoint
of universal unification, this phenomenon amounts to
<1> (~,dJ)definesstatic equivalence relation = over Bp so that the least
element [p,] of Mp(B, FINTp(Jd) provides a witness of the standard
model of (P, =). (Under a weak condition on the cardinality of B
and F. Precise arguments can be seen in the next chapter. )
and

the choice of a representative of [y} modifies the procedural

N
2
i)

semantics of (P, =) while preserving the influence of =, Le. the
declarative semantics of (P, =) as a whole, This meta fuzzyness of
inference rules, i.e., the flexibility of the choice of a representative
from [p,] is a theoretical advantage of B-valued unification.
How can we apply this theoretical advantage to a concrete example? One
possible answer might be the following., Suppose we are given an algorithm
AL which determines = over Bp (or more generally, over A(Tip, V) ).
Translate & to B-valued unification to decide ~, J and so [p;] in Mp(B,
F)NCp(J). A representative py of [py] surely decides the procedural
semantics of (P, =) which is equal to the one based on the original algorithm
AL. Here, we can change AL to another algorithm AL' to the extent that AL

is decided by another representative p’y of [p;]. This new AL’ may be



superior to AL in programming efficiency and/or answer gathering process.
(Considering the possible cxistence of infinite branch(es) of a search tree in
the practical phase, the power of the answer enumeration might be greater
than you expect.)

We present a witness of Remark 5 and Remark 7. Let A= {Wi}and A={c}be
such that Wy={r}. Then, Ep(A, A) satisfies the conditions in Theorem 2-3-
90. In this case, [i] becomes the least element of Ep(A, A)NMp(B, F) and i is
a (A, A)-fixed representative of [i]. Here. we notice that no representative
(not necessarily (A, A)-fixed) of [i] has {0, 1} as the range. More generally, let
J be such that J(p)=p, J(q)=p, Jir)=r. Then, Ep(4, A)NTpld) salisfies the
conditions in Theorem 2-4-3. In this case, [j] becomes the least element of
Tpld)NEp(A, A)NMp(B, /) and j is a J-faithful, (4, A) fixed representative of
(jl. Here again, we notice that no representative ol [j] has {0, 1} as the range.
Moreover, it is easy to check that both [i] and [j] become witnesses of the

relations (modifications of (B") and (C') ) stated in Remark 7.

[l. Here, we assume that p~gqonly.

=)

Suppose J is defined by J(p)=p, J(q)=q, Jr)=r.

4 J ;
K@ - 5 >'

Then, as before, Pp=Ip(J), and [py]=[u]. Now, to enrich informalions
obtained positively, there are mainly two method.

One is to enlarge the equivalence relation = based on ~ and J. ([pl= ={p},
[ql= =1{g}, [r]= ={r}.) In this case, by changing the definition of J to
J(p)=Jq)=p,Jr)=r,

the corresponding equivalence relation is transformed from = to =" such

that
[pl="={p, g}, [r]="={r}
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(Co =

Thus, the situation has changed to I'p(J")y={[T], {L], [f], {j] } and Mp(B,
FNTp(J={[T], [f], j]} and the least element (of Mp(B, FiNTp(J") [p,']1=[1{].
The resulting success set becomes

Sp(f, ~)={p, qk

This may be restated as (] has changed its status from a negative world
w.r.t. (B, F, ~, J) to a positive world w.r.t. (B, F, ~, J'). In these
transformations, as we have already seen beflore, elementis having
essentially intermediate value-assignment like [j] and/or [h] ean't contribute
at all, because each least element [p;] must have a representative whose
value range is {0, 1}.

Another is W loose the restriction on values which are supposed to be
“true” in B-valued sense. By employing a complete filter I"2F such that
c€F", we can staple two classes [{IF and [h]r into one equivalence class [{]F in
the sense of B-valued F"-model (generic extension). What is the merit of this
sort of contribution of maps having intermediate values modulo F. A direct
contribution is, of course, to widen the flexibility of choosing a
representativer. However, the essential contribution will be done when we
evaluate B-values at each unilication step. (The meril of the evalualion is
discussed in chapter 5). By CWA, this loasening of restriction on F may be
restated as [h]r has changed its status from a negative world w.rt. (B, F, ~,
J) to a positive world w.r.t. (B, F", ~, J).

Here, the key point is that the above two methods are disjoint to each other
in the sense that, owing to their characteristics, the former method never
alfect the family of classes changed by Lhe latter method and the latter can’t
influence the family of classes transformed by the former universally

unificational technique. And so far, the only used technigue which
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fundamentally influences CWA has been the former one, In this sense, B-
valued technigue really propose “profound insight into CWA." Talking

about CWA, “the notion of B-valued negation as failure” will be discussed in

another paper.
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Chapter IV

Universal Unification from a Viewpoint of LIFE-II

$4-0. Introduction

There have been many streams whose aims are to enrich the field of logic
programming. One attempt is to combine {unctional programming technique
with logic programming and another is to embed constraint into logic
programming and yet another is to generalize the truth-value domain from {1,
0} to a complete lattice, The strategy to employ universal unificalion based on
an equational theory E instead of the usual syntactical unification can be
interpreted as a special case in either functional or constraint (or both)
stream(s), ITowever, in many practical cases where programs treat general
knowledges, it is almost impossible to axiomatize the equivalence relation as a
formal neat equational theory which we would like Lo use for the generalized
unification step. This is because a knowledge-based model which determines
the cquivalence relation over Bp comes first and then comes a possible
candidate which formally describe the relation and hepefully gives an
algorithm to be managed within a computable program. So, in many cases
where we can't take a formal equational theory at the starting point, we ought
to employ other methods which can treat and represent the equivalence
relation., Considering this fact, we dare claim that there is no necessity that the
notion of universal unification is exclusively defined by means of an axiomatic
equational theory E, because the purpose of our employing universal
unification is to loose the restriction on the possible candidates of unifiers at
each unification step. In other words, we can define the notion of universal
unification in general based on an equivalence relation — over the set of all

atoms used in a logic program P, under the suitable conditions like there is an



effective algorithm to enumerate complete set of universal unifiers w.r.t = for
any aloms A, B. (Here, of course, Bisa =-unifierfor Aand B iff Ab=DBU.)
What is the merit of thus generalizing the notion of universal unification?
One interesting advantage is that we might be able to characterize the class of
pairs (P, =) such that = can’t be defined by means of an equational theory
method but =-unification over P acts importantly in the practical phase. The
main purpose of this paper is to abstract a few classes of pairs (P, =) such that
there are proper effective algorithms to enumerate complete sets of =-unifiers
under certain simple conditions respectively. In section 4-1, we define the
general notion of universal unification, using the concept of “substitution
transitive” equivalence relation (the definition will appear soon) and propose
an example of general =-unification which lies outside the conventional
concept of universal unification based on an equational theory. Then, we
investigute the notational similarity and difference between the generalized
new and the functional old. Section 4-2 is devoted to review the notion of
Boolean-valued unification. Though, by definition, we can regard Boolean-
valued unilication as the marging pond of functional, constraint and many-
valued streams, we study the property of it only from an angle of universal
unification here in this chapter. By doing so, in §4-3, we propose three classes
of pairs {{P, =)| = } which satisfies the abeve menticned condition with the help
of Buolean-valued technology. Lastly, in §4-4, we propose a B-valued standard
model of a logic program based on a universal unification, using the resull of

§2-2 in chapter 1I.
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§4-1. Universal unification

Definition 4-1-1.
Let = he a substitution transitive equivalence relation over A(Ilp, V).
Then, a substitution 8 over T(Zp, V) is a universal unifier for A and B w.r.t. =

iff Afh = BB —

A typical example of universal unification can be given by means of an

equational theory over T(Ep, V).

FExample 4-1-2.Let E be a (Horn clause) equational theory over T(Zp, V). E can
define a congruence relation = over T(Zp, V) by

(Vo,teTEp, V) ){uv=ciff Ero=r1).
This relation can be extended aver A(ITp, V) by the usual manner, that is, for
any Als;, -, sm), B(t,, -, tn) € A(Ilp, V),
Als,, -, sm) = Blg, - ta) iff AY = Bfandm=nands;=t; for 1Zi=n.
Here, {rom the property of equational theory, since every {ree variable is
(implicitly) universally quantified, thus defined equivalence relation = over

A (Tlp, V) satisfies the substitution transitivity. i

There are many equivalence relations over A(Ilp, V) which can’l be
defined by an equational theory. For example, let @, -, @, be unary Znd order
predicates over A(TIp, V) which are pairwise disjoint (i.e, { A € A(Ilp, V) | i
(A)y{BE A(llp, V)| (B} } = @ fori # j)and satisfy the condition that
(VA€ A(IIp, V)) (VD : substitution over T(Zp, V)) (@} (A)—D; (AD))
for 1=i=n. Using ®y, -, ®,, we can decompose A(llp, V) into a set of

equivalence classes in an obvious manner. Then, the resulting equivalence
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relation becomes substitution transitive. (In this case, there may be a lot of
equivalence classes which are singletons.) Here, the point is that there is no
assurance that we can define an equational theory E which can express thus
deflined equivalence relation. The next example can be seen as an abstract

version of this case.

Example 4-1-3.Let W be an arbitrary setand [: Bp — W be a map. Define
an equivalence relation =¢over A(Ilp, V) by, for any A, B € A(IIp, V),

A=¢B iff fiAp) =f(Bp) [lorany ground substitution p for A and B.
Then, it is easy to check that thus defined relation =ris really an equivalence

relation over A(Ilp, V) and salisfies the substitution transitivity. —

Now, we have presented two typical methods which define substitution
transitive equivalence relation over A{Ilp, V). A natural question is, “Is there
any relation between these two methods?” We are going to answer this
question in a more general sefting. Let = be a substitution transitive
equivalence relation over A(Ilp, V). Define [ Bp — Bp/= so that, for any A €
Bp,

flA) = [Al=.
Then, by definition, for any A, B € Bp,

A=8 i flA) = {(B),
thatis,

= [ BpXBp= = [ BpXBp
where =ris the equivalence relation over A(Ilp, V) induced by fas in Example

1-3.

Using this fact, we notice that, for any A, B € A(TIp, V),
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A and B are universally unifiable wr.t. =

Hf {31 :substitution ) ( Ar = Bt)
«—substitution transitivity
iff (3p:ground substitution)(Ap = Bp)

T (30 :substitution ) { ¥p: ground substitution y{ Abtip = BOp )
iff  (36:substitution ) ( ¥p: ground substitution ) { fiagp) = {(BOp))
iff (30 :substitution ) (AS = B0)

iff A and B are universally unifiable w.rt. =g,

However, this does not necessarily assert that
= = =y
This is because the universal unifier ¥ w.r.t. = and the universai unifier 6 w.r.t.
=; may be dilferent. Nevertheless, it is easy to see that, without loss of
generality, = C =, thatis,
A=B = A=¢Bforany A, B¢ A(llp, V).

The converse direction does not always hold.

Ala) «DB(X)
Example 4-1-4. Let ! be the program and £ ={a="h},
Blb)«

in addition Lo usual axioms of equality. Then, Up = {a, b }and Bp = [ A (a),
A(b). Bla), B(h) }. Let A{Ilp, V) = Bp U { A(X), A(Y), B(X), B(Y) } by taking v
= [ X, Y }. Then, E defines an equivalence relation = over A(Ilp, V) such that
= = {( Ala), Ala) }, ( Aa), A(b) ), (Alb), Afa)), ( A(b), Ath)), ( Bla), Bla) ), ( Bla),
B(b) ), ( B(b), B(a) ), (B(b), B(b) ) }. However, we can't assert, for example, A(X)
= A(Y) because — (E = X=Y). On the other hand, by definition, we can say
that both A(X) =;A(Y) and B(X) =7 B(Y). —



As for the converse, we need a condition over =,

Definition 4-1-5.

1. Lel = be a substitution transitive equivalence relation over A(Ilp, V).
Then, = is substitution complete iff

(VA Be A(llp, V)I(A=B iff  Ap = Bp for any ground substitution p
for A and B).

2, Let I be an equational theory in any form. Then, E is substitution

complete iff = induced by E is substitution complete. =

{ is obvious that, if = is substitution complete, then = = =, where =gis

defined as above by [: Bp — Bp/= .

By the way, what is the content of the notion of substitution completeness
of an equivalence relation = over A(Ilp, V) from a viewpoint of universal
unification. The aim of our employing universal unification is, of course, to
obtain an enlarged success set compared with the original success set obtained
through the syntactical unification. For this purpose, we need an equivalence
relation =, over Bp. Here comes the role of an equational theory E over T{Zp,

V) and/or £: Bp—W ete, which possibly determine =, over Bp.

Remark: As is already touched in introduction, concerning an
equational theory E, we should point out the following. Roughly speaking we
can categorize equational theories into two classes, that is, the class of a priori
F and that of a posteriori E. The latter consists of E which is defined
semantically as representing a relation on the domain of discourse. Now,

concerning the latter case, the formal theory E is hoped to faithfully reflect the
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expected equivalence relation =, over the domain D, that is, E is considered to

satisfy the condition that, forany g,1 € D,

EFo=1 iffa =,1.

Here, in the case of logic programming, the intended domain of discourse is the
Herbrand universe Up. However, even if E faithfully represents =, over Up,
there is no necessily that E is uniquely determined even modulo theories. In
olher words, there may be equational theories F, B’ such that = # = bul
=.|BpxBp= = | BpXBp, where = und = are equivalence relations over

A(Ilp, V) based on E and K" respectively, —

Nuw, returning to the general situation, let =1, =2 be equivalence
relations over A(ITp, V) such that =) O =9 and =1] BpXBp= =3[ BpXBp.
Consider refutations of PU{G} using universal unification wrl.=| and =2
respectively. Since =1[BpXBp = =3[ BpXBp, G has a refutation Ry w.r.t. =1-
unification iff G has a refutation g w.r.t. =¢-unification (and so especially,
the success sct of P w.r.t. =1 is the same as the success set of P w.r.t. =3). More

precigely, foruny A, B € A(llp, V),

A and B has a =q-unifier U1 = ( 3v:substitution ) ( Aand Bhasa = g-unilier
)

and

A and B hasa =c-unifier by = A and B hasa =j-unificr 0z

This means we can always obtain a more general answer substitution for P UG}

if we use =j-unification than the case using = g-unification. This fact is rather

useful to enumerate all answers for a given goal G in the practical phase as the

following simple example illustrates.



Example 4-1-6. Take the program P as in Example 1-4. let =32 be the
equivalence relation over A(llp, V) generated by E = {a=b } and =, be the
equivalence relation over A(IIp, V) generated by E={X=Y} Lel G =
{«<A(Y)}. Then, if we use =g-unification, we get two answer substitutions
{Yea)and {Y<b} independently through twice search repetition. On the other
hand, if we use =i-unificalion, we get only one answer substitution & (empty
substitution) to obtain the same result. Here, the complexity of determining
that £ is the answer substitution for G w.r.t. = -unification is essentially the
same as the complexity of determining that { Y«b } is the answer substitution
for G w.r.l. =y-unification. So, the efficiency using = j-unification is obvious to
the extent of search times. (ln this case, we need not to check the universal
unification of B{X) and B(b) twice.) —

As the above example typically shows, we can conclude in general that,

under the condition that =1 D =g and = [BpXDBp= =g/ BpxBp,

1. If the efficiency to enumerate complete set of =-unifiers is not worse
than the efficiency to enumerate complete set of =z-unifiers, we should

employ =1-unification.

2. Bven if the efficiency to enumerate complete set of =1-unifiers is worse
than that of =gz-unifiers, the total efficiency to find answers for a given

goal G still depends on the churacler of the program P.
From this observation, we noticc that, in a sense, it is best for us to find the

maximum element of R(=) = { =;| =; is a substitution transitive equivalence

relation over A{IIp, V) such that =;| BpXBp = =}, where = is the expected
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equivalence relation over Bp and the partial order is taken for the set inclusion.

In this context, the above definition ensures that

Proposition 4-1-7.
= jsmaximumin R(=_)wrt.C,ie, = = UR(=.)

iff

is substitution complete.

Proof:  Let =p be an equivalence relation over Bp and R(=y) be as above.
By taking UR(=,), it 1s obvious that R(=p) has the maximum elcment.
(Substitution transitivity is trivially preserved by union.) Let =g be the
maximum element of R{ =) and = be a substitution complete element of R(= ).
Then, =C = . Inthe fullowing, assuming = # =5, we will geta contradiclion,

Suppose there are A, BE(A(Ilp, V) —DBp) such that
A=,B bul AFxDB.
Since =, is substitution transitive,

{(Vp: ground substitution) (Ap=, Bp)
= (Vp: ground substitution) (Ap =, Bp) by definition of R(=3)

L

(Vp: ground subslilulion) (Ap= Bp)
= A=B bysubstitution completeness of =.

So, we get a contradiction. .

By the above Proposition 4-1-7, given an equivalence relation =, over Bp,
substitution complete equivalence relation = over A(Ilp, V) which extends =,

is uniquely determined. From this fact, it is of worth defining the following

terminology.
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Definition 4-1-8. Let = be a substifution transitive equivalence relation
over A(lL,, V). Then, =¢defined as above by means of f: Bp—Bp/= iscalled “

the substitutive completionof = . ° —

There is another model theoretic viewpoint which becomes the theoretical

background of the notion of substitute completeness.

Proposition 4-1-9. LetE be a substitution complete (Horn clause) equational

theary over T{Zp, V). Then, forany o, € T(Z,, V),

EFo=rx iff Er ¢ =tforall equivalence reltion R over Up
UR

ift Upi=pFo=1

where = is the equivalence relation vver T(Zp, V) based on 15,

I'roofls  Let E be a substitution complete equational theory over T(Zp, V).
Leto,t € T(Zp, V).

1. EFo=1 = FEo=1 forallequivalence relation R over Up
U /R

= Up=, Fo=1
is trivial.

2. Up/l=g Fo==t

= (V¥ ground substitution p} (Up/=; & op = 1p)

= (V¥ ground substitution p) (up =; tp)

G-



= o0 =,71,becauseEis substitution complete

= Ero=r1.

(We implicitly assume that E contains basic axioms of equality or uses the
equality inference rules. Precisely speaking, we should define the notion of
“substitutive completion™ over T(Zp, V) instead of Alllp, V). However, since

the similarity is obvious, we omit the definition.) U

Note the point that the above g, 1 may include variables. There may be o, T €
(T{ £p, V) =Up ] such that
EEFEo=1 for ull equivalence relation R over Up
UR
but

-(EFao=1)

for a cerigin substitution non-complete equational theory E. (The above
Example 1.4 fits to this situation.) Considering the property of logic
programming, where positive informations are expected to be managed within
Herbrand universe, the above model theoretic property of substitution

completeness also implicitly authorize the legitimacy of the notion.



§4-2. B-valued unification from a viewpoint of universal unification

First of all, by comparing two definitions, the reader should recognize that
every universal unification is a B-valued unification. To see this at a
theoretical level, it is enough to take = = =, where ~ iz a substitution
transitive relation over A{Ilp, V) used in Lhe construction of B-valued
unification, and construct [[ 1] : Bp—B so that it is subordinated to ~ in the
sense that

(VA,B € A(TTp, V) I ({ A~B — (¥ : ground substitution for A and B)
([HAplI=I1Bpll)).

This viewpoint permits the flexibility of [[ 11: Bp—B.
Let [[ 1, [T 10" be maps which are subordinated to ~. Then, for any A, B €
A(llp, VI,
Bisa B-valued unifierfor A and Bw.r.t. ~and[[ 1]
iffl  Ab -~ Bt
iff  fisa B-valued unifier for A and B w.r.t. ~and[[ 17",
So, far example, especially taking B=2 and [[ ]]€2"% such that
(Vo € Bp)({[o]] = 1),
we notice that this kind of Boolean-valued unification entirely depends on only

~ . and the subordinated [[ ]] can be neglected.

Note: Here, we ought to remark the next important point. Although any
choice of [[  ]l= : Bp—B subordinated to = may not change the procedural
semantics of (P, =), the declarative semanties of Boolean-valued unification
depends on [[ 1l in itself. In other words, it is a map [[ ]l= : Bp—B that
makes up the meaning of the program (P, =) based on =-unification. And

usually, only one element u= of {[[ ]]= € B |(Up, [l |l=)is a Herbrand F-



madel of P such that [[ 1]= is subordinated to = } becomes an expected
candidate for the proper meaning of (P, =) for each chosen B and F, in the sense
that (Up, p=) becomes the standard F-model of (P, =) in B-valued semantics.
In §4-4, we will discuss this approach, where the notion of “subordinate” is
shown to be a special case of “J-faithfulness” concerning [[ ]I and the existence
of the standard model of (P, =) is proved. However, as will be discussed soon,
we can ignore this kind of argument at the elementary level application of B-

valucd unification to universal unification. -

On the ulher hand, in the case that = is substitution complete, we can
realize = by B-valued unificalion w.r.t. the map [[ 1] : Bp—B such that (Vo,
t€Bp) ( [[al] = [[t]] iff o=t ) and the trivial relation ~ . (Remember that
substitution complete = is uniquely determined by =| BpXBp by the map f:
Bp—Bp/=.) So, for example, Example 4-3-6 in the next section can be regarded
as 4 typical casc belonging to this interpretation.

Thus, we have shown two [undamental but rather extreme techniques to
realize = by a Boolean-valued unification. However, in the practical phase, we
often harmonize the above two to produce a new equivalence relation which
usual cquational methods can't embody by themselves. For example, Example
4-3-5 in the next section explains the phenominon.

In the examples presented so far, we have ignored not only the structures
of B as a complete Boolean algebra, bul also even the resulting value [[ul]€B
for each particular v€Bp. This means ~ and [[ 1] works only to define an
equivalence relation over Bp. At the elementary level where Boolean-valued
unification is interpreted as a kind of universal unification in general, this sort
of loose restriction on [ ]1issufficient. In other words, in a naive application of

Boolean-valued unification, we can ncgleet the concrete assignment of [{

11:Bp—B.

-97-



§4-3. Universal unification from a viewpoint of B-valued uniflication

Let = he a substitution transitive equivalence relation over A(Ilp, V).
Using the similar arguments as in the case of E-unification where E is an
equational theory, it is easy to see that the derivation using =-unification in
general is logically both sound and complete in Lthe sense that there is a
standard model for (P, =).

Now, in arder to enjoy the advantage of the logical completeness at a pure
logic programming level, all we need is an algorithm to enumerate complete set
of =-unifliers. A typical algorithm is the method of narrowing which can be
applied to the class { (P, =)|= is defined by means ol a canonical (confluent and
terminating) term rewriting system}. In the following, we would like to
categorize different classes of pairs (P, =), to which effective proper algorithms
to enumerate complete sets of =-unifiers can be applied. For this purpose, we
employ Boolean-valued technology.

Now, in order to cbtain a complete set of B-valued uniliers for arbitrary A,
BeA({llp, V), there should be an algorithm to decide both ~ and [[ ]}: Bp—B
first of all. Next, even if there is an appropriate algorithm to decide ~ and [[ ]],
it does not necessarily assert the existence of the enumeration algorithm of B-
valued unifiers. However, in a practical situation, we usually employ only
those ~ and [ ]]: Bp— B such that we can easily decide whether 6 is a B-valued
unifier for A and B (w.r.t. ~ and [[ ]]) or not. Of course, in general, deciding
whether 8 is a B-valued unifier or not and enumerating all possible B-valued
unifiers for A and B may be different. Nevertheless, there are many cases
where algorithms to define ~ and [[ ]] are enough to decide the enumeration

algorithms.
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As we have mentioned in the above paragraph, when we decide a concrete
language in the praclical phase, we fix ~ so that there is an effective algorithm
to decide whether A~B or not for any A, B € A(IIp, V) at the starting position.

Several simple examples of ~ may be the following.

Example 4-3-1. Let &, B¢ A (I1p, V), Define ~ so that
A~B iff A andB are syntaclically equal.

(Thus defined ~ will be called “discrete.”) -

In this case, Boolean-valued unification hecomes the usual syntaclical
unification and [[ 11 : Bp—B can’t influcnce the definition of B-vulued

unification except B-value estimation, no matter what [[ ] may be.

Example 4-3-2. Define ~ so that,
forany A, B € A(llp, V], A~ B.
‘I'he equivalence class over A(Ilp, V) determined by ~ is only A(Ilp, V)

itself, (Thus defined ~ is called “trivial”) —

In this case, since ~ does not influence the deflinition, B-valued unifier is

completely determined by the map [[ 11: Bp—R.

Above two cases are the extreme cases. A little more interesting is the
technique defined in §1. Let W be an arbitrary set and suppose therc is an
effective algorithm to define a map f: Bp—W. Let A, B € A(Ilp, V). Define ~

go that

A~B iff flAp) = f(Bp) for any ground substitution p for A and B.

49,



A concrete example 1s;

Example 4-3-3. Let ITp consist of predicates whose arities are finite, indefinite,
unordered sets assigned by some kinds of attributes. That is, every element of
IIp has a form w({X/a, X2/B, X3/7, - })

wherea, [}, 7, - are attributes used in P, say,

{a=what, = when, y =where, - } etc. (Especially by fixinga=1,=2, =3, -,
we notice that this general deflinition includes the usual definition of predicates

with fixed ordered arities.)

Let A, BEA(IIp, V). Define ~ so that A~B iff
the argument assigned by a in A® = the argument assigned by a in B#*
and the argument assigned by [l in A* = the argument assigned by [} in B*

where = means syntactical equality including variable names.

‘Then, it is obvious that thus defined ~ becomes a substitution transitive
equivalence relation over A([lp, V). Moreover, it is easy to see that ~ becomes
substitution complete.

So, by taking W=Bp/~ and defining [ Bp—W =s0 that (Vo€Bp) (o) =
[a]_), we notice that the above definition is equal to that A~B iff flAp)=1(Bp)
for any ground substitution p for A and B, because of the uniqueness of
substitution complete equivalence relation.

Here, using the original naive definition of ~, we notice that there is an
effective algorithm to decide A~B or not and to enumerate complete set of

~-unifiers for any A, BE A(Ilp, V). -

Tn general, by taking subordinated map [[ 7], we can categorize {(P, =} |

= is defined by argument-wise equality}, where the general notion of
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argument-wise equality should be obvious. In any cxample belonging to this
class, the =-unification becomes, so to speak, “argument-wise unification.”
We already know that many practical unification techniques used in world-
widely existing programs can be named “argument-wise” in this sense.

On the other hand, there are many techniques with which we can embody
[ 1:Bp—B in a program. A few simple but important cases may be the

following.

1. The case that Bpis finite.
In this case, whichever method we employ Lo define [[ 1l: Bp—B, there

always exists an algorithm because of the finiteness of Bp. A typical case is;

Example 1-3-4.T.et Lp consist of finite number of constant symbols, say, c1, =,
¢r and finite number of constructors, say, [ 1, { }, < > and finite number of
functors, say, [, g, h, etc, where each constructor or [unctor does not allow the
mixed nest whose depth is deeper than a [ixed positive number, say, m. Then,

the resulting Herbrand universe Up becomes finile, and so Bp becomes finite.

.

[1. The case that B is finite.

The restriction of B's finiteness furces us that the equivalence class Bp/([ ]]
becames finite and so, at a first glance, the number of candidates with which an
clement o€ Bp is B-valued unified seems to become vast. However, this 15 not
always true because of the role of ~. We even claim that this case can work to
treat many exceplions which usual universal unification based on an

equational theory can't handle.

Example 4-3-5.
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Define ~, sa that, forany A, B € A(llp, V), A~B iff the first argumentof A
= the first argument of B.
LetB=4 ={1,b, = b, 0}, Select a finite subset QCBp. Our intention is that
Q becomes a collection of atoms which assert exceptional cases w.r.t. some
selected predicates in [Ip. For that purpose, define [ ]]: Bp—4 so that,

(Vo € Bp—@) ([[o]1 € {1, 0 A (Yo €Q)([[c]] €{b, 7D}
Then, at each B-valued unificalion step, for any o, v € (Bp—Q), we can unify o
and t (using empty substitution) iff [[a]] =[[t]] and the [irst argument of o =the
first argument ol v.
Otherwise, we unify s and tiffo=1.
(Here, we consciously use the simplification that
(Vo, 1 € Q) ( o # 1 — the {irst argument of 0¥ the first argument of t )} by

taking B=4.) —

In the practical phase, the above assignment substancially means that we
malke a table of exceptional atoms and cite the table at each unification step as
references. To be more precise, we use the notion of "all but finite exception
unifier (a.b.fe.-unifier)”. Though we omit the precise definition concerning this
concept, the reader may easily recognize the total image by the following
simplest case study. Let A(a,b)€Q. Suppose the situation that we want to unify
a goal A(X,Y) and a clause Afa,c) « . In this situation,we employ the
substitution {¥X<a} as the unifier and check at the final stage where the
derivation succeeds and gets an answser substitution 6=#6;--6n, whether we
use a wrong substitution w.r.t. the variable Y or not. Here, “wrong” means
“Y«h", Then, the above {X+«-a} is called a.b.fle.-unifier for A(X,Y) and Ala,c)
w.r.t. Q. Of course, the definition heavily depends on ~, but in anyway the

merit of our using a.b.[.e.-unifier is obvious from a viewpoint of efficiency.
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In general, let's call an equivalence relation = which is defined by means
of both a suitable substitution transitive equivalence relation - over A(Ilp, V)
and a [inite exceptional sect Q, “effective ~—@Q relation.” Then, we can
categorize the class {(P, =) | = is an effective ~ = () equivalence relation in the
sense of Boolean valued unification}.
For this kind of class, we can utilize a.b.f.e.-unification and obtain an ellective

algorithm to enumerate complete set of =-unifiers.

lII. The other cazes
In general, too theoretical construction of [[  ]]; Bp I3 makes the
algorithm be practically intractable. However, Lhere are still many cases that

we can embody [ ]]: Bp—B in a program.

One possible case may be that where we use usual syntactical unification
algorithm almost everywhere except on a finite number of equivalence classes

in Bp. For example;

Example 4-3-6.Let { y,~, ¢} C IIp be selected predicates used in I’ with more
than one arities. Let{iy, -, ty} C Up be selected ground terms. Define A{ys, t;)

for 1 =1%=n so that, Ay, ti) = {ground instance of yr; | the first argument = t;}.

Let = be the equivalence relation over Bp defined by A(y;, t;), 15i=n.

{So, especially, for anyo,t € (Bp — U Alyj, ), o=1iffo=1.)

Izizn

Define [[ ]]: Bp—B sothat
(Wa,t € Bp) (a=1iff [[a]] = [[x]]).
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Then, by laking ~ being trivial, we have an effective algorithm to enumerate
complete set of B-unifiers w.rt. — and[[ ]]. The resulting B-valued unification

obviously embodies the substitulive completion of the ariginal =. —

In the above, we may employ the method of “two-lane unification”, the
precise definition of which is omitted. Rough idea is;

1. Firstly, use the usual syntactical unification to obtain possible answer
substitutions.

2. Secondly, try the other possibility eoncerning yy, -y,

Thus, the machine runs on two-lane street, obeying the command from a

suitably implemented program.

Generally, we ean categorize the class of substitution transitive
equivalence relation = over A(llp, V) such that =-unification becomes two-
lane unification in the above sense and there is an effective algerithm to
enumerate complete set of =-unifiers. Any element of this class is called “two-
lane relation.” So, we can present the class {(P, =) | = is a two-lane

equivalence relation} based un two-lane unification.
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§4-4. Logical completeness of universal unification from a viewpoint of

LIFE-TI1

Definition 4-4-1. Let=be an equivalence relation over Bp.
Let ¢: Bp/=—Bp be a choice function, ie., (V[o]€Bp/=) (c([a])€lu] ).
Then, an idempotent function J: Bp—Bp is called “the representalive of =via

¢"iff, for any v € Bp, J{o)=cl[a]).

4

Now, if J satisfies B-valued unification condition for a given ~over Bp,
the result of the chapter 11 asserts that the success set of P w.ri. B-valued
unification depends only on J*Bp( ={c(la])|lo}j€Bp/=}). This fact can be used to
obtain a standard model of (I, =) based on the universal unification w.r.t. =,
where = is a substitution transitive equivalence relation over A(IIp, V).

To be more precise;

Theorem 4-4-2 . Let P be a program and = be a substitution transitive
equivalence relation over A(llp, V). Let ¢ be a choice function over Bp/= and J
be the representative of = via ¢, Let B bc a complete Boolean algebra and I be
a complete filter over B. Let [p,] be the least clement I'p(J)NMp(B, F) based on
J, B, F, where ~ is taken to be =. Then, (Up, p;) becomes the standard F-model

of (P, =), that is, for any v € Bp,
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(P, =)o iff pylo) € F.

Especially by specifying B=2 and F={1}, {(Up, 1) becomes the standard model
of (P, =) in the usual sense, L.e.,

(P, =)o iff (Up,u, Eo.

Proof:  From the result of chapter 11, it is enough to see that, [or any o € Bp,

(P, =)o iff o € Spipg, ~.

Now, since our concern is restricted only to ground atoms in this phase, it is
sufficient to check that, for any atoms A, B € A(llp, V),

Oisaground = -unifier for A and B

il

8 is a ground B-valued unificr for A and B w.r.t. pyand ~.

Here, Bisaground = -unifier for A and B

& Af=B6

& [AP)=[B0O]as anelement of Bp/=

& Af~BO and p{AD)=pylJ (AD)) = p,(J(BE) = p,(B6)
(Remember that u; takes {0, 1} as the range.)

&  0Oisaground B valued unifier for A and B wr.l. pyand ~. r

As direct consequences, we notice

Corollary 4-4-3. Let P be a program and E be an equational theory over

T(Zp, V). Let = be the finest congrucnce relation over A(Ilp, V) induced {rom
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I, and ¢ be a choice function over Bp/=. Letd be the representative of = viac.
Let [p] be the least element of Tp(d)NMp(B, F) basedon J, B=2, F={1}, where

~ is taken to be =. Then, (Up, p,) become the standard model of (P, E}, 1.e.,

(P,E)to iff (Up, m)Eo.

Proof: Obvious. 0

Remark: The reader should notice that our proposing standard model of

universal unification has the Herbrand universe Up, instead of Up/=, - |

Corollary 4-4-4. Let ¢ : Bp/=~ Bp be another choice function and J’ be
the representalive of &= via ¢' in the above construction. Then, the least

element of [p(J)NMp(B, F)=the least clement of ['p(J" )" Mp(B, F)

Proof: Let [py,] be the least of I'p(J")NMp(B, F).
Using Theorem 4-4-2, for any o € Bp,
pylu)eF iff (P, =)ru i pplolel.

Here, by the construction of Tp(J) T w and Tp(J') T w, we can assume that both
w; and py takes either 1 or 0 as their Boolean value. (Representatives modulo
F)

A (g (0)epplo)) €F
gt Bp

& [pgl=lnsl

B

This means that the obtained B-valued F-model does not depend on the

cholce funclion ¢ of =.
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§4-5. Conclusion
Tn this chapter, we generalize the notion of universal unification based on
an equational theory over logic programming and discover the novelty with the
help of Boolean-valued logic programming language scheme LIFE-1UI by
characterizing classes of pairs (P, =} for which there are proper effective
algorithms to enumerate complete sets of =-unifiers under certain suitable
conditions respectively. The newly obtained classes amount to the
replacements or alternatives of {(P, =)|= is defined by means of a canonical
term rewriting system} bascd on the narrowing method in the conventional
case. The classes include;
1. AP, =)= is defined by argument-wise equality} based on argument-wise
unification.
2. (P, =)= is an effective ~—Q equivalence relation} based on a.b.fe.-
unification, where Q is the set of exceptions.
(A concrete program (P, =) belonging to this class can be found in [17].)
3. (P, =}|= is a two-lane equivalence relation} based on two-lane

unification.

For those who might already be {amiliar with a proposcd unification
technique like argument-wise unification in the practical phase, the result of
this paper becomes the theoretical background (which has not existed so far).
On the other hand, for those who have encountered the above techniques like
two-lane unification for the first time, the results act as both technical tools and

theoretical backgrounds.
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Chapter V
A L-fuzzy Inferential System: F-LIFE

§5-1, Definition of F-LIFL

There have been several papers which discuss fuzey inference (inference
with certainty factors or quantitative deduction) on the base of pure Frolog. The
rough idea is thal they compute a certainty factor when a goal succeeds and try to
utilize it to obtain an additional information concerning the goal, in addition to an
answer substitution. The certainty faclors used in their context are elements of
[0, 1] or more generally, clements of a certain kind of (complete) lattices and the
unifications used have been syniaciical unifications. Ilere, we employ LIFE-III as
the scheme of a new fuzzy inferential system. In other words, we take a complete
Boolean algebra B as the range and we permit B-valued unilicalion as the basis of
inference. The difference between the conventional and ours may seem to be
small at a first glance, but this is not so at all. For example, just consider the
value assignment al each B-valued unification step. In case of syntactical
unification, since the resulting unified atom should be syntactically equal, it is
natural to assign one value to that unique atom (modulo substitutions in case that
the atom is not ground). However, in case of B-valued unification, since the
candidates of unified atoms may be syntactically different, the valuc between the
chosen atom AB in a goal (substituted by a B-valued unifier 8) and an input clause
head C*H (substituted by 6) should be fully taken care of. This is one scene where
the eondition

HADp]]1=[[{B0p]] for any ground substitution p
in the definition of B-valued unification plays ils essenlial role. From now on,
let's discuss some features of our system.

Let B be a complete Boolean algebra on which we want to build an

inferential system. The features concerning B are;
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1.  We can take any set B as the support of B. Thus, each element of B may
already be a structurced sct of data. —

2.  (In a usual fuzzy system, A and v need not be uniguely inlerpreted as min
and max. Similarly,) On the same support set B, we can impose diflerent
kinds of Boolean operations or (Boolean) lattice-orderings. B is one of them.

-

3.  Since Bisacomplete Boolean algebra, B is a complete lattice. In some cases,
we may ignore the effects of Boolean operation — (and so —)on B (, thus B
works only as a general complete lattice), and in some other cases, we many
essentially use 0 to estimate valuesin B. —

4.  Asaspecial case, target values in B may become linear w.r.t. the ordering on
B and each element of B may be a simple symbol. In this case, the effect of
our employing B as a range becomes substantially the same as employing [0,
1] as the range. —

1.  Now, suppose B is {ixed. Let L be a formal language with which we would

like to express the target knowledge K and (P;, =) be a Horn clause program on L

whose deduction is based on a universal unification w.r.t. =, which is expected to

formally represent K in a usual two-valued manner. By employing[{ 1]: Bp,—B,
we can generalize the Herbrand interpretation to B-valued Herbrand
interpretation (Up, [| 11). At the same time, we can utilize [[ 1] (with the help of
~}to define B-valued unification in order to refine the original =-unification and
to improve (P, =) to (P, [[ ]] ), a better (and sometimes more efficiently
implementable) formal expression of K. Here, as is obvious from the definition of

B-wvalued unification,

5. For a fixed B, we can define many relations ~, ~' etc over A(llp, V).
Moreover, for a fixed —~, we can choose different maps, say, il 1, il iI':
Bp, — B such that, for any atoms A, B and [or any substitution 8,

0 is a B-valued unifier for A and Bw.r.t. ~ and[[ 1]

iff
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is a B-valued unifier for A and B w.r.t. ~and [[ ]I,

that is,

[[ABp]l=[[BEp]] iff [[ABp]I'=[[BOPIT

for any ground substitution p for A and BO.

In other words, B-valued unification w.rt. ~ and [[ 1] and B-valued

unification w.r.t. — and [[ ]I’ become equal modulo value estima tion.

=
Among many maps, we choose such maps that (Up,, [[ ]]) becomes a Herbrand F-
model in the sense that (YCEP) ([[C]I€F) w.r.t, a complete filter F over B. For
suchall J1:Bp,—B, (P, [[ I} is called a F-program. The reason of our employing
F-oprogram (P, [[ 11) among many other possibilities is,
6. (P, [[ 1] prescrves semantic consislency as a program in the sense of B-
valued model. —
One obvious featurc concerning F-program is,
7. 1E(P,[[ 11)is a F-program, then (P, [[ 1) becomes ["-program for any
complete filter F"2JF. —
II.  Secondly, suppose ' is fixed. There are still many candidales ([ JJE BB for
(P., ([ 1]) being a F-program. Among them is the notion of standard (or intended)
F-mode! (Upy, u) w.r.t. B-valued unification in the sense that, for any atom
vEBp ,
PU{«o0} has a refutation based on B-valued unification w.r.t. (-, 1)

iff
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plo) € F.

llere, owing to the estimation by F,

§.  This particular p has a flexibility to the extent of
[p] € BoeF in the sense that

{(Fp,p €fpllp=p and Spi, ~)=Sp(p’, =) ).

(see chapter Il .) —

In this situation,
$. It is a representative pp of [p] whose values spread widely inside ¥ that

works inlerestingly. =
ITL.  Thirdly, suppose a standard [p] € Mp (B, F) is fixed. Then, choose an
appropriate representative pr of [p] by somchow or other, By the B-valued
refutation procedure, for any goal G, if there is an B-valued refutation R of PU{G}
with the answer substitution [}, we obtain two values {w.r.t. 3

v(R) (refutation value of G)
and

v(D) lanswer value of G)
which are based on pp. By the choice of gy, v(R) and v(8) may not be |, though
10, ©w(B)=viR)

and

pid) € F (soundness of B-valued refutation)

always holds. Moreover, even

(R) € Fholds for any special (ground) refutation.

(For the precise argument, see chapter | .) —
Next, suppose there is an effective condition @ on I which divides F into pairwise
disjoint finite subsets 5;, -+, S8,.. In many cases, m=2 and, in this case, @ is said to
define “a border inside F." On the other hand, if there is a series of complete
filters F'y, -+, F',. such that
F\CFaC - CFW=F

and
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Slzf‘r],52=F‘2_F‘h Ty Sm::F"Fm 1s

then & is said to define “a sleshold inside F.”

1
horder sleshold
Py 4 &0
0
B

In the following, for simplicity, let's consider the case of m=2. Then, ¢ can be

interpreted to be an unary (2-valued) predicate over F. (S;={b&F| ®(b)}, Sp=F~

Sy
11.

For this kind of @, we can check whether ©(v(0} ) and/or P(2{R)) hold or not.
More precisely, let (8, -, 8,) and (Cy, -, C,) be the sequence of B unifiers
and input clauses used for R. Then, to determine v(R), we ought to know “the
(i-th) trace value v(t;) of R” pp(Cy 8, A A G ) foreach 1 = 1 = n. (Asin
chapter 1, ug{C,*0, A A C* 8} is the abbreviation of A (pg(Cy " 0 p) Ao
pe(Ci* 8, p))) Then, we can check whether @(uv(t;)) holds or notfor 1= i = n.
4

Here, let Zipg)={(R,, &), ..., (Ry, &J, = } be the collection of all pairs of a ground

refutation R, and the corresponding answer substitution {y for PU{G} based on py.

Then, we can divide Z{pg) into four different classes Z;(pg, @), Zolpr, P), Lolpr, P,

Zapr, ) such thal
Zylpr, ®) = {(R, £} € Z(py) | both ©(u(8)) and $(u(R)) hold }

Ty, D) = {(R, £) € Ziyg) | S(u(8)) holds but D(u(R) ) dues not hold }

Zalpp, @) = { (R, &) € Z(pp) | @(u(B)) does not hold but $(w(R) ) holds }

Zalpr, ®) = { (K, £) € Z(pp) | neither ®(v(8)) nor P(u(R) ) holds } .
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(Tn case that @ defines a sleshold, since v(8)= v(R), Zz{uy, @) is always empty.)

It is this classilication based on @ that gives us new informations (for the goal G)

which we can never obtain by 2-valued interpretations, and this is the place where

our claboration of computing B-values is fully repaid.

IV. Fourthly, suppose & over F is fixed. Here, remark the fact that

12, fordifferent choices of representatives uy, py' of the same [1], Z(pg) and Z(pg)
may be different. Of course, even if Z(jip) = Z(pf'), the result of classifications
of Lhe same Z(py) becomes different if @ is changed. In this sense, only the
pair choice (up, ©) uniquely determines the classification. =

Note: Itentirely depends on each particular (applicational) case which we should

decide firstly, ppin [p] or d over F. |

V). Fifthly, suppose (uy, @) is fixed. Here, assume the case that, instead of full

classification, we happen to rcalize that we need only the information (R, &)

belonging to, say, Z1{py, ®). A naive method to implement this case is, of course,
we check every success branch (R, ) in Z{up) one aller another, using the judge ®.

However, in many cases, there are possibilities that we can check whether (R, £) €

£1 (pr, @) or not on the halfway of a branch of search tree of PU{G}.

13. If we can determinc (R, &) € Z1 (uy, ) on the halfway, it must be useful [rom
a viewpoint of efficiency because, in this case, we can backtrack from the
halfway point where we notice that the full information does not match the
requirement of Zq(pp, @), even if it becomes a success branch (R, £) € Z(ug) at
the final leaf node. =

Asthe final feature of our L-fuzzy inferential system,

14,  we have decided to employ extended Horn clause program which permit the
existence of “semantically controlling predicates” formally represented by

dagger symbol with subseripts Ty, -, T,,.
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i) Eachj (as a predicate) has no corresponding relational meaning in our
intended knowledge K. Thus, the extended program has L'=LU{t;, -,
1.} as the language.

ii}  Each %;isinserted only in a (possibly empty) body part of a clause of the
original program Pp. However, the location of each T3 is not restricled
to Lthe top (left most) of cach clause body.

iii) More than one daggers, say, 7, -, T, might be inserted in one clause
CePy.

Thus, from ii)+1iii), for the same original clause C€P and for the same set of
daggers {1y, -, T, }. We can construct many syntactically different exlended

clauses C;', =+, C,,! by the location of each 1.

Iixample 5-1-1. Let C = A«B. Using 7{, we can have two extended clauses A« 7,
B and A+B, 7,. -1
As will be explained later, these twao extensions might provides differeat effects.

iv) Ior each t;, the B-valued unification always succeeds and produces a
B-value bi which 1s properly assigned to 7.

v). Suppose an extension Py’ of Py is fixed. Let[[ ]]: Bp,—B be an B-
valued interpretation of Pi. Then, for the fixed P’, we can construct
many semantically different versions
(1L 15, :Bp—B
such that{l 1I"|Bp =l |l for 1215 «.

In other words, the corresponding B-value bi for each fi may be
changed under the same syntax P, |
By iv) and v), we notice that
Sp, ! (il 11", ~)NBp, =8p, ([[ 1],~)forany [[ ]]€BE and ~.
In this sense, each 1; works like the (two-valued) predicate “true” in Prolog, rather
than a system predicate like, say, “=". On the other hand, since the existence of

each 1; essentially influence the answer gathering process for each fixed (pg, P),
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the character may be said to be more similar to the cut “!". The point is that the
effect of our dagger symbol is not uniquely determined by the system but is
affected by the corresponnding B-values by, -, by,

So far, we have been explaining the proper features which our L-fuzzy
inferential system has. Since we have extended the notion of Horn clause
program by inserting dagger symbols in a pure logic programming level, it is
necessary Lo check that the extension is still of worth called “logic program.” In
the next section, we investigate the logical background within the framework of
LIFE-III by applying the result of chapter 1l. From now on, let’s call the above
defined B-valued fuzzy inferential system as “F-LIFE (Fuzzily (but) Logic-

oriented Inferential Framework Extension)” for the sake of simplicity.

§5-2. Theoretical Background of F-LIFFE

In this section, we apply the result of chapter 1l to F-LIFE to establish the
logical background as an inferential system. As is stated in §5-1, the basic
programming style of F-LIFE is an extended form of Horn clause program by
introducing dagger operators which control the procedural semantics via © by
inserting auxiliary B-manipulations. Thus introduced dagger operators are not
logical predicates in their original sense. On the other hand, since each dagger is
assigned a B-value, we might be able to say that it is a ground alom in the sense
that“a ground atom is a primitive formal expression based on a language which is
uniquely assigned a certain truth value”

How should we dissolve this apparent dilemma concerning dagger operators
in F-LIFE. For the solution, sticking tv logic from the beginning to the end, let's
employ the fullowing formalism.

Let L be a language and B be a complete Boolean algebra with which we
want to make up a F-program (P;, [[ 1), which is expected to farmally express our
intended knowledge. Now, we consider that the daggers {f;, -, T} is @ set of new

0-ary predicate symbols, where the number n is implicitly determined by PL.
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Thus, *; is an atomic proposition in the sense of propositional logic fur each
1=2i=n. llere, expand L to L'=LU{t,, -+, 1.} and extend Py, to P! so that Pt is
the program constructed from Py, by inserting ¥; in a suitable place of (possibly
empty) bodi(es) in appropriate clause(s) in Py, in addition to assertions of the form

T

for 1=iZn.
Thus, P! consists of the following five different types of clauses.

1. A<« (pureassertion)

2. AeT (daggered assertion)

3. A<Bp, -, Bk (pure clause)

4. A« B, Tig Ba, - Tie Bio Tig s {daggered clause, where
ij;may be omitted fur some 1=j=K+1.)

5. T (dagger)

Then, we can obtain many extentions

[ :Bp,  —B
for the same [[ ]]: Bp,—B by just determining each B-value [[]]" for 1=1% n.
This is the formalism we employ to dissolve the dilemma and to embody the
operational function concerning t discussed in the previous section all in one. The
key idea of the above formalism is that B-value of i is not constant for the same
Py, though [[%]]' is uniquely determined once [ ]I" is fixed. By the construction,
it 15 easy to see that

Sp, I 15, =)=8p (1T 11, =) U{T1, -, Tnl
where ~ over A(ITp,f, V) is the trivial extension of ~ over A(llp;, V}such that

Ti~T; iff  ti=1; fer =i,] = n.
Now, since each original clause A«By, -, Bg in Py satisfies

(Al «[[By A ABgI EF,

([[AJ)T & 1By A ABRIIT AL A ALl EF

holds for any subset {fi;, =, 7} Yaf {t1, = Tn}.
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By the commutativity of Boolean operation A, this means that, for any extended
clause C7 of type 2 or 4,
LICN' € F.

Moreover, since the aim of our introducing “1” is to affect the procedural
semantics based on @ and @ has the domain F by the definition, without loss of
generality, we can assume that

[+ €F
except at most one dagger, say, T;. The expected aim of ¥, is to exclude any
extended clause C'(7)) containing T, from the positive collection w.r.t. @. In other
words, any refutation R which use C'(*;) as an input clause always satisfies the
condition
u(R)EF
and so p(R) trivially satisfies the condition
$(uv(R)) does not hold.
For this purpose, we may choose any B-value by such that
h, € F.
Let by be such that there is a complete filter 72 F such that
by € F".
{We assume that I is not ultra.)
Then, the extended program (P, [[ 1]") becomes a I"-program by the definition.
Asaquery for (PL,[[ 117}, we also permit an extended form

—Fi A, Fige o Tige A T
where 1j, may be omitted forsome 1Z2j=m+ L.

Thus, we take (PL%, [| 11') as the starting B-valued F'-program based on the
language L to apply the result of chapter 11, §2-3. In this situation, let's specify
A={{H ) {Tuband A={by, -, b} where [T]]"=b; for 1=i%=n,

and consider Ep,' (4, A). Since each Wi={fi} is a singleton, we notice that A
satisfies B-valued unification condition w.r.t. ~. Moreover, since {by, ==, by} C F",

we recognize that Ep "(A, A) satisfies Tp(4, A)-consistent property and A trivially
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satisfies F'-consistent property. Finally, by the above construction, each Tj itzelf
is the eliminator of {#} for 1Zi=n. So, we can apply the result of Theorem 2-3-20
Lo obtain

Sp, (pa,a, ~)=Bpa A [F]
where [py ] is the least element of Ep (4, MNMp (B, ).

Though the ahove is of worth being called the * theoretical background” of F-
LIFE, the result in this form of completeness has substantial meaning only when
we use restricted kind of B-unification. Under a general situation where we
essentially use a proper character of B-unification, we ought to consider

Ep {4, A0 Mp "B, F3 0 Cp, ()
where I'p, '(J) is a complete sublattice of Pp, T constructed by using the notion of
“] faithfulness.” By adjusting J, we can obtain general =-unification in addition
to (A, A)-absoluteness on the same syntactical program PL', where = is a
substitution transitive equivalence relation over A(IIp, 7, V). ln the following, by
applying the general resull proved in chapter II, §2-4 to F-LIFE, we will review
the semanlic character of  operators again.

Now, let P, und P! be as above. Applying the general result proved in
chapter 11, §2-2, we notice that

Spluy, ~1=Bu[Fl, -(G1)
where [pd] is the least element of U'py(J) M Mpy(B, F). On the other hand, by
applying the resull proved in chapter IT, §2-4, we gel
Spu {pa,a gV = Bia 4 J T (5]
where [pa 547]is the least element of
Eputa, MdNTp(JInMpy (B, F)
and (A, A) is specified as above by daggers and J' is the natural extension of J
which is consistent with {{T1}, =, {Fn}}-

In the following, we show that
[Ha,a. Bp =l —(0)

In other words, let py' be the natural extension of p, to BPLY such that
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poti)=Dbj forl=i=n
and
patla)=p,(e) foruv €BpL .
Then, [p;t]1=[pa A 47). Thus, we recognize the fact that, in order to obtain
[, 4,47, all we need is Lo construct [pylin Fp{J]ﬂhIpL{H, F.
Now, to check
Theorem 5-2-1. [na,a4" 1Bp I=[14i
Proof:
It is enough to see the following two directions.
1) [wa,aa [Bp l<elpg
Let p;* be the natural extension ol p; to Bp, .
Then, we notice that
[n,'] €Ep, (4, AM)NTp «J ) Mp (B, F) .
Ilere, since [pa s o'] 18 the least element of
Ep, (4, A)NTp JINMp, (B, F7),
we obtain
Mo a0l <plpglin BEOLYE,
So, [paaBpl<ripnlin BEPLYE
because [pa A ' (Ti)=p,'(Til=bifor 1=iZ=n.
i) lpsl<rlpaag iBpl .
Since [u,] is the least element of Ip (HINMp, (B, ¥) and [pg, a o' |Bp ] trivially
satisfies
[ua,a.' BpJ€Tp ),
itisenough to check [pa a,0'Bp, J€Mp " (B, F). - (O)
({<>)1s not so trivial, because
Ha, a0 (CNHEF =>py 4 5'[Bp (C) €F
is not obvious as the following simple example illustrates.
Example. Let B={1,0, by, = by}, F={1}, F={1, b1} and
C'={peTf1,ah[[pll=0,[[q)]= by, [T1]1=b,.

-120-



Then, [CT]]=(0«"b1/Aby) =(0—0)=1€F".
However, [[Cll=(0« b1} = b1 but by € r. -
Of course, in this case, th deficiency comes from the fact that [ J]is not the least.)
Here, from the fixed-point construction of {pa 4 '), since {by, -, bn}CF, we notice
that we can choose a representative ps of [ps, 4 5] modulo F” such that
(Vo€Bp,*) (nalo)=1or0).
So, especially, for any CT€Py, p(Cy=1.
Now, consider g Bp, . Then, we notice
po[Bp, (C)C F for any clause Cin I,
The reason is the following:
" Suppose there is a C€P, such that pyf Bp, (C)€F. Let C' be the corresponding
daggered extension in P 1.
Then,
1A CH =y (CHYe(pa(C ARl T, A - AtiE) ) for suitable daggers 1i,, -, Tig
= 12(C* )e~(ua(C~ A1, by the choice of py and
the fact {T;,, - 1i JCF
=p3(C ) (pa(C)

=py(C)EF,
This contradicts the fact pa(CHi =1 . -]
Since [pa[Bp, 1 =[pa, .. [Bp, ] in BEL/F,

We obtain
ita, a0 Bp, (C)€ F for any clause Cin P
[ha. a0’ |Bp, €Mp (B, F).

]

By (3 )+ &)+ {01), we obtain

SPL (Hay ™) U{?ls Ty -{'n}

=B [FTU {ty, = tnl by (i7)
=Byg, g Bp [FIU{*1, -, Tal by ()
=Bpa aa [F] .
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=8p (B4 a4 ~) by (&)

This is what our intuition concerning F-LIFE reguires.

[lere, before closing the section, let's briefly check the effects of the orderof a
dagger operator appeared in a clause. For simplicity, compare two clauses of the
form

pet1, q -+ (1)

and

peq, Ty . o (2)
By the commutativite of A, the declarative semantics of both should be the same.
At the same time, the global procedural semantics as a whole are also the same in
the sense that, if (1) is used during a refutation (R, 8) of a goal, then (2) van also be
used to produce the same answer substitution 8 and the same B-values u(R), v(B).
However, it we employ @ as a tool of intelligent backtracking, the effects of (1) and
(2) become different and thus affect the local procedural semantics. In a practical
phase, if we employ, as usual, left to right goal-selection strategy as a
computation rule, a B-value estimation w.r.t. 1] is done firstly for (1). Se, in such
a case that [[T11]" (without [[g]]") already witnesses the unsuitability of this
branch w.r.t.®, using (1) is more efficient than usig (2). On the other hand, for (2),
B-valued unification w.r.l. q is done firstly. Seo, in such a case that q fails to be B-
valued unified with the required clause in Py but [[1il]" does pass through the
sieve by @, using (2) is more efficient than using (1).

By the way, can we forsee which is more suitable w.r.t. efficiency for a
candidate to obtain an extension P +. The uniform prediction is, of course,
impossible, because the effect heavily depends on the choice of (P, pp). However,
for example, concerning T3 whose corresponding B-value by is living outside of F,
we had better always insert 71 at the top (leftmost) of a body of a targetted clause.

The reason is obvious. The purpose of our inserting 11 is to mark such clauses
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which we don't want to use during the expecled refutation procedure. In anyway,
the choice of ordering w.r.t. daggers is ours for God's sake.

Finally, a word of caution. It is no business of this kind of theoretical paper
to ask whether the inserting of daggers is done dynamically (depending on each
query) or not. The dynamical marking may be technically possible and may have
some sense in some cases. On the other hand, it may be impossible or have no

importance in other cases in which every dagger is marked statically depending

only on (P, pel.
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Chapter VI Appendix
Qualitative Deduction, Universal Unification and Non-

monotonic Reasoning

§6-0. Introduction

Let P be a definite clause program. Let A{Il,, V) and T(Z}, V) be the set of all
atoms in P and the set of all terms in P whose variables appear in V respectively.
Let = be an equivalence relation aver A(IT,, V). Then,
i} = 15 “substitution transitive” 1T

(¥ A, B € A(llp, V))(¥8: substitution over T(Zp, V)) (A =B—AB8 =88).
11}  Let = be a substitution transitive eguivalence .relation aover A(Ilp, V).

Then, for any A, B € A(Ilp, V), Bisa =-unifier for A and B iff AO=B8, H

Obviously, the above definition is a generalized version of the conventional
notion of universal unification based on equational theary over T(Zp, V). In [4],
we explained a few merits of the generalization and proposed a few notions
which belong to the generalized version. Among them are those of "two-lane
unification” and “a.b.f.e. unification (all but finite exception unification)”. Both
are relaled to certain kinds of heuristics we use at the stage of knowledge
acquisition. The purpose of this paper is to propose a simple example of logic
program, the procedural semantics of which can be interpreted from a viewpoint
of not only two-lane unification but also a.b.fe.-unification as the inference
steps.

In §6-1, we designate a logic program P, and prepare the stuff which can
possibly appoeint an equivalence relation over Up,, the Herbrand universe of P,
In this phase, the effects of P, is interpreted as the normal program hased on
syntactical unification, and we need a system predicate or other appropriate

methods to obtain the expected results. Here, the idea of constructing an
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equivalence relation over Up_ may already be interesting [rom an aspect of
qualitative deduction used in expert systems ete. §6-2 is devoted to reinterprete
the effects of P, from an angle of two-lane unification. The characteristics of
this facet is its irregularity as a universal unification. The cause comes {rom the
demand-driven property used at gathering answers for certain kinds of queries.
This irregularity is the partial reason why we call this universal unification
“twaoa-lane”. In §6-3, we review the same program from the procedural semantics
ofa.b.fe.~unification. By extracting exceptional data from normal ones, we gain
an efficiency of the algorithm to enumerate expected data. At the same time, we
can refine the answer gathering processes concerning given dala. The
refinement of processes can be cxplained using the terminology of non-
monotonic reasoning, Since the procedural semantics of a.b.fc.-unification in
this example is a little complex, the logical background based on Bovlean-valuced
unification is discussed in the next §6-4. Finally, in §6-5, we give a few remarks

about the results in this paper and the related works.
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§6-1. A preliminary example of qualitative deduction

In this section, we present an example which will be helpful to understand
the maintopics. Before giving the example, let's consider the background. In
general, given a set of vast data, there arc a lot of cases that we want to grasp
the guality of inclination as a whole instead of considering particular property of
each datum. One method which is available in this situation may be the
following. Firstly, devide the data area into a class of unit sets and choose a
representative from each unit, Then, ask something about the set of
representatives in order to comprehend the tendency of all data. Lastly, if
necessary, enumerate elements in the special units which pass the test question.

Here, as a very simple and special case, let's take a set D of data, each of
which has the symbolical form

<i, j=

where 0=1, ]=9, with dot function -( ) possibly applied only to the second
argument]. Our intention is that <1, 2> means, for example, the real number
1.2, The dot function " expresses a restricted form of eircular decimals. Thus,
<1, -(2)> stands for 1.22---. The necessity of our employing -’ should be obvious
by just imaging a real number r which satisfies a simple condition, say,
3xr=10.

Remark: Don't confuse this expressional notation as an element of data and
the semantics of each expression. Though both <0, -(9)> and <1, 0> denote
the same number 1, they are different as elements in I). —

In this example, let’s take each interval [n, n+1) for 0=2n=9 as the
boundary for unit sets. Let [ be a representative function whose value becomes a
representative for each [n, n+1). The representative may be a typical element
from each unit set or may be a suitable entity which characterize each unit set.
Here, the point is that, in order to decide £, we don’t usually assign a value for

each unit set one by one where the number of unit sets is still large. In other
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words, there ought to exist (or find by somehow or other) a natural
characteristics which can define the representative function ¢ algorithmically.
Note: To tell the truth, it is this characteristics thal determine the suitable
class of unit sets . i
In the following, let’s define { by
(VdeDidé[n,n+1)—E&d) =n) for0=n=10.
Ta be more precise, for any datum <71, >,
i+1 , if j=(9
E<i,j=i =
i , otherwise.
On the ground of this definition of £, our purpose becomes to ask a question
concerning {£(d) | d€D} and to find out each set {d€D] &d) = n}, for which the
representative n isan answer of the question.

Now, in order to manage the above example within a (Prolog-like) logic
program, we assume first of all that there is a program P, which covers
sufficient portion of number theory (between 0 and 10.) In the following,
without loss of generality, we can assume that expressions like

sum (X, 1, N}, eg(X, N)
are all restricted to natural numbers (with additional type assignment Nat(X)
etel,

Next, to treat the information about D, we add the following clauses to P

D = [dy,
. . A‘n
(Database)
di]
{Each d,, has the form of expression <i,j> in D.)
r (<X, (9)>>,N) « member (<X, -(9)> D), sum (X, 1,N)
...BD

r,l{{K,Y::*,N‘] — Y+(9), member (<X, Y>> D) eq(X,N)
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(The meaning of r, should be obvious from the above argument. Since the
definition of £ has a typical if-then-else form, this part B, can be rewritten in the
following more practical form by using data-type checking equipment € and if-

then-else predicate.
r (X €, D, N) «if-then-else (ho(X) =19}, sum (A;(X), 1,N), eq (A1 (X), N))

where functicns A1(X) and Ao(X) pick up the first and the sceond arguments of X
respectively. Throughout this paper, our purpose is nol to write a precise
program but to give a rough idea how we use a definite clause to express the
required concept.)

Appropriate clauses containing predicates which are concerned with

elements of T). Gy

In anyway, the Herbrand universe is enlarged by the constructor <, and
the dot function symbol *'. Let P,=P UA UB UC,. II we want to ask a
guestion concerning the relation between an element of D and a property which
talks something about the tendency of D, the required query for P, might has
the form

< r (X, Y), g(Y)
where y is a predicate over {0, 1, -, 10}, the set of representatives of D). Here, an
answer substitution for this query becomes, say

{X +d,Y «nj}
for each d€D and n€Nat such that £(d)=n A win). However, therc often happens
the case that we want to enumerate all elements of a unit whose representative
salisfies a certain property. There may be many methods to treat this kind of
case. One naive method using programming technique only is to define a
predicate £, (X, Y) such that Y =[ X ]=, where [ ]=,, is the equivalence class

over DU [0, -+, 10] such that, for any v € DU [0, -, 10].
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[d€D|&d) = &u} Uin}, ift€¢Dand&) =n
[t]=p = (1)

{deD|Ed) =t} u{t}, otherwise.

For this purpose, we need to define the (abstract) set expression
{X¢€ D|rh(X,N}}.

Though some system predicates can really do this task, the tax of the efficiency
is not so cheap at least compared with the programming technique discussed in
§6-3. (Check the definition of the predicate r,! It is a heavy task to execute
member (X, D). In the next section, we see the fact that we can obtain a more

useful tool than £,(X, Y} by using a demand-driven command from a viewpoint

of universal unification,
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§6-2. Two-lane unification

Let P, be as in the previous section. Let =_ be the equivalence relation
over DU [0, -, 10] implicitly defined by (1). By definition, = substantially
works only on

DU{n€[0,-,10]/(3d€Din = &d))}
Consider (P, = ). (Precisely speaking, we should extend = to an equivalence
relation over A(ITp,, V). The detail will be discussed later in this section.) We
can regard (P, =) as a program P, based on = j-unification in the following
sense. Let w(X) be a predicate concerning natural numbers. By Lhe query
—giX)
w.r.t. P, based on syntactical unilication, we can obtain a scguence nj, -, nj of

natural numbers which satisfy ¢(X) in such a manner as, say,

eru '
X =nz;
X =n;.

lere, between an answer substitution “X=n;" (1=i=k—1) and “" we may
interpolate system command

“D- enumecration”
to oblain the set {d;,, -, d;  }of data satisfying

{dij, = di} ={d€D|d=_n;}.
Then, the resulting answer features become something like

X =n;, D-enumeration?
yes,  {dy, - di};

X =ng, D-enumeration?

X =n3, D-enumeration?
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where each response “yes” or “no” is obtained via user interface. The algorithm
concerning D-enumeration may not be directly connected with the original
predicate r, anymore, though il is certainly related to the rcpresentative
function E semantically. TLooking from a viewpoint of universal unification, we
recognize that this kind of = ,-unification is irregular. The irregularity owes to
the character that we basically employ syntactical unification and add the
device of = -unification by demand. In other words, we mix two different kinds
of unifications in the same program P,. The distinction of the two is done by
user interface. In this sense, we may name the above kind of irregular universal

unification “two-lane.” Thus, we can define;

Definition 6-2-1. Tt P be a program and = be a substilulion transitive
equivalence relation over A(Ilp, V). Then, an (irregular) universal unification
based on = is a “two-lane uniflication” iff,

for any goal «— P(X) for D,
i) Usesyniactical unification to obtain a ground answer aj for X.
ii)  1f necessary by demand, enumerate other possible answers {o € Up la] =0

|3

Else, omit this second process.
iii) Repeatthe above process w.r.t. Lthe other answer substitutions

X e ag, -, X «ag

(based on syntactical unification) one after another. —

This is an applicational form of the notion of “two-lane unification” in
general. The word “iwo-lane” originates the separation of syntactical
unilicalion part from =-unification,

Let's return to our special example. As we remarked before, we should
extend =, toan equivalence relation =, over A(Tlp,, V) in order to define the
notion of universal unification legitimately. Here, we can easily extend =, to

the corresponding relation = over Up,. However, we must not unconsciously
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extend =, (over Upy) to the corresponding relation =, over Bp, because of the
gualitative difference between raw data and their representatives. For
example, there may exist predicates y,, v, such that, for a natural number n
and a datum d€D) which satisfy n=  d,
w1(n) holds but there is no necessity to hold yrq(d) or simply y1(d) does not hold
and
yo{d) holds but there is no necessity to hold ya(n) or simply wa(n) does not hold.
In anyway, there might be predicates yq, -, wi which satisfy

nj=, d; butyrilni) %, wildj) for I=i=k.
For this kind of predicate g, we can’t naturally extend the relation =, to the

corresponding relation over Bp,.

Example 6-2-2. Suppose, for simplicity, that
{deD] def0, 2)}={<0, 2>, <0, 4>, <0, -(5)>=, <0, (9>, <1, 0>, <1,
{3)>, <1,8>=} Then,
[0]=,={<0,2> <0,4>, <0, (5)>} U {0}
and
1)=,={<0,49)> <1,0>, <1,-(3)>, <1,8>}U {1}
Let y, ~odd(X) be the predicate already defined in Py which states “X is an odd
number.” Obviously, we hope that
odd (<0, :(9)>) and odd (<1,0>) hold,
but we expect that neitherodd (<1, (3) =) norodd (<1, 8>) holds.
This typically shows the situation that
1=.<1,-(3})> butodd (1) =, odd (<1, -(3)>).
{The above effects can be implemented by, say, simply adding the clauses
odd (X) <« X €iype (D), A2(X)=+(9), even (A(X))
- (2)
odd (X) « X €type(D), Ao(X)=0, odd (A1(X))
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to Cp. Here, as before, the clauses can be hidden by using system command via
user interface.) -
OFf course, there might be predicates @1, -, @] which naively satisfy that,
for anyn€Natand d€ DD,
n=,d -~ @n)=,P(d) for 1=i=1

Example 6-2-3. Let[0]=,and[1]=, be asin Example 2-2.
Let @)= <(1) (X) be the predicate already defined in Py which states “X is a
number which is smaller than 1.7 (<2(1)(X) is usually written as "X <1".)
Then, for any element o in [0] =, , we hope that
< (1) (o) holds.
Al the same time, for any elementtin [1]=,, we expect that
< (1) (v) does not hold.
This means that, for anyné{0, 1} and d€[0, 2)ND,
n=pd — $mi=, P (d.
(The above effects can be implemented by, say, simply adding
<(1)(X) « Xetype (D), r(X,Y), <(1) (Y} e (3

to Cp. Again, the clause can be hidden by using some ather technique.)

Note: Remember that we are primarily interested in positive informations by
closed world assumption. In other words, what we want to check is
n=,d — ﬂﬁi{n}'——'ﬁ'll.l[d} or not

for such @.(n) that holds in our intended model, 1.e., in Py -4

In short, =, becomes a subset of the natural extention of = . This is the
place where another kind of irregularity of two-lane unification appeurs.
However, these irregularities become merits of two-lane unification. Applyving
usual system predicate, say, “a-bag-of” to | or employing a certain parallel

processing device, we do obtain a set [ny, -, ni| of answers w.r.t. y once for all,
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Moreover, as is pointed in the previous section, we may gather elements in a

unit set whose representalive is nj by using r, (X, nj) for each 1=i=k.

Contrastingly, the advantages employing the technique of two-lane unification

comes from the following three ideas.

1.

The separation of main (prototypical) program Py and the module
concerning D, By doing so, we can easily replace D to the other database or
can modify the unit sets for the fixed D or can even change the
representative function for the fixed unit sets. These alternations do not
affect the semantical attitude of Py in its essential level. In addition, if we
prepare a hig program P {rom the beginning, we may parallelly process a
variety of data sets Dy, -, Dy, where data types of Dj and Lhose of Dj are
different fori=.

The selectiveness of demand-driven property of D-enumeration via user
interface. Usual enumerating function is not selective. The all-or-nothing
character without user interface often outpuls unnecessary information
concerning 1} as a whole, It sometimes happens the case that we are not
interested in data in a unit set whose representative satisfies a certuin
semantical condition. The point is we can do the selection during answer
gathering process w.r.t. y without asking a query like « fF,[Kr njl
explicitly.

Efficiency in case that D is huge. Considering r,, the reason should be
obvious. Any algorithm which suitably embodies = -unificatinon (D-

enumeration) is permitled.

Now, once =, vver Bp,, is [ixed, the substitutive completion of = defines the

expected equivalence relation = | over Alllp,, V)

Under such a restricted form of =, the above defined two-lane unification

really hecomes an irregular universal unification in general.
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§6-3. A.B.F.E.-unification and non-monotonic reasoning

In the previous section, we watch a programming technique of selective
enumeration from a viewpoint of irregular universal unification. Now, if we
stand for the side of universal unification, we might farther be able to gain the
efficiency of answer gathering (w.r.t. the same hardware) by suitably evolving
the unification algorithm. Of course, the same efficiency may be obtained
through a proper implement technique just by imitating the evolved unification
technique, once it is revealed. The point here is, however, what kind of
heuristics we should employ in order to discover a direction of cvolution. This is
the theme in this section (and of Al in general).

Let's review the definition of = used in (P, = ). = has been defined by

the relation that, forany o, t € DU [0, -, 10]

(o) =80 ifo, €D
U =pjt iﬂ'1 EHol=1 , ifo € Dandt € [0, -, 10]
tv)=o , ift€ Danda €[0, -, 10]
L T=71 \ otherwise.

(Then, =, is naturally extended to the corresponding equivalence relation =,
over Upp).
Thus, = is completely determined by § and § was defined by, for any <i, j> €
b,
i+1 . if  j=+9)
H<1,j=) = (4]
i \ otherwise.

Here, if we replace the above definition of £ by the simpler condition that, for any
<i,j= €D,

El<i,j=)=1, ++(5)
what happens to the semantics of =7 By thc original meaning of the

representative, almost every element in a unit set can suitably pass the test (5)

-135-



to produce its representative except the elements having the expression <1,
(9) > located on the boundary for each unit. That is, the “if " part in (4) is used
only to manage those exceptions. The crucial point is that the set of exceptions
is relatively small compared with the original data set ). (This is a motivation
how the unit set is determined from a viewpoint of qualitative deduction.) With
this fact in mind, consider the following new-type unification.

Let =", be the equivalence relation over DU {0, -, 10] based on ¥ as before,
where we employ (5) for the definition of £ instead of (4). Let ACD be the finite
set of exceptions w.r.t. £ in the above sense ie., A={d€D|Aa(d)=-(9)}. Let
=", =(=,n=",1[ (DU [0, -, 10]=A). Using =", and A, we can define the
original equivalence relation = over DU [0, -, 10] and so can define the same
equivalence relation =, over A(llp, V). Now, consider (P, =) again, Since
the equivalence relation =, is the same, the resulting success set w.rt. = -
unification should be the same as before. But this time, the procedural
semantics of = -unification based on (=", A) is refined so that the second
process is divided into the following steps.

ii)  [1] If necessary by demand, enumerate other possible answers based on

o

(2] (If necessary by demand,) check elements in A so that =’} is adjusted
to =",. As a result, at most one clement in A is deleted from the
answer listin [1].

(3] (M necessary by demand,) check elements in A so that =", is adjusted
to =. Asaresult, at most one element in A is added to the answer
list in [2].

[4] Else, omit the step(s).

(A simple example will be given soon afterwords.)

What is the advantage of thus defined procedural semantics of universal

unification based on (=", A). One merit concerns the efficiency of the

algorithm of answer enumeration. Since the definition of £ based on (5) is
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extremely simpler than original £ and A is relatively small compared with D, the
efficiency thus gained is obvious as far as we depend on the same hardware. In
general, when D is (partially) ordered by a relation =, and the defining
algorithm of £ consistently obeys the relation =, we had better employ this
kind of lechnigque. Especially when I is huge, = issimple and 4 is very small,
the merit becomes tremendous. Ancother merit concerns the choice of expected
answers, Forexample, if there is a case in which we can tolally ignore boundary
data for certain predicales, we just employ (1] and [2] as the second process for
the enumeration of answers w.r.t. those predicates. Moreover, by just using step
(1], we can embody fuzzy inference in a wider sense at the level of unit set. The
approximation of inference thus obtained might be interesting from a viewpoint
of qualitative deduction. This kind of process separation can only be inspired by
the heuristics that exceptional (abnormal) data should be distinguished from the
normal ones.

Putting the weight on this heuristics, we can restate the second merit
using the terminology of non-monotonic reasoning in the following way. For
simplicily, let's employ the example used in the previous section Lo argue the
key points.

By definition, we recognize that

[0]=p={<0,2>, <0,4>, <0,(5)>, <0,/(9)>} U {0},

(1=, ={<<1,02, <<1,-(3)>, <1,8>} U {1},

[0l=r,={=<0,2>, <0,4>, <0,(5)>} U {0},

[1]=r,={<1,0>, <1,43)>, <1,8>} U {1}
and

<0,-(8) =,

Let's take the predicate <(1) (X). Based on =", <(1) (X) is implicitly
realized by the simple clause

<[1}(X) < Xeétype(D), <(1){A (X)) e ()
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which is essentially the same as (3) excepl the condition concerning -(8). Then,

we notice that
<(1) (=<0, (9)>)

holds at step [11.

Checking <0, -(9)> € A by somehow or other, we simply suspend the statement
<(1)(<0,4(9)>)

at step [2].

Finally, by retrieving data in A, we recognize that no datum is to be added

concerning <X(1) (X) any more. Thus, we experience a non-monotonic reasoning

<(1(<0,2>), <(1)(<0,4d=), <(1)(<0,-(5)=), <{1){<0,-(9) =), <(1)(0):

all hold

=,

<(1)(<0,2>), <(1){<0,4>), <(1)(<0,(5)>), <(1)(0): hold

<<(1) (=0, -(9)>): deleted

-

<(1){=<0,22), <(1)(<0,4>), <(1)(<0, (51>}, <(1)(0): hold

no addition concerning < (1) (X).

Here, <(1) (<A(X)>) becomes, so to speak, default. Generally, we may say

that (3) is a default rule from a viewpoint of =, —unification in the above sense.
We would like to name the universal unification hased on (=", 4) with

the procedural semantics as above “a.b.f.c.-unification (all but finite exception

unification)”. The root of the name should be obvious [rom the above arguments,

though this is only a simple example of more variety kinds of “a.b.fe.-

unification” based on Boolean-valued unification.
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§6-4. Boolean-valued interpretation

Since the procedural semantics of the above a.b.f.e.-unification is a little
more complex than usual (non-demand-driven) universal unilication, it is
natural for us to worry about the theoretical background as a logic
programming. In this section, we secure it by showing the fact that the above is
nothing but a very special case of Boolean-valued unificalion.

Let’s start by defining the notion of Boolean-valued unification.

Definition 6-4-1.  Let P be a program and B be a complete Boolean algebra.
Let[[ 11:Bp— B be amapand ~ be a substitution transitive relation aver Allp,
V). Then, for any A, BEA(TTp, V), a substitution 8 over T{Zp, V) is a "Hoolean-
valued unifier for Aand Bw.r.t. ~and ([ [J" iff

AD ~ BY

and

[[A8p]1] = [[BBp]] for any ground substitution p for AD and BO.

=

Before explaining a Boolean-valued semantics of a.b.[le.-unification, let's
review the definition of two-lane unification. The irregularity of two-lane
unification has two roots. One comes from the demand-driven property of D-
enumeration and another depends on the fact that there might be predicates 1,
-+, g which satisfy

nj=,d;i but winj ¥y widy) for 1=izk
Though the former property only superficially affects the semantics of (Pp, =),
the latter fact does essentially chanpe the semantics and this is the reason why

=, becomes a subset of natural extension of = to Bp,.

Remark: The former is a matter of an efficiency and user’s convention., For

example, users can uniformly answer “yes” for the command “D-enumeration?”
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at first and then they may disregard some irrelevant data in order to obtain the
same effect.. -

However, once = is fixed, the resulting =, over A(llp,, V) is uniquely
determined by the definition of substitutive completion. In short, =, can
completely decide the semantics of (P, =,). This is the situation in the case of
two-lane unification.

Now, the difference between two-lane unification and a.b.fe.-unification in
our example is located in the refinement of steps [1]~[4] in process ii). The
original = is obtained through steps [1]4 [2]4[3)(+[4]). lere, if we choose,
say, only [1](+[4]) as the step(s) in ii), the resulting equivalence relation ='h
becomes different from the original = and s0 = '3 over Bp,, which is decided by
="y and the irregularity also becomes different from =_. Thus, the choice of
steps in ii) really alters the semantics of P, This alternation is expected to be
reflected by the modification of map [[ 1]: Bp,— B, because it is the map that
dynamically transforms the semantics of Boolean-valued program.

With the above observation in mind, let's interprete our example in the
following Boolean-valued fashion, Let =, =", =" be as before and Sp =
="g be the corresponding cquivalence relations over Bp,. Let ~ be the
transitive closure of (= U =",). The crucial property of ~_ is that, for any
exceptional datum <<i, -(9) >, two unitsets [i,i+ Dand[i+1,i+2) are stapled by
the boundary element <1, «(9)>. In other wards, two equivalence classes w.r.t.
=, and =" whose representatives are i+ 1 and i respectively and having datum
<i,+(9)> commonly (i.e., {d€D]&(d) = i+1in (&)} U{i+1} and {d€D|E(d) = i

in (5)} U{i}) become one equivalence class (the stapled chain) in ~
Let ~y be the natural extension of ~ to Bp,. Then, (transitive closure of

(=gU=")) C~, and each equivalence classe based on ~ becomes the largest

possible in our context.
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Example 6-4-2. Take odd(X) in Example 6-2-2.
We already know that
lodd(1)]my={odd(1), odd(<1,0>), odd( <0, (8)>)}
and
lodd(1)] ="y, ={odd(1), odd(< 1, 0= )} ={odd(1)]="}
and
lodd(<0, -(9)>)]=", ={odd(<0, (9)> )} =[odd( <0, () >)|=",
Mareaver, if negation as failure is available, we obtain
[0dd(0)] =, = {odd(0), 0dd(<0,2>), 0dd(<0, 4>}, 0dd (<0, -(5)>)}
=lodd(0)]="g
=lodd(0)] =",
lodd( <1, (3)>)]=p={odd(<1,-(3)>},0dd (<1,8>)}=[odd(<1, (3} =)=y
=[odd(<1,-(3)>)]=";.
On the other hand, since [1]-,=[0].,={<0,2>, <U,4>, <0,-(5)>=, <0,
(9>, =1,0>, <1, (3)>, <1,8>, 1,0} by definition,
[odd(1)]-,=lodd(0)] -4
={odd(<0,2>), 0dd(<0,4>), 0dd{ <0, (5} =), odd( <0, -(F) =},
odd{<1,0>), odd(<1, (3)>), 0dd(<1, 8>), odd(1)}, odd(0).}
~
Define ~ over A(Ilp,, V) so that it is the substitutive completion of =~
Next, define [| Jl=, : Bp, 'Bsothat[[ Il=g refines the static relation ~ to
=_ By definition, it is this [[ ]]= that concerns both the irregularity and
special status of exceptional data. (Any concrete assignment will do, if only [{
1=y, devide the equivalence class based on - into subclasses based on = by

following the Boolean-valued semanties}). Similarly, we can define [[ )=y und

([ 1l="

Example 6-4-3. Just watch only atoms in Example 6-4-2, that is, consider
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(=, |lodd(1}j-y. We would like to devide [odd(1}]-., into disjoint subclasses
[odd(1)]= and [odd(0)i=, and [odd(<1, (3)>)]=,. Let F be a complete lilter
over B which is used to witness that (P, [[ 1= ) becomes a F-model. Then, for
any o€ [odd(1)]~y, we can lake any value such thal,

1 LAl o€ledd(1)] =,

Hollsg = a g F,if  o&lodd(0)]=

b € F ,otherwise, l.e.,,0€[odd(<1,(3)>])]=, ,
where a¥ b,
Moreover, if negation as failure is available, we should strengthen the
conditions a¢éF and b€ F to a€l and b€l respectively, where [ is the dual ideal of
F. (In this case, it is natural to take a=0.) Here, the value assignments are
based on, say, (2) introduced in Example 6-2-2. Similarly, we would like to
assign

(1 if ofledd(l)]=,

e ¢ Fif o=odd(<0,-(9)>)
T olley= {aé€F, if ofloddd]sy
| b € F ,otherwise, i.c., o€lodd(<1,-3)>)l=y ,

where a¥ b+ e.
Using negation as failure, change conditions a¢F and b#F and eéF to {a, b,
elC/l. (It may be natural to take a=0.) In this case, using the semantics of =",
we may implement the above assignment hy, say,

odd{X) « member (X, D), A2(X)=0, odd(Ay(X)) = (7)
(Compared with (2), the elause concerning "(9) is lacked, which has been the
original aim of our employing =",.)

Finally, we assign
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(1 y il o€lodd(1)]="

e § FUl,if o=odd(<0,-(9)>)

Molle"g= ¢ adF ,if otfodd0)]="y

b € I , otherwise,i.e., o€lodd(<1,-(3)>)]=" ,

where a? b, Using ;egatiﬂn as failure, change conditions a¢F and b€ F to {a, b}
CI. {It may be natural to take a=10.) In this case, we employ (7} to obtain the
same effects as [[ ]]="; except the value assignment of [[ odd{ <0, «(9) =)]]=",
which should be vague in the sense of B by the semantics of A. (The reason will
he clear soon.)
Thus, through steps [11—[21—{3], corresponding Boolean values changes
[lodd(<0, -(9)>)]] =", €I
= [lodd(<0, (9)=)]]=", €FUT
= [lodd{<0, (9)>)]]

s=1EF.

On the contrary, according to the arguments discussed in the previous
section, we notice that,

(<1} (<0, 48)}>)]]=" & F

= [[<(1)(<0,49)>)])=",€FuUI
= [[<((<0,-(9)=Nm €l =

Now, let y € ITp,, be arbitrary and [y] be the set of all ground atoms whose
predicate is w. Since the difference between, say, =, and ="} is related only to
exceptional data, as the above simple Example 6-4-3 typically shows, the
difference between = | [y] and =", | [y] also related only to those atoms, of
which (at least one) exceptional datum becomes an argument. From the
arbitraryness of yr, we notice that the difference between [[ ]le, and [[ l=y
concerns only atoms with exceptional data in its argument(s). The same
arguments apply to ([[ ll=g, [[ ll="y) and ({[ 1= [[ 1l=vy), too. Here, the
transformation [[ 1=~ [[ ll="y— [[ Jlsyof value assignment becomes the

Boolean-valued expression of non-monotlonicity.
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Note: Let Q={0€Bp|l{o]l=,+ [[0]l="y}. (Practically, Q becomes finite.) During
steps [1]—[2]—[3], Q works as, so lo speak, oracle. Generally, any atom
concerning A which is B-valued in [1] is checked in [2] by Q Lo possibly change
the B-value in [3]. Thus, Q judge the B-valued revolution

et — e€l
and/or ec] — eflF
as well as stable transfer e¢ F—e€F and e€l—etl. (Consider, for example,
<2(X). For this predicate, we notice e€F—eCF.) In this sense, any B-value

concerning these atomsin [1] becumes neutral once in [2]to be sentenced in [3].

1
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