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Ca-HLEX is a co-operative hierarchical layout problem solver being developed by ICOT as an application
progeam of parallel inference machines; Multi-P5T and PTM. The kernel of co-1ILEX is a hierarchical recursive
concurrent theorem prover for layoul nicknamed HRCTL, Due to its recorsive nature, HRCTL has a size of
O, 0000 lines in KL1; the kemel language of ICOT, Due o its stream-parallel and distributed memory
architectore, D{N‘D-S} time complexity could he attained. Moreover, due 10 the co-nperations among concurrent
processes, abutment of wires hetween circuit modules could be awained. Currently, co-HLEX spawns
CH 10,0000} concurrent processes on 16-PE Mulli-PST illustrating the parallel processing power of the machine,
Prograin maintainability in faces of rapid L51 technology innovations could be enhanced through modularieed
program descrpuons 1n clavsal forms. In this paper, curment status of co-HLEX 15 reported.

1. INTRODUCTEON

The principle of recursion; denving a large complex whole from repeated applications of a few simple rubes, had
bean and will be one of the most useful ideas in problem salving. For us with limited scope of thought, it is a
powerful 1ol 1o save thoughts. We can understand the idea of infinity by way of recursive inductions only [1].
We can use it as a primitive element of computations [2]. Recently, rescarchers in fractal theory point out that
the nature herself adopts the principle [3]. Despite these attractive features, it had been a minority in
programming arts due to its run-time inefficiency and weak representation power. Many real world problems,
which are more or less network (yped, can nol be represented in trees pertinent W the recursion formula.
Important links among problem elements would be neglecied.

This anomaly can be found in LS! layoul problems. Divide-gnd-conguer for a wee typed or heerarchical
circuit is the usual strawcgy, but imporant links among sub-circuits become neglecied. As a rescue, abutment of
sub-circuis; module shapes and wire connection points, should be made [4]. Otherwise, te chip arca becomes
large due o dead spaces.

Parallel logic programiming languages and their processors give a new chance 1o the recursion principle.
Elegant and shorl recursive layoul program can now be processed efficiently, Co-operations among processes in
forms of message passing and automatic suspension can compensate Lhe missed links among sub-problems
gencrated by recursive layoal programs.

LSI layout programs are, as is well known, one of the most complex and large scaled soltwares in our
society. It can become as large as O(10%) steps in FORTRAN. In contrast o the rapid innovation of LSI tech-
nologies, that of software arc very stow, To cope with technological innovations, layout programs are often
rewritten using hoge cost, ume, and programmers’ labour, New programming paradigms e enhance both man-

man and man-machine communications are required by which traditional huge volumed documenis and program



codes could be perished [5], Decade ago, Kowalski and Shapiro pointed out that logic programming can he a
candidate [6, 7].
Through the realization of co-HLEX on Mulu-PS1 and PIM, we hope to prove that logic can be an

atractive journcying vehicle woward the solution of this software crisis in VLSI design automation.

2. BASIC CONCEPTS

2.1. Layout Problem
The original layou problem which co-HLEX solves can be specified by a goal:

r-mode solve_a_layouiproblem{+.-.+.+).
P-golve a lavoutproblemyCirNer LPlan Proc.Constr).

whiere;

CirWer:=A network data denoting circuit modules and module
connection nets.

LPlan =Geomerrical data representing module placements and connection wires among them,

Proc:=LS1 fabrication process on which layoul rules depends,

Conste:=Pairs of modules in placement. The topmost chip layout plan; the planned size of the chip and the
extemal connector placements or pad placements are included.

2.2, Representations of Lavout Plan

The Layourflan in the solve_a_ layowproblemy.. ) can ke various forms depending on the fundamental layout
madel used by the problem solver, In co-HLEX, we adopled the classical quadiree representation proposed by
Samet [9,10], Otten [11], and Luk [12]. Figure 2.1 pives their images,

LPlan:={Plres Wires].

PQtree: =Quadiree representation of rectangular slices, each node of the ree carrving a module rame placed
in it, external connector names placed on the north, west, south, and east edges, ei.

Wires:=[Conns Lines].

Conns:=Set of a list of terminal points, vias, and dummy conneciors of a net. Dummy connector is placed
at each wire crossing point on the edge of the shice.

Lines:=5¢l of lings spanning two conneclors,

2.3. Constrained Recursive Layvout Problem Solving
The slicing structure representation of layouts permits us both elegant and simple recursive formulation of the
problem solver. An elegant but impractical prolog specification of the solver 1s:

solve a layowproblem{CirWet LPlan Proc Constr). -
leaff CirNet) !,
use_library(CirNet Proc LPlan).
solve_a_layoutproblem(CirNed LFPlan Proc,Consir):-
notfleaffCirNer)) !,
generate subproblems{CirNer SonsCirNers Constr),
check_module allocarions{SonsCirNers,Constr),
layoul allfSensCirNets SonsLPlist Proc),
check_shape anmd wire_abuimentSonsLPlisi),
aggregate_subproblems{SonsLP list LPlan).
layeus_alli[].(]._).
layoul_all({HesTes] fHTTs| Proc):-
solve_a_layoutproblem{Hes His Proc),
fayout all{Tes, Tis.Proc),

Z2.4. Problems
* Large computatiom time

The generaie_subproblemsi...) consumes much time in dividing the CirNer into SonsCirNets. The recursion by
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fayoeu: ablf...) arc also time consuming. So, backirackings by either check _module_allocations( ) o
check shape and wire _abutmeni{SorsLPlist) become inadmissible,

+ Large chip area

The check_shape _and wire_aburment(...) lor chip area reduction 15 difficult w be satsfied by a simple
layout_all{...} that lacks the ability of shape- and wire-abutment among sub-Circuits,

Unless these defects are overcome, the specilication has no practical value, however elegant it might be.

2.5. Approaches

= Pre-compilation of circuit net into a8 guadtree

We pre-compile the given Cirder inlo 8 quadiree [9) named CirTree. Modules that should be placed near are

gathered in the lower node of the Cirfree 5o as w suffice the Consir and avold check module allocations(..).

« Vertical coordination of module shapes

The pateat rectangle 15 shiced and sub-cucuits are embed in them by ga'n{'ra:e_a'ubprob!cmsf,,,,I, In

layout_all{.. ), each son tries to obey the slice shape as a guideline or a budgel. So, even if subproblems were

solved in paradlel, they can have nearly abutied shapes.

* Horizontal co-operation in wiring

Wire abutment among processes runming in parallel is an unsolved problem in VLSI layout design aulomauon.

we make the recursive and parallcl specification workable by way of runtime co-operations among processes.,
The dummy connegiors defined before are used as a global mail box among subproblems, AL any ume,

eurrent existence range of the dummy connector is writlen on the mail. The generare_subproblemsi...) reads the

range and tries (o namowed it in view of its inner net profile. The narrowing action is made among [ace-1o-face

modubes in concurrent mode. Round-robin tral is made 1o avoid deadlocks.
3. SPECIFICATIONS OF co-HLEX

An overview of co-HLEX is given in Figure 3.1, The Main componants of
co-HLEX include: a set of original data, I/O functions, a static and a dynamic memory, a problem solving
kernel, and layout primitives. They are delailed in this section, To give both clear and brief specifications,
following GHC-like descniption is used [5].

Head:-Body _guardsBody_poals,
Unless both Head and Body guards succeed, the clawse cannol pass the commit bar; T'. This means that this
clause is suspended and cannol commil o the reduction of the parent goal. For brevity of expressions, we

assume a non-flat GHC; any complex puard-predicates can be used.

3.1, The Goal and Related Terms

* The Goal
P-solve_a_layoutproblem|CirNet LPlan Proc Consir).

* Circuit metwork representation

CirNer:=fMopdules News].
Modules:=[moduleiName, Type ConneciNetList, Commenis)Rests],
Nets:={newName Type, ConnectModuleList) Commenis) Rests].
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+ Constraints and fabrication process representation

Consir:={Nearnesses Toplplan].
Nearnesses:=[constr(Type Level Modules, ConstraintNare )| Rest].
feonsiripairafgol god], pair s (01)]:=An example specification of 1evel-a pair among modules;
gol and g4,
Topl plan = size{Wp Hp} Pad_placemenis).
Pad placements:={confName Range Tvpe Layers,_FProp, WResi].
Frog:=A string, for example: process !0,

- Layout plan representation

LPlan:={Pree Wires].
PQiree:={Shape Properiies SonsP(irees)].
Shape:={X0.. . X3.¥0. . Y3  RX(0. RXIRYD. . RY3]
Xi YURXiRYi:=5licing points in localiglobal coordinate of the chip.
Properes ={circuiy{ CirName Level Statwr ) LFName Area DeadSpace,
AspeciRatio NewList,_].
Level:=hinckiceliiblock_in_celljleaf in_cell
Status =free/fized. % Denotes if the slice has free or fixed layoul.
LEName:=The layoutframe name adopted by this slice.
Netlast:=[[MyName MyFPaiern MyNWSEConnectors MylnnerConneciors]] ],
MyPaiiern:=The wiring pattern name adopled by the net in this slice,
MWWSEConnectors: =External connecior names of the net
MylnnerConnectors:=Inncr connector names of the neL
SonsPQrees:={Lus Lbs Rbs Rusj.
Lug, ewe=Quadwree of the son in the left upper or north west slice, etc.
Wires:={{Connecior] |.[Line/ ]].
Connector:=[Name [NetName Range Type Layers NWSELines,
Props RangeFlagfl.
Range:=[Xfrom Yirom Xio Yie|.
NWSELines:={{NineName Other|f [,
Props =f{NiineWidth NiineLayer|/ |.
RangeFlag ={MyFlag YourFlag].
MyFlaglYourFlag =voidiinspected narrowedfinished.
Line:={MyName [NetName Width Layer SuariContName EndContName Props|]

3.2, Topmost Clause
3.2.1. Global coordinator
Topmost clause: solve a lavouiproblemy...) coordinates the overall layout problem solving steps.

solve_a_lavouwproblem{CirNet LPlan Proc Constr PEz)-true)
prepare_placement(CirNer, CirTree LPlan, Congir),
creaie process_netfCirTree LPlan CNstr LPstr PEs),
place_and route(CNstr LPsir Proc),
remove process_nei{CNsir LPsir CirTree LPlan),
draw _layouw(LPlan).  prepare placement{CirNer, CirTree LPlan Conser):-
% Compile the CirMer into a guadiree; CirTree, so as wo satisfy constraints specified in Constr.
Further, Generate a homologous quadiree skeketon as LPian. Register the chip layout plan in Consir
on LPlan,

create_process_net{Cirlree LPlan CNstr LPsir PEx):-
% Make two hierarchical process networks commesponding o CirTree and LPlan on processors; PEs.
Defline relevant message sreams; CNsor and LPsir.

remove_process_net{CNsir LPsir CirTree LFlan):-
% Remove nets and read oul layout data into LPlan,

draw_layoul(LPlan}:-% Ouput layoul figure on a display.

3.2.2. Placement and routing coordinator
The place_and_route(...} is a topmost clause of the algorithm HRCTL. Afler the module placement by
place_by gtree(...), placement coordinates are transformed into global or world coordinates of the chip by pre-
pare_roufing(...) o make the precise wiring by route by gereef..) possible. To get a good; short wired place-
ment, the plece by giree(...) plans rough wires using many lunctions of rowse_by_gireef...).

place_and rowe{CNstr LPstr Proc):-true/



place by giree{CNsir LPste Proc),

prepare routing(CNstr LPsir),

route by _grree(CNsir LPstr Proc),

repair_layout(CNste LPsir),

proute_by qiree{ CNsir LPstr Frog),
repair_layourf CNyer LPsir):-% Hepar bad wirgs,
prouie_by_giree(CNsir LPstr Proc)-5% Wire power lines.

3.3, Hierarchical Recursive Placement
J3.3.1. Parallel recursive inféerence
The place_by_gireer...) and the route by gureel...) are the kernel clanses of HRCTL. Each of them takes a form

of recursive divide-and-conguer,
The first clause is for void sons of a parent with less than four sons. The second clause is for erminal modules
where a cell, which matches the circuit and the Proc condition, is recalled from a library,

The: third clause applies 1o divisible, block-level modules. After choosing a good slicing wmplate named
layoutframe by choose_a_laveutframe(...), the parent slice is divided into usually four sons by pener-
ate_subproblems(...). Then place_all sons(...) solves them in recursive mode. The aggregate subproblems(...)
gathers sons layouts to form the parent layout. Notice the use of short circuits of Takeuchi [8] 1o spawn four
sons in parallel and detect the overall completion.

place_by_gtree{CNsir LPstr Proc) -void{ CNser ljirue.
place_by qireeiCNsir LPsir Proch-celliCNsir )l
redad_lifwary CNsir LPsir Proc),
place_by qrree{CNsir LPstr Proc)-neifcelli Cnj )
choose_a_layoulframe{CNsir LPser Proc),
wenerate subproblems{CNstr LPstr Proc),
Place all sons(CNstr LPsir Proc),
aggregate subproblemsfCNsir LPsir Proc).
place all_sons{CNxur LPstr Proc) -
pet_streams(sons_streams, CNstr JCNstrel CNstr2 CNstr3 CNsied]L[]).
gel_streams(sons_sireams LPser [LP sied LPsir2 LPste3 LPsted] f 11
place by gireefCNsir] LPsir] Proc EiE1),
place by grree{fCNspr2 LPsir2 Proc Ei E2),
place_by_giree{CNsir3 LPsted Proc.Ei F3),
place_by quree(CNsird LPstrd Proc Fi F4),
Judge _end([EIEZESE) Ea).
get_sireams(sons_ streams CNsie [CNsie] CNsie2 CNsir3 CNseed ] )2
% Gel streams to four processes of sons through the parent stream; CNarr.
Judge end([E] E2E3FE4] En):-El=end E2=end Ei=end Ed=end/Eo=end.

3.3.2. Embedding sub-circuits into slices wsing a layout frame

By choose_a_layoulframe{_..), the parent rectangle is divided into usually four slices and sons are embed onto
them. The parameterized slicing lemplate: lavoutframe, is used as a division tool. All the possible lavoutframes
and embeds are tried,

choose_a_layoutframe(CNsir LPstr Proc) -
get_and pui{parent_ plan LPstr, OpyPlan NmyPlan L Psirl),
gei_and pui(sons _stream LPste] Sonsl Psir] SonsLPsir2 L Psir2),
getisons nets, CNser SonsNers, [T
separate_nets(LPsird WWSEnets),
iry_all_layoutframesiNWSEneis OmyPlan SonsLPsirl SonsNets, Triedsir),
find_a_best_lavoutframe(Triedstr NmyPlan SonsLPser2).
get_and_pui{pareni_plan LPstr (myPlan NemyPlan LPsir] ) -
% Get the parent planned layout OmyPlan via the LPsir stream and put a new plan NmyFlan insicad.
Prepare a tail stream for later use.
gei_and_put(sons_stream LPsir SonsLPsird Sonsl Pstr2 LPsr] ):-
%o Gel a stream SonsLPsirl to the LPlan-processes of sons via LPsir,
Put a new stream; SonsLPser2 and prepare a tail; LPserl, for later use.
separate nets{LPsir] NWSEnets):-
7



5% Separate the parent net into north, west, south, and east ones,
iry all layoutframes{ NWSEneis OmyP lun SonsLPsir ] SonsNeis Triedsir):-
% Gencrates a list of all the possible combinations; Candser, of usable layouiframes and sons circuit
embed permutations, then all the candidates are tricd w give simulated layouts.
find a_best_layoutframe( Triedsir NmyPlan SenslPsird ) -
~ & The best layout-frame and relevant embed plan is chosen as Nmyllan,

3.3.3, Generation of dummy connectors around swvh-circuoits

By using the chosen layoutframe and the relevant sons embed into slices, the iner-sons rough wires are planned
by plan_wirings(...) to introduce dummy connectors on each crossing point of wircs and inner ¢dges of the slice.
They are descended to sons by propagate_plans(...) as their external connectors. Now, each son has a planned
lavout homologous 1o the patent's, they can be solved recursively.

generate_subproblems{CNstr LPstr Proc, j:-true!
prepare_penerate subf CNxir LPsr Needist),
plan_wirings{LPstr Netslest Newslasol Procy,
propagate_plans{LPsir NetsLivil ),
prepare_generaie_sub{ CNstr LPsir NetsLisi) -
% Gather external and internal net names 10 form Newslist,
propagate planstLPsir NetsLisid .-
% Dummy conneclors are descended o sons as their exiernal conneclors.

= Wiring nets

The plan wirings(...} first estimates winng capacity of all the edges of the slice as well as the via-placement
capacity of cach slice. The result 85 memorized in a vector form by a process having a message stream;
GoalVecsir,

plan_wirings{LPyir NeisList AnsNewsLisi Proc):-
gedpatent_vhape LP sir Shope LPyirl ),
peiflayeugrame LPste] LFName LPsir2 ),
perfcircuit name LPsird CName LPsird )
planframeiLFName. generate_goal vector LPsirf GoalVecstr,
InitVecsir fritCostste Proc),
pengrale_wiring_manager{Netgstr),
wire_all_nets{CName NetsList Netssir Shape LFName GoalVecsir,
InitVecsre dnitCosrser AnsNeesList),
Leneraie_wiring manager(Netssir) -
% Generate a wiring manager 10 command the wiring activities performed by wire_all_nets(.. ).

The were_all_nmees{...) Drst examines the profile of the internal connectors of the net, fTaNerProfile, by
gel_inner nel profilef...). Then streams to external connectors of the net is gathered by get pericont sireamy’...|
to form the NWSEgonisser, Then the process; wire a net(... )15 called 1o make the wire for the net,

wire all netsi JjNetssie, | (GVsrr SWsie JCsor AnsNersLise):-iruef
close( [Newssir GVsir IV sir JCsir AnsNetsLisef ),
wire_all_nets(CName [Net/Rest] Netssir Shape LFName, GVitr [Vstr,
ICsir AnsNetsList)-truef
Netsstr={NetstrfTaill ],
AnsNetsLisi={AnsNedTailZ],
gei_inner_net_profilefNet InNetProfile),
ger_pericont_stream{Net NWSEconissir),
wire_a_ned{CName Neisir Net InNetPrafile NWSEconissir Shape,
LFEName GVatr [Vsir JCsir AnsNet),
wire_all_nets{CName Rest, Taill Shape LEName GVisir IWWair [Cstr Taill).

The wire_a ner(...) finds a pood spanning pattern that can connect all the inner connectors of the net being
wired. At first, each external connector of the net is pulled into an appropriate slice and appended with original
inner connectors. Then inter-glice wires are made using route-patiems among these CONNECLOrs.

Receiving the message; finished, the first clause retumns the wiring result as AnsVer, For narrow, the
secomd and the third clause applies.



The third, for non-wirable cases due to the incomplete feed-through; defined as a net having neither inner
net and pulled-in exiernal connectors, The renew_cont_rangeflag(...) scis all the range-flags of the external
conneclors (o inspected releasing the pull-in actions of neighboring modules. At the same ume the answer 1o
the wire-manager(...} is sel a5 inspected 10 get a next retry command; rarrow , from it

The second clause is for wirable cases. After external conneciors of a nel are pulled-in, the
find a good_route pattern{...) chooses a good route patiern 10 connect them. At crossing points of the patiern
and the slice cdges, dummy connectors are introduced.

wire a nei{ [ffinished] Net, NWSEConsstr,_._(Vstr IVstr JCsir AnsNe):-irue)
AnsNer=Net closel [NWSECanisstr GVstr [Watr J1Cstef).
wire_a_netiCName,[{narrow.Ans]/TailMes] Net InNetProfile,
NWSEContsstr Shape LEName GVsir IVsir fCsir AnsNei ) -
get_and_puticons_range flag NWSEContssir NWSEConts NWSEConisstr] ),
wail nﬂgkbaurs action{ CName NWSEConts),
orfexist_inner neninNeiPrafile) wirable_feed-through{ NW, SEConts)y
renew_cont range flaginarrowed NWSEConis),
get_and_put{vector GVr GV ,GVsird ).,
get_and_putivector IVstr IV NewlVIVsirl ),
get_and putfvecior fCsir JC NewlC TCxirl ),
pi‘dr!frameFHarrw,ger_n::uIe_jmi!zr:u‘,ﬁpatmrnﬂ,
pull in_cornectors (NWEEConts Shape [TaNetProfile JVICH
NewProfileVec),
find a good rowte patern{RFaierns NewProfileVec GV,
NewlV NewlC £ Parnern NewDummyConts),
add_crassing points_on_netdatalNet NewDummyConts RPanern Newhey),
Ans=finished,
wire_a_net(CName, TailMess NewNerInNeiProfile NWSEConssirl
Shape LEName GUstel IVserd ICstr] AnsNet).
wire_a_nel{CName [{narrow Ans]iTailMes| Net InNetProfile,
NWSEContssir Shape l FiName GVsir SVsir FOsir Ansiet) -
otherwive,
zet_and_puticont_range flag NWSEContsstr NWSEConis NWSEConissird )f
renew_coni_rangeflapiingpected NWSEConts),
sel_old_range{iNWSEConis),
Ans=inspected,
wire_a_neif CName TailMes Net InNetPrafile NWSEContssirl Shape,
LFName GVstr Vst ACstr AnsNet),
gel_and_put{coni_range_flag ParentBlock NWSEConzssir,
NWSEConis NWSEContsstrl j:-
% Get current range and the range-flags of all the exiernal connectors of a net throngh the siream;
NWISEContsstr as NWSEConts.
wail_neighbours action/CName NWIEConis).:-
% Wair until some neighbour module performes a pull-in action.
find a_good route_patern(RPatterns NewFrafileVec GV,
NewlV NewlC RPartern NewDummyConis).-
& Chonse a hest candidate wiring pattern that can span inner connectors of the parent as KFaifern.
Relevant new dummy connectors, induced on the crossing points of the chosen pattern and slice
borders, are retumed as NewDurwmyConis, The NewlV and NewlC denotes the renewed resource
consumption vector and the resource usage cost, respectively.

The wiralle feed-throughi...) goards the second clause of wire_a_nei(..). It can succeed if cither
i can pull inf...) or i should pull_ind...) succeeds. The farmer can succeed afier all neighboring modules have
performed pull-in actions for extemal connectors, 1.¢. if all "your” flags; Nyf, Wyl Syf, and Eyf sullice the
all are members(...) condition. The latter can succeed if all the connectors, which "1" have abandoncd w pull-in
befare, are also abandoned by "you". This fact can be delected by checking if all the conneciors "I have
abandoned before have been inspected by "you™,

wirable_feed-throughiNWSEConis).-
get_pullin flags(NWSEConts NWSEflags),
orfi_can_pull infNWSEflags), i should pull intNWSEflags)lirue.

9



i can_pull in({{Nmf Ny} (Wmf Wyf} [Smf.Syf} {Emf.EYf}]):-
aI.l'_are_mambgrsm\"yﬁH’;.f,S}g".E}}‘?,{Wﬁdﬁm}wdmrmhfd}mme.
i_should_puli_infNWSEflugs):-
flags i have delayed before(NWSEflags Delayedflags).
you_have_tried all{Delayedflags)irus.
you_have_tried all{Delayedflags):-
all_are_unifirable({ _inspected} Delayedflays jirue.

External connectors are pulled into some slices and appended with inner connectors by pull_in connectors{...).
The first clause retums the appended inner connector profile; AnsinNeiProfile. The second clause pulls-in 4 con-

neclor with an already reduced existence range; ORange. The pulled-in connector is appended to current

InNetProfile defining a NewlnNetProfile.
The third applies to ambiguous cases when OHRange has overlaps with two slice borders. The

possible_pull_in_slices{...) examine all the candidate shoes as PSiices. Then the PossiblefnNetProfiles; the list
of all the candidate appended inner net profiles, is generated by pessible_innet_profiles(...).

pull_in_connectorst]]. InaNetFrofile AnslnNetProfile ) -irue
AnslnNetPrafile=InNeiProfile.
pull_in_connectors([{{(ORange NRange] RFlag Layer]iResi| Shape,
InMetProfile AnsinNetProfile):-
have narrow_range{ORange Shape),
determine_pull_in_glice(ORange Shape Slice NRange)f
renew_innel_profile(inNeiProfile Slice Layer NewinNetProfile),
pull in connectors(Rest.Shape NewlnNeiProfile AnsinNetProfile).
puil_in_connectors(|{{ORange NRange} RFlag Layer]iResi] Shape,
InNetProfile AnsinNetProfile) .-
not{have narrow_ranpeORange Shape)),
possible_pull in slicesiORange. Shape Pilices)/
possthle inner profiles{{{ORange NRange] RFlag Layer},
{nNetPrafile Pilices, PossibielnNetProfiles),
pull_in_connectors(Res! Shape PossibleInNetPrafiles AnsinNetProfile).

A3.4. Agprepate soms realized layouts

The layout-frame specific planframer...) is used w aggregate sons finished layouls into a realized layout of the
parent, RealShape. 1f the planned layoutframe name; PlanLFName happened to become inappropriate due to the
gap between the plan and the realization, it is changed 0 a new RealLFName. All the dummy connectors intro
duced before are thrown away as they become obsolcle,

ugpregate_subproblems{CNstr P str Proc):-
get and put{shape LPsir PlanShape RealShape LPsir]),
pet_and_purilavousframe LPsir] PlanLFName ReallFName LPsir2),
pet(sons_shapes LPstrd SonsShapes,[])f
planframe(Planl FName aggregate_sons_shapes PlanShape,
SonsShapesRealShape),
renew_ifname(Planl.FName RealShape RealLFNume ).

3.4, Hierarchical Recursive Wiring

3.4.1. Wiring preparation

The local coordinates used by slices thus far are transformed into a global or werld coordinate to avond repeated
transformations of the existence ranges of pulled-in connectors, performed by slices having mutually different
local coordinates. The [13,0) denotes the global origin: the north west comer of the chip.

prepare_routing{ CNsir LPsir) - truef
pet_topmost_plan(LPstr TopShape ExternalConneciors),
generate_global placement{ {00} TopShape LPstv),
set_topmost_plani LPsir TopShape ExternalConnectors),

3.4.2. Precise wiring



+ Recursive inference for wiring
Precise wiring is made by reute_by_giree(...). Tt has a recursive structure similar to place by gqireef...). The

generate subproblems|...) used before is reused. However, the choose_a_layoutframe(...) is skipped as place-
ments are already given. The recursion continues untill the indivisible slice, named leaf in_cell, 1s reachcd.

The first clause is the terminal case where only one nct can appear in the slice. The
generare subproblemsi...} first sets all the range flags of external conneciors as finished, w release pull-in
actions of neighboring slices, then chooses a wiring pattern that can span these external connectors. The sccond

clause perfonmes recursions.

route_by qree{CNstr LPsir Proc) -true|
gercircuit_properiy LPsir fevelfleaf in_cell) LPsird ),
generate_subproblems(CNsr LPsird Proc),
route_a_leaf in cell{CNsir LPstrd Proc).
route_by_gtree{ CNstr LPstr Proc -
getfcircuit_properry LPsir Level LFgrl ),
orfLevel =leveliblock) Level=leveliblock in cell})
generate_subproblems(CNstr LPsir ]l Proc),
route_all sons{CNsir LPsir] Proc),
aggregare_routesf CNste LPsird Proc),
route_all_sons{CNsir LPsir Proc):-
gel_sireams{sons_stream CNsir fCNsir T CNstr2 CNstr3 CNsied L[ 1),
get streamsisons_siream LPstr [LPstr] LPstr2 LPstr3 LPserd] [ 1)
route by qiree{CNsird LPstrl Proc EiEl),
route by giree(CNstr2 LPste Proc ELE2),
rouwe by giree{CNsir3 LPstr3 Proc ELES),
route_by_qiree{ CNsird LPstrd Proc,F£4,Fo),
Judge end([E] E2E3FE4] Eo).

« Line sepment geneéeration in leafl slices
First, the NetLise containing external connector placement plans are read out. Then lines are gencrated among
them,

rouwte a leaf in cellfCNyir LPyir Proc).-
et and puifnerlise LPsor Nedlase (1))
penerate lines(Netlist.Proc).

Ling are generated by generare lnex(... ). The first argument 15 an input list of nets made by
generate_subproblems(... ). A net data includes; a net name; Ner, a route pattern adopted; RPasern, and streams
to both four external- and one intornal-connectors; NCstr,. JCstr, By gel_and_pui{ .. ) a line skeleton;
LineSkeleton, which spans external connectors are read out and send to make_lines(...). The make_fine(...) that
unifies wilh the given BPattern and the LineSkeleton pencrates Reallines.

generale_linesi[], ):-trueftrue.
generate_lines({{Net R Pattern NCste, WCstr SCstr ECstr ICstr}{Rest] Proc):-
get_and puliconi_data [NCsir WCsir SCsir ECsir{ICstr],
LineSkeleton RealLines AlConissir)f
make_linesiRPattern LineSkeleton RealLines AllCantssir Net Froc),
generare linesiResi Froc),
make_lines(RPauern.LineSkeleton Reallines AllContssir NetFroc):-
& Gienerate line segments data among connectors and
creatz line processes.

A.5. Libraries

3.5.1. Plan frames
Template dependent problem solving clauses are gathered 1o form a library named planframes to cnhance the
maintainahility of co-HLEX. A few representatives will be shown here.



* Shape evaluation

planframe(LFName evaluate_shape OmyPlan.SonsPlace,
NemyPlan NSonsFlace NDeadsp NAspect) -
% Determine slicing point parameters; Nmyllan so as 1o suffice sons area constraints under the given
parent’s planned layout. Estimated dead space and aspect ratio are reported as NDeadsp amnd NAspect,

« Wiring evaluation

planframe(LF Name evaluate wires NWSEnets SonsPlace XwCost, YwiCosi) -
Fo Given External nets; NWSEneis and sons placement in four slices, the number of feed-through-
wires in horizomal and venical directions are estimated as XwCost and ¥wCost, respectively,

* Wiring respurce vector generation

planframe{LFName generate_poal vector LPsir,
GoalVecstr InitVecsie InitCostsir Ei Eo ) -
% Generate a wiring resource vector, GoalVector for a parent
layoul slice under the given slicing parameters, usable layers,
conneclor width, and inter-connector distance.

« Connector distribution

planframel LFName distribute connectors WirePlan,
Luwp Lbwp Rbwp Ruwp):-
% The dummy connectors o a parent layout are delivered to
relevant sons as their external conneciors. Each connector has a
message stream that will be used in pull-in co-operations,

* Aggregation of sons layouts

planlrame(LFName aggregate_sons_shapes PShape,
[{LuW LuH},[LbW LbH} [RbW RbH},{RuW RuH | | RShape):-
% Realized shapes; (LuW LuM], . [RuW RuH]}, of four song are

aggregated 1o form a parent shape in R Shape.
« Layout template retrieval
Various layoutframe-specific templates required in layout tasks are retricved by planframey...). Here are two
examples,

planframe(LFName gei route_parterns RowteParterns) -trus|
layouwiframe(LFName,_, . RoutePanerns, , ., ).

planframe(LEName tree_skeketon TreeSkeleton) -true/
lavoutframe(LFName, |, ., . . . TreeSkeleton, ).

3.5.2, Layout frames
Layoutframes are definitions of both geometnical and electrical properties of technology dependent layout
primitives. The LFName is the retrieval key,

layoutframe(l.FName Blocks Conneciors.Lines RouteParterns,
RowteVecior Obgtacles TreeSkeleton, Others).-
% Deline 8 module named LFName in forms of Blocks, Connectors, and Lines. RoutePartern is the
usable route patterns. RouteVector is the wiring resource vector template. Obstacles give wiring
obstacles, TreeSkeleton is the quadiree slicing of the layoutframe.

353, Layoutl rules

The followings are a few example layout rules currently held in co-HLEX. Most of them are specific to
bipolar analog devices,

* Usable wiring layers

layout_rule(usable_layers process](X) Layers):-truef
Layers={layer(1) layer(2) layer{3)].

+ Distances among ohjects

layout_rule{min_line_width process]00.signal, |, Width, , ):-true/Width=4.
layour_rule{min_line distance processi00,_, signal signal Dist):-trueiDisi=4.
layour ruleihalf iso widthprocessI00, , Widih):-rrue/Width=4.

]"? —
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+ Connectors

layoul rulefconnector params process100 Layers pad Holes Pads) -
trueiHoles={ | Pady={pad{iaveri] .66},

layour rulefconnecior paramy process! (K Lavers throughole Holes, Pads):-

true/Holes={ | Pads={padilaver(1 ) H.0)].

* Transistors
The planer structure of a simple npn transistor 5 defined by a collector, a base, and an emitier diffusion

recingles as well as relevant contacis,

layoui_ruleftr parameter processi (0 npn simple_tr Diffusions,

Contacts)-true/

Dyffusions={diff{ collector.n_diffrect(0.0.24.48), ),
diffibase.p diffreci4.16,14.28). ),
difffemirter.n_diff recti 7.33,8.8), ),

Contacts={cont{collecior typel center{12,7) 1 1| padilaver{1)6.6), ),
cont{base typeld wenter(12 23).( | | padilaver(1)66), ),
coni{emitter fypel center{12 37) [ [pad(layer(1)66), ).

+ Resistors
The planer structure of a simple base-diffusion-resistor is defined by components; a resistor rectangle on
diffusion layer and two contacts for anode and cathode.

layour_rule{res_parameter processii base_res simple_res,
Diffusions Contacts):-truef
Diffusions={diff{base p_diffrect0,0.848), )],
Contacis=[coni{ancde {rormal typel ] center(d 4).(] Ipadilaveri1) 6,6)], ),
cont{cathode {normal rypel | center(d 44) | [padilayer{1) 5.6)], ).

3.6. Load Balancing
= Creativn of tree processes
The static CirTree and LPlun are compiled into disributed process networks by the following program:

create_process_net{CirTree LPlun CNstr LPstr PEs):-trug)
LFian={FluceTree Wires], Wires=[Conneciors, |,
create_giree_net/Cirlree PlaceTree CNstr LPsir PEs),
create_wirene{ Connectors LPstr),

create_wirenet{ Connectors LPgr) -
% Create process network representing ling segments of wires,

The creare qiree nerf...) generates data processes for circuit and layout data. CNsir and LPsir are message
strcams to them, respectively. The first clause divides a cell into a quadtree using the cell's layoutframe-specific
TreeSkeleton. The second one 18 for terminal nodes where process generations are stopped and strcams arc
closed. The third one is for other cases where circuit- and placement-processes are generaicd. Message streams to
sons are also taken out as SoasCNsir, elc. Then sons of the tree node are recursively processed by

create_all_sonst.. ).

create_giree_net(Cirlree PlaceTree CNstr LPstr PEs) -
perfcirewdt data CirTree CircweData ),
getiplace_data PlaceTree PlaceData),
gellcircust_property PlaceData develicell)).
pelflayoutrame PlaceData LFName )
planframe{LFName tree_skeketon TreeSkeleton),
generate_local_giree(1reeSkeleton PlaceData L Qtreel ),
generate_local_ctree(TreaSkeleton, CircuitData, LCireel ),
create_qgiree_ner[.Crreel LOwreel CNsir LPsir PE5),

J:r‘edir?_qtrfe_mfrf irlree PlaceTree CNsir LPsir PEs):-
terminal{CirTres ) closed| CNsir LPsir] ).

create_qiree_nel(CirTree PlaceTree CNsir LP str PEs) -



otherwise/

peifcircudl data CirTree, CircuitData),

getploce daaFPlaceTree PlaceDataj,
create_circuil_processes(CircuitData, CNstr SonsCNsir),
create_place_processes(PlaceDaia LPsir SonsLPsir),
create_all_sons( CirTree PlaceTree SonsCNstr SonzL.Pstr FEs).

Four sons are forked on processors, LuPE, LbPE, RAPE and Rul'll defined by assign processori..). The
Goal@processor(PEaddr) notifies that the Goal should be spawned on the processor; PEaddr.

CFeare ah'_mn.rfCirTr.eefhuTrEﬂﬁnanNm.’iﬂnﬂLP.ﬁr.ﬁEJ}:-rrmf

SonsCNstr={ LuCNser LBCNsir RBCNser RuCNsir],

Sonsl Psir=]Lul Pstr LbLPsir RBLPsre Rul Prtrf,

petfsonsCirTrees, CirTree (Scil Sci Sced Scid] ),

pet(sonsPlacelrees PlaceTree {Sptl Spi2 Spi3 Spid]),

getfsons_areas Placelree SonsAreas),

assign_processors{PEs SonsAreas ([LuPEs LOPEs RBPEs RuPEs],
[LuPE LBPE RBPE RuPE]},

create_gtree_netSctl Spil LuCNstr Lul.Psir LuPEs ELE] )
@processor{LuPE),

create giree_met{Sci2 Spid LNt L0 Pate L 0PEs FiE2 )
{@processorfLbPE}),

create_giree net(Seid Sped RBCNsir RbLPstr RBPEs Ei E3)
{@processor{REPE),

create giree_net 5o Spid RuCNyir Rul Psir RuPEs Ei F4)
@processor{KuPE}),

Judge end{{E] E2 E3E4] Ea),

* Assignment of created processes on PEs

The gssign processor(,..) divides the available processor sel; PEs of the patent into at most four subsets on
accordance with task volumes of sons, The chip area is used as a task volume approximaton, One of the
clement is chosen from the subsct o form a list; SeasPEs on which sons are spawned, Alter the processor sel
FPEs become indivisible, the current processor; CPE of the patent 1s used by all sons.

m‘ign_pragesmr:{FEsj{;m‘Arem.SE)HSF.EI.SGHJCHFYEHIPERJ.'-
area_raiof SonsAreas SonsAreaRaniolist)
divide pes{ Pl SonsAreaRatioLlist SonsPEs),
current_pe(CPE),
define_sons_current_pe(CPE SonsPEs SonsCurreniPEs).
define_sons_current_pe{CPE [{PE/ | f].01.1]] (SPE]I SPE2SPE3 SPE4] ) truef
SPEI=FE SPE2=CPESPEI=CPESPE4=CPE,
define_sons_curvent pe{CPE[{PEIf | [PE2( ][]0} [SPE]I SPE2SPE3ISPE4]) -true
SPEI=PE] SPE2=PEZ SPEI=CPE SPE4=CPE.

4. ANALYSES OF HRCTL

4.1. Layout Capability of HRCTL

« Definitions.

Let PrIBPT(R M) denotes @ layout problem in the form of a balanced tree of height N having R sons at each
node.

* Suppositions,

The placement and the royting problem can be represented by PrBPT(4 N} and PrBPT{4 M), respectively. The
former terminates in a cell but the latler terminates in a leaf in_cell which is an indivisible slice in a cell. In
other words, M>N and the differcnee M-N comes from the introduction of a local guadiree; PrBFT(4 M-N+1}. in
each cell for precise wiring.

+ Theorem 1.
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HECTL can solve the placement problem for PrEFT{4,N).

= Proof,

For N=12, the first two clanses of place by qiree(...) solves the PrBPT(4 N). Suppose PrBPT(4.N) can be
solved, Then PrBPT{4 N+1) can be solved thus. The third clause of place_and rowe(...) divides il into four
PrBET(4 N)s by gencrate_subproblems(...). Then place_all_sons(...) tries 1o solve them. But they are solvable
by the assumption, Finally, aggregate_subproblems(...) gathers these sub-solutions 10 form the solution for
FrBPT(4,N+1). QED.

« Theorem 21,

HRCTL can solve the routing problem lor PrBPT4 M),

* Proof.

Through similar inductions using roue by gereef... ) clauses, QED.

+ Dviscussions.

Only logical features of HRCTL were analyzed. Behavioral features such as non-deadlock termination of

parallel eo-operate placement and wiring were avoided.

4.2, Computational Complexity of HRCTL
+» Definitions.

Le1 PrBPT{R.N) denotes a layout problem as above. Let leaf(PrBPT{R N)) denotes the number of leal nodes of
PrBPT(R M), Let no{PEs) denotes the number of parallel processing elements on which the problem

PrBPT(R N) is solved by the HRCTL algorithm.

= Suppositions.

All the nodes of PrBPTIR,N) consume the same computation power. Instantanecus commuticalion among
processes iy possible without any computation load. The wtal elapsed time of processing on one PE is
proportional o ils wtal computation load.

* Theorem 3.

For PrBFT HRCTL has the time complexity of either

Olog(leaf{PrBPT(R N1 or O{log(no(PE) }+leaf(PrRPT(R, N)¥no(PE)). The latter is the usual case where large
problem is solved on limited PEs,

* Proof.

Cascl. no(PE) >=lealiPrBPT{R N}): The president PE is the neck processor which receives the topmaost node of
PrBPT(RN). Ii processes maximum pumber of nodes among PEs. The maximum number is
log(leaf(PrBPT(RN))).

Case2, no{PE) =< leaf{PrBPT{R N)): The president PE is also the neck processor. Until the depth of
log(no(PE)) is reached on PrBPT(R.N), cusel applies. Afier it, each PE is obliged 1o solve all the unsolved
nodes in pseudo parallel mode, Here, the number of unsolved nodes is leaf{PrBPT(R,N)no(PE}. As the
president PE faccs the two siluations sequentially, they should be added to give the log(no(PE)) +
leafiPrBPT{R.NY)/mo(PE} complexity. QED,

5. SYSTEM DEVELOPMENT AND LAYOUT EXPERIMENTS



5.1. System Development

- Environment

Mulii-P5] system with 16 PEs { Processor Elements in 4 by 4 array, each PE has 12 MW memory } is uscd.

* Program development

The KL1 { Kerne! Language 1 ) was used in the implementation. Due 1o the recursive natwre of HRCTL,
program size of about 6,000 lines could be attained at present (4,500 for HRCTL, 1,500 for 1O ). So far,
research prionty has been placed mainly on parallelism and concurmency rather than high guality but domain-
specilic layoul generalion.

= Memory architectures

Two versions of co-HLEX has been developed; co-HLEX<v.1> and co-HLEX<v.2>, Each adopts a
shared- and a distributed-memory archileciure, respectvely,

5.2. Experiment Design

* Main objectives

The main objectives of the experiment are the verifications of;

OFE1. Parallel placement capability.

QOFE2. Both wire length and chip area reduction by vertical courdination.

OFE3. Parallel co-operative wiring capability.

OE4. The performance dependency on the memory architeciure,

+ Circuit

Simple hipolar analog circoit shown in Figure 5.1 ( see N.W. part ) is wsed, 11 s an analog amplifier having 16
modules; 8 npn transistors and § resistors. The 2 inpot-, 2 output-, 1 vec-, and 1 god-connector are extemal
connectors. All the B regisiers are wransformed into equivalent parallel resistors 1o align their shapes with these
of the transistors. Thus, the modified circuit become w have 24 modules,

+ Shortcuts

In respect of the system development policy mentioned above, varions shortcuts are made, Module shapes are
aligned by changing device parameters. Exact pair formation, device isolation, wiring layers, power cable
treatments and exact layout rules are postponed for later considerations.

« Data peneration

Circuit quadiree is made manually. Part of the quadiree representations is shown in Figure 5.1.0 5.W. part ) Puir
conditions for transistors q1, q2 forming a differential amplifier, etc. are taken into consideration in this sk,

An automatic quadmree explosion program is developed to generate large quadirees from the 24-moduled sced.

5.3. Experiment Results and Observations

+ Results

The topmost chip layout plan is displayed in Figure 5.1.( N.E. part } with the penerated layout figure | S.E,
part ). Figure 5.2 shows a layout for 384 modules. Figure 5.3 shows performance curves of the two co-HLEX
VErsions,

« (verall performances

Both parallel placement and parallel wiring are realized by co-HLEX. The co-HLEX 21> {mled 1o solve
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mare than 400 module circuil.

We suppose the Neumann's Bottleneck on the message: stream; connecting parallel processes and a shared
memory, might be the cause. The co-HLEX<2> remarkably outperformed the former. It has o time
complexity of O(NO) an 16 PEs in the experimented range. This illustrates the power of the streamed-parallel
and distributed-memory architecture. For the 3,000 module circuit, it ook 600 sco 1o generate a layout. In this
case nearly 50,000 parallel processes are estimated (o be running on 16 PEs.

« Quality of placement

For the cxperimental circuit with aligned shaped modules, dead space free layouts could be gencrated. This
illustrates the arca compaction capability of co-HLEX whenever possible. Morcover, modules are placed so as
i shorten wires among them.

= (uality of wiring

Useless wire bends could be avoided dug to the runtime wire abutments among processes. Uscless channels can
e reducedd and overall chip area could be reduced.

+ Solving an unsolved problem

As far as we know, co-HLEX is the first system adopting the hierarchical divide-and-conquer that can abul
wires among dividends by co-operations,

= Program size

The 6,000 lined co-HLEX remarkably outperfonms the O{10%)-0(105) sized traditional implementations.

= Ease of program maintenance

Memory architecture modification of the program Guough introductions of distributed data processes and relevant
streams was easy. This is mainly dug to the inherent distributed nature of KL1 and co-TILEX.

6. CONCLUSIONS

6.1. Results

« A co-operative hicrurchical layout problem solver named co-HLEX is proposed. Specification of co-HLEX
was given using GHC-like formalism.

= The kemel algorithm of co-HLEX is HRCTL which is a hierarchical recursive concurrent theorem prover
for layoul. The missed links among subproblems due 10 hierarchical problem divisions are recovered by runtime
[rocess co-operations.

+ The unsolved problem of module shape and wiring connector abutment among parallel processes could be
solved by co-HLEX.

« co-HLEX was implemented on ICOT's parallel inference machine; Multi-PSL. Due 1o the recursive nature of
HRCTL, current program size is nearly 6,000 Lines in KI.1 (4,500 for HRCTL, 1,500 for 1Oy which
remarkably outperforms the traditional ((10%)-0(10%) sized implementations.

+ The co-HLEX implemecniation in sircamed-paralie]l and distributed-memory architeclure currently atiaines
O(N®#) performance on 16 PEs. For experimental circuit with 3,000 modules, it ok 6K} sec w gencralc a
layout. In this case nearly 50,000 parallel processes are running on 16PEs.

6.2, Next Targets



» Functional enhancements of co-HLEX are requircd for good layoul generation,
« Large scale problem solving should be tried on Multi-PS1 with more PEs and finally on PIM.
- Program maintainability should be illustrated through applications of eo-HLEX to various devices and
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