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Abstract

This paper presents a unified framework for analyzing Prolog programs. The framework is
based on OLDT resolution, a top-down Prolog interpreter with memo-ization. A run-time
property of Prolog goals can be analyzed by executing the goals using an interpreter that is
ohtained by abstracting OLDT resclution according to the property. Due to the character
of OLDT resolution, the execution neither enters a non-terminating computation loop nor
wastes time working on goals irrelevant to the given top-level goals. In addition, the behavior
of the abstract interpreter is very close to the way human programmers usually analyze the
property in their mind. The correctness and termination of the absiracl interpreter are

discussed as well.
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1 Introduction

{1} What Is Abstract Interpretation?

Autematic analysis of the run-time properties of programs [rom their texts is wselul
not only for human programmers to find program bngs but alse for meta-processing sys-
tems o manipulate programs effectively, For example, the information of data types some-
times plays an impoertant role in the verification of Prolog programs [11]. The information
of the furm of Prolog goals appearing in their successful execution enables us to eliminate
unnecessary backtracking from the Prolog execation [20]. The information of modes pro-
vides the Prolog compiler with a chance of generating optimized codes [18]. Besides these
praperties, the funetionality and the termination properties are of special importance [13,14].

But, why can we analyze such run-time properties of programs without ezecuting them?
The answer of the abstract interpretation approach is that we can analyze such properties
by approrimately executing them in greater or lesser degree [4,5,10]. The framework of the
abstract interpretation appreach can be depicted schematically as below:

standard interpreter abstract interpreter
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Figure 1: General ldea of the Abstract Interpretation Approach

The Beft half of the figure shows the standard domain of data to which the usual execution
ithe standard interpretation) is applied. while the right half shows the abstract domain for
which some approximate execution (the abstract interpretation) is defined. The abstract
interpretation approach executes programs in the abstract domain to extract useful informa-

tion about the execution in the standard domain by utilizing the correspondence between
the standard and abstract domains,

For example, let the standard domain and the standard interpretation be the set of
integers and the multiplication of integers, and let the abstract domain and the abstract
interpretation be the set of signs {+,0, -} and the multiplication of signs as below:

multiplication of integers multiplication of signs

.-".J-'_._
the set of integers

{...,-2,-1,0,1,2,...}

the set of signs
{+.0,-}
‘-\-‘_‘-|_

g

Figure 2: A Simple Example of Abstract Interpretation

Then, without exactly calenlating the result +221, we can know that (—13) = (—17) is
positive by abstracting the signs of the multiplicand and multiplier and by conducting the
multiplication of signs (=) x (=)= (4).

Though the above example is trivial, it gives ns some idea of the abstract interpretation
approach. Then, how is the abstract interpretation approach applied to Prolog programs?



(2) How Do Human Programmers Analyze Programs?

Before considering the framework for the abstract interpretation of Prolog programs, let’s
first reflect on how we usually analyze Prolog programs in our mind? Suppose that we are
asked: “When the execution of reverse{Lg, Ny} succeeds, to what data types of terms are
variahles Lo and Ny instantiated? Here, following the syntax of DEC-10 Prolog, “reverse”
is defined as below:

reversef[ 1,[ 1).

reverse([XIL],M) :- reverse(L,N), append(N,{X1.M).

append ([ 1,K,E).

append ([Y|¥] ,K, [¥Y|M]) :- append(N,K,M).

Human programmers can easily answer the question after examining the program for a while,
although they might not be precisely conscious of how they have reached the answer. Prob-
ably, they have done as follows:

1. 1f the first clause of “reverse” is used first when the execution of reverse( Lo, No) suc-
ceeds, Ly and Np are instantiated to [ ], hence Lg and Np are lists.

2. If the second clause of “reverse” is used first, Ly is instantiated to [X|L;], and Ny to
M, hence we need to answer Lhe guestion: “When the execution of reverse{ Ly, Ny),
append{ N1, [X1], M1) succeeds, to what data types of terms are [X|L,] and M, instan-
tiated?”

3. Mow, we first need to answer the guestion: “When the exccution of reverse(Ly, Ny}
succeeds, to what data type of term are £y and ¥y irstantiated?™ Because this question
is identical to the original one, we wonld have to think forever if we repeated the same
process. However, we usually proceed as follows. As far as we know so far, L and N
ate lists when the execution of reverse( L, N} succeeds. Let's temporarily assnme such.

4 Then we need to answer the question: “When N, is a list and the execution of
append{ Ny, [X1], M) succeeds, to what data types of terms are Ny, X, and M,
instantiated?” If the first clause of “append” is used first when the execution of
append{ N1,[X,], M1) succeeds, N; is instantiated to [ ], X1 to Xa, and M, to [X2],
hience N is a list, X; may be any term, and My is a list.

5. Il the second clause of “append” is used first, N\ is instantiated to [¥a| N3], Xy to X,
and M, to [¥3|M;], hence we need 1o answer the question: “When &; is a list and the
execution of append( Ns,[X3], M3) succeeds, to what data types of terms are [¥3| N3], X'
and [V3|M;] instantiated?™

. The analysis proceeds in the same way by following the execution in the domain of
iypes. After several steps, we know that Ny needed in step 4 is a list, X may he any
term, and M is a List,

=]

. Hence, Ly and Ny needed al the beginning are lists. Becanse this result has not enlarged
the data types of L, and N, temporarily assumed in step 3, we can conclude that Lo
and Ny are lists when the execution of reverse{ Lo, Np) succeeds.

Note that we needed to propagate the type information, though we have not emphasized it.
For example, we needed to know in step 5 that, when Ny is a list and X, is instantiated to
[Y3|Na], then Njis a list. Similarly, we needed to know in step 7 that, when L, is a list and
Ly is instantiated to [Y;|L,], then Lp is a List.



(3) What Interpreter Is Appropriate for Prolog Abstract Interpretation?

Now, what framework is appropriate if we analyze Prolog programs using the abstract
interpretation approach? The figure below depicts the framework for type inference when
the framework of Figure 1 is applied directly. Then, what interpretation should we employ
for the abstract interpretation of Frolog programs?

standard Prolog interpretater abstract Prolog interpreter

the set of types

the set of terms

ALINL A Y. zere, suc(zere), ...} {ist, mum, ...}

.

— -
Fignre 3: Framework for Type Inference by Abstract Interpretation

One Prolog intepreter familiar to us is the top-down interpreter which starts with a
given top-level goal and repeats the resolution operation continually until an cmpty goal is
ohtained. However, if we had used the top-down interpretation to approximately execute
the goal in the domain of types, we would have entered a non-terminating computation loop
in the example just examined. For example, if we had not made the assumption in step 3,
we could not have proceeded any further. (In general, due to the abstraction, the top-down
execution in abstract domains is more likely to enter a non-terminaling computation loop
than the usnal one in the domain of terms. Hence, making the assumptions in step 3§ is
crocial to answer the question at the beginning. )

The other Prolog interpreter, which is just as simple as the top-down interpreter, is the
bottom-up interpreter which starts with the set of all instances of unit clauses and repeats the
generation of the head instances whose body instances are already generated. However, if we
had employed the hottom-up interpretation, we would have generated many goals irrelevant
to the top-level gual. For example, we have considered only necessary goals to know the
data types of Lo and Mo when reverse{ Ln. Ma) sueceeds, so that, say, a goal of the form
append( N, suc( K), suc(K')) has not been considered in the example just examined.

Thus, the previous reflection on how we analyze Prolog programs in our mind has shown
different hehavior from both the top-down interpreter and the bottom-up interpreter. This
suggests that it might be more appropriate to adopt another Prolog interpreter from the
beginning,

This paper presents a unified framework for analyzing Prolog programs. The framework
is based on OLDT resolution, a top-down Prolog interpreter with memo-ization. A run-time
property of Prolog goals can be analyzed by executing the goals using an interpreter that is
ahtained by ahstracting OLDT resolution according to the property. Due to the character
of OLDT resolution, the execution neither enters a non-terminating computation loop nor
wastes time working on goals irrelevant to the given top-level goals. In addition, the behavior
of the abstract interpreter is very close to the way human programmers usually analyze the
property in their mind. The correctness and termination of the abstract interpreter are
discussed as well.

The rest of this paper is vrganized as follow: First, Section 2 introduces OLDT resolution.
Next, Section 3 presents a type inference as an example of abstract interpretation. {Extract-
ing a general framework and instantiating it to other abstract domains is immediate.) Then,
Section 4 shows an implementation technique,



2 OLDT Resolution

In this section, we will first present an example of OLDT resolution [21], then formalize the
notions of OLDT resolution, and last show the correspondence between OLDT resolution
and the usual top-down interpretation.

2.1 An Example of OLDT Resolution

Let us first see an example of OLDT resolution. Consider the following “graph reachability”
program by Tamaki and Sato [21].

reach(X,¥) :- reach(X,Z), edge(Z,Y).

reach(X,X).

edgela,b).

edgela,c).

Edsu{h Lal.

edge(b,d).
The first clause of “reach™ says that node Y is reachable {rom nede X if node 2 is reachable
from A and there is an edge from & to ¥, while the second clanse says that any node is
reachalle from isell. The unit clanses of “edye”™ give the edges of the directed graph of Figure
4. The program is a typical left recursive program so that the nsual top-down execution of a
goal is likely to enter a non-terminating computation loop. For example, the execution of a
top-level goul “reachia, Zo)" immediately calls “reachia, Z;)" recursively at the leftmost in
the body of the first clause to repeat the execution of the goal of the same form.

L _®)
© @

Figure 4: Graph Reachability Problem

OLDT resolution was devised by Tamaki and Sato [21] to avoid such a non-terminating
computation loop. It manipulates

= a iree (representing OR search),
e & table, and
s pointers connecting from some nodes of the tree into the table.

Ronghly speaking, the tree corresponds to the top-down interpretation, the table corresponds
to the bottom-up interpretation, and the pointers connecting them enable us to enjoy ad-
vantages of the both interpretations. Let us see how OLDT resolution returns solutions to
the top-level goal “reach{a, £p5).”

First, an initial tree consisting of the root node labelled with a pair of goal “reach(a, Z5)"
and an emply substitution <> is generated. (In general, each node of the tree is labelled
with a pair of a goal and a substitution. Due to limited space, the goal and the substitution
are arranged in iwo consecutive rows in the figure.) There is also generated an initial table
containing a pair of atom reach{a, £) and an empty list [ . (In general, the first element of
each pair in the table is called a key, while the second element a solution list of the key. The
key and solution list are delimited by “:” in the figure.) No pointer is generated yet.



reash{a. Zp)

resch{n, Z): [
Fignre 50 OLDT Resolution in Step ]

reach(a, Zo)
<
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reach{a, 2 :-irm:h{n, all

Figure & OLDT Resolution in Step 2

Secondly, the root node is expanded nsing the program to generate twe child nodes in the
same way as the usual top-down interpretation. The left child node generated using the first
clanse of “reach”™ is labelled with a pair of “reach( Xy, ), edge( 2, ¥1)" and < X <= a >,
The edge to the left child node is labefled with the m.g.u. used in the resolution. Nate that,
reuch{a, 2y ). the leftmost atom under the snhstitution, is a variant of reachia, Z). a key in
the table. Such a node is classified into a leokup node. (When the root node was generated
in step 1, there was no such key in the table. Such a node is classified into a solution node.)
A new pointer connecting from the lookup node to the head of the solution list of reach{a, )
is generated. (The pointer is depicted by the dotted line in the figure.) This means that the
solutions in the solution list ohtained hy solving another atom are to be utilized for solving
reachia, Z; ) instead of solving itself, The right child node generated using the second clause
of “reach” is labelled with a pair of an empty goal O and a substitution < X <= a >, The
edge to the right child node is also labelled with the m.g.u. When this node is generated,
goal reachia, Zy) has been just solved instantiating #g to “a” so that its solution reach(a, a)
is added to the solution list of reachia, 7). {In general, as for a solution node, the usual
L{Jp-duwn ileE[Pj’EtaLiUﬂ 15 app[ied to the leftmost atom under the substituition.)

Thirdly, the lookup node is expanded using the table to generate one child node. Because
the solution in the list pointed from the lookup node is an instance of the leftmost atom under
the substitution, i.e., reachia, a) is an instance of reach{a, Z,), the atom reaciin, 2, ) is solved
utilizing the solution to generate a child node labelled with the pair of “edge( ;. Y)7 and
< 2y %= a. The edge to the child node is labelled with the instantiation. The pointer from
the lookup node is shifted Lo the end of the solution list. Becanse edge(a, Yy). the leftmost

mrsach[u—.“_'ﬁm
B .

=
XNy =a>

<X sa>

<Ly = an
edgel sy, by
< i) Eat

Figure 7: OLDT Resolution in Step 3
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reach(a. Z) : [reach(a, ﬂﬂ
edgeia,Y) : ||



reach{a, Zg) |
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s <X =a> | <X =a>

reach{a, Z) : [reach(a.a),‘reach(a, b), reachia, c)]
edge(a, Y} : [edge(a, b), edge(n, =]

Figure 8: OLDT Resolution in Step 4

atom under the substitution, is not & variant of any key in the table, the new node is o
solution node so that a new pair of key edge(a, 1) and solution list [ ] is added to the table.

Fourthly, the generated solution node is expanded further nsing the program to generate
two child nodes labelled with a pair of O and <. These two nodes add two solutions
edge{a b) and edge{a,c) to the end of the solution hst of edge(a,}), and two solutions
reach{a, b} and reach{a,c) to the end of the solution list of reach(a, 7).

Fifthly, the lookup node is expanded unsing the solution table to generate two child nodes
since new solutions were added to the solution list of reach(a, Z), therefore, the list pointed
from the lookup node is not empty, that is, there exist solutions not yvet ntilized.

Sixthly, the left new solution node is expanded using the program to generate two child
nodes. This time, goal edge(b, ¥;) has been solved with solutions edge(b, a) and edge(b,d),
and goal reachia, Zp) with solutions reach(a,a) and reach(a, d), of which reach{a,a) is already
in the solution list of reach{a, Z). Two new solutions, edge(d, a) and edge(d, d), are added tu
the end of the solution list of edge{a.Y ), and one new solution, reachia,d), to the end of the
solution list of reach{a, Z).

l.astly, the looknp node is expanded once more using the table since the list pointed from
the loockup node is again not empty.

OLDT resolution stops here, because no solution node is expansible and the list pointed

reach(a, Zn)
=

___________ reach(Xq, 1), edge( 2, ¥y =
P £X, =ax <Az =an
o T g d sy £ &
/ edge(Zy, 1)) edge(Zy, 1) edge(2y, 1))
i <di=ax < I &b <H =
|
\ o _‘ o
. <> | | <>

reach{n, 2 : {r:a:}:};,;}., reach(n, ), reach(a, ;]T]
edge(a,Y ) : [edge(a, b), edge(a, c)]

edge(b, Y} []

edge(c, Y : |]

Figure 8: OLDT Resolution in Step &
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Figure 10: OLDT Resolution in Step 7

from the looknp node 15 empty.

2.2 A Formalization of OLDT Resolution
l.et us formalize the notions used in the example just examined.

{1) Term and Substitution

A term is defined as usual, and denoted by s, 1, possibly with primes and subscripts. In
particular, variables are denoted by XY, 2.

An assignment of term t fo variable X is a pair (X, ), and hereafier represented by
X =t A substitubion is o finite set of assignments such that there are no two assignmenis
to the same variable, and hereafier represented by

X =, KXot A= 4>,

where X, X, .., A} are distinct variables, called the domain variables of the substitution.
Substitutions are denoted by o.7,8, 5. A restriction of ¢ to the set of variables V is a
substitution consisting of all the assignments in ¢ to the variables in V.

The term assigned to variable X by substitution ¢ is denoted by o(X). We assume that
a substitntion assigns the variable X to itself when X is not in the domain variables of the
substitution explicitly. Hence the empty substitution <> assigns every variable to itself.

The composed substitution of o and 7, denoted by o7, 15 defined as usnal.

(2) Atom and Goal

An atom is defined as usual, and denoted by A, B. Let 4 be an atom and o be a

substitution of the form
<X =, Npge=ig, . A =1

Then Ae denotes the atom obtained by replacing each variable X; in A with term ;. (When
Ao is considered, assignments in ¢ to the variables not in A do not matter.) An atom Ar
is called an mstance of an atom Ae when there exists a substitution # such that Ar is Arf.
An atom B is called a variant of an atom A when B is obtained from A by renaming the
variables in A.



& goal is a finite sequence of atoms; it is denoted by @, H. An empty goal, i.e., an empty
sequence of atoms, is dencted by 0. G is defined in the same way as Ae.

(3) Unification of Atoms

Two atoms, As and Hr, are said to be wnifiable when there exists a substitution 7 such
that Aoy and Bry are identical. Then, # is called a unifier, and Aoy and Bry is called a
unification of Ax and Br. A unifier # of Az and Br is called a most general unifier, and
Ac® and B is called a most general unification of Ao and Hr, when, for any unifier of As
and Br, say 5, there cxdsts 2 substitution p such that 5 is #p.

(4) Search Tree, Solution Table and Association
A search tree is a tree satisfying the following eonditions:

o Each node is classified into either a solution node or a lookup node, and is labelled with
a pair of a ( possibly empiy) goal and a substitution. (The distinction belween solution
nodes ard lookep nodes is defined later.)

o Fach edge is labelled with a sabstitution.

A search tree of Gie is a scarch tree whose root node is labelled with ((G,#). A node in a
search tree is called a null node when the goal part of the label is 0. When a node in a
search tree is labelled with (%4, Az,... 4,7, o), the atom Ao is called the head atom of
the node.

A solution table is & set of entries. Fach entry is a pair of the key and the solution list.
The key is an atom such that no variants of this key appear (as keys) elsewhere in the solution
table. The solution list is a list of atoms, called solutions, such that each solution in it is an
instance of the corresponding key.

Let T'r be a search tree and Th be a solution table. An association of Tr and Th is a set
of pointers connecting from each lookup node in T'r mto some salntion lst in Th such that
the head atom of the lookup node and the key of the solution list are variants of each other.
The tail of the selution list pointed from a lookup node is called the associated solution list
of the lookup node.

(5) OLDT Structure

An OLDT structure of Go is a trio (T'r,Th, As), where T'r is a search tree of Go, This a
solution table, and As is an association of Tr and Tb.

(6) OLDT Resolution

A node in a search tree of OLDT structure (Tr, Th, 45) labelled with (“4, Aa, ..., A4,", 7)
is said to be LD resalvable when it satisfies either of the following conditions:

# The node is a leal sulution node of Tr, and there is some definite clause “B - By, Ba, ...,
B,,” (m = 0) in program P such that Ao and B are unifiable, say by an m.g.u. 8. (We
assume that, whenever each clause is used, a fresh variant of the clanse is nsed.} The
pair of the (possibly empty) goal “By, Bs, ..., By, Aa, ..., A." and the substitution o#
(or possibly the restriction of o to the variables in “By, Ba,..., By, As, ..., A,7) is
called the OLDT resolvent.



e The node is a lookup nede of T'r, and for some substitution # (for the variables in Ag),
there is a variant of Ao# in the associated solution list of the lookup node. (We assnme
that Aef is a fresh variant of the solution.) The pair of the (possibly empty) goal
“4, .. A" and the substitution o (or possibly the restriction of ¥ to the variables
in “Ag....,A,") is called the OLDT resolvent.

In either case, substitution @ is called the substitution of the OLDT resolution.

{7} OLDT Subrefutation

An OLDT subrefutation of an atom and an OLDT subrefutation of a goal are paths in
a search tree (not necessarily starting from the root node) which are simultaneously defined
inductively as [ullows:

{al) A path with length more than 0 starting from a solntion node is an OLDT subrefutation
af an atom Ag with solution A7 when

e the initizl node is labelled with a pair of the form (“A,G”, @), the initial edge
with, say substitution #, and the last node with a pair of the form (“G7, '),

e the node next to the initial node is labelled with a pair of the form (%4, Aa, ...,
Ay, G7, of), and the path except the initial node and the initial edge is a sub-
refatation of (A, Aq, ..., Ay ¥ with solution (A, As, ..., A " (m = 0), and

e s mir.

{a2) A path with length 1 starting from a lookup node is an OLDT aubrefulution of an
atom Ag with solution A7 when

e the initial node is labelled with a pair of the form (“4,G", @), the initial edge

LEE)

with, say substitution #, and the last node with a pair of the form (*G", "), and
s 715 ab,

(b1) A path with length 0, i.e., a path consisting of only one node, 1s an OLDT subrefutation
of O with solution O 7.

(b2) A path with length more than 0 is an OLDT subrefutation of a goal (Ay, As,..., As)r
with solution (A, Az, ..., Ag )7 (n > 0) when

o the initial node is labelled with a pair of the form (“A;, Ag, ..., Aq, H”, 7)), and
the last node with a pair of the form (“H", '},

s the path is the conecatination of a subrefutation of Ao with solution A;em. asub-
refutation of Asor with solution Agem T, ..., a subrefutation of AnomiTz Tt
with solution A,amym .- Taoy Ty, and

® TS OT Ty Ty The
In particular, a subrefutation of Ae is called a unit subrefutation of Ar,

(8) Initial OLDT Structure and Extension of OLDT Structure

The initial GLD T structure of Ga is the OLDT structure (Trg, Tbo, Asg), where Trpisa
search trec consisting of only the root solution node labelled with (G, o), Thy is the solution



tahble consisting of only one entry whose key 1s the head atom of the root node and whose
solution list is an empty list [ ], and Asq is an empty set of pointers.

An immediate extension of OLDT structure (Tr, 70, As) in program F is the result of
the following operations, when node ¢ of OLDT structure (T'r, Th, As) is OLDT resolvable.

1. When v is o leal solution node, let &, Ca, .., (& > 1) be all the clanses with which
the node v is OLDT reselvable, and {Gy, 7). (G, 020, ... . (Gr, 75} be the respective
OLDT resolvents. Then add k child nodes of v labelled with (Gy,e,),(Gs, 02), ...,
(G, o) to v,

2, When v is a lookup node, let Aoy, Acls, ... Aol (£ > 1} be all {the varianis of)
the solutions in the associated solution list with which node v is OLDT resolvable, and
(Gr.o ) (Ga ozl e {Gr,ox) be the respective OLDT resolvents. Then add & child
nodes of v labelled with (G, oy ), (G, ma). o (g, me ) to v. Replace the pointer from
the OLDT resolved lookup node with the one connecting 1o the end of the associated
solution list.

3. In hoth cases, the edge from v to the node labelled with (07, o) is labelled with &
where #; is the substitution of the OLDT rescluticn. A new node is a lookup node when
the head atom is 2 variant of some key in T'b, and is a solution node otherwise, If a
new node is a lookup node, add a pointer from the new lookup node to the head of
the solution list of the corresponding key. Il & new node is a solution node, add a new
entry whose key 1s the head atom of the new node and whose solution list is an empty
list.

4. For each unit subrefutation of atom Ae (if any) starting from a solution node and
ending with some of the new nodes, add its solution Ar 1o the end of the solution list
of A in T6,if At 15 not in the solntion list.

An OLDT structure (T'r', TH, As") is an erlension of OLDT structure (T, Th, As) if
(Tr' . TH, As") is obtained from (T'r, Th, As) through successive applications of immediate
exiensions,

Note that an immediate extension is applicable to any lookup node (50 long as its asso-
ciated list s non-empty}, whereas it s applicable to only leaf solution nodes.

(2) OLDT Refutation

An OLDT refulalson of Go in program P is a path in the search tree of some extension
of the initial OLDT structure of Go from the root node to a null node. The solution of an
OLDT refutation is defined in the same way as that of an OLDT subrefutation.

2.3 Correctness of OLDT Resolution

OLDT resolution avoids repeating the same computation in the top-down interpretation by
utilizing the solutions of the atoms of the same form so that, in the execution of any top-level
goal, it calls the same atoms and returns the same solirtions as the top-down interpretation.
[t is the basis of our abstract interpretation that any OLD extension is subsumed by an
OLDT extension. (It is easy to prove the reverse direction so we omit it.)

Theorem 1 Let P bhe a program and ¢ he an atom.

10



» Ifan atom Hr appears at the leftmost of & goal during OLD resolution of ¢ in P, then
some extension of the initial OLDT strocture of ¢ in P contains a node with leftmost
atom Hr (Correctness of Calling Patterns).

o I[ an atom is solved with solntion A+ during OLD resolution of @ in P, then some
extension of the initizl OLDT structure of @ in P contains 2 unit subrefotation with
solution A7 (Correctness of Exiting Patterns).

Proof. See Appendix.

Though all salutions were found under the depth-first from-lelt-lo-right extension strategy
as exemplified in Section 2.1, this is not always the case. that is, some solntions might not
be found forever. The reason is two-fold. Omne is that there might be generated infinitely
many different solution nodes (hence possibly infinitely many lookup nodes). The other is
that some lookup node might generate infinitely many child nodes so that extensions al othes
nodes to the right of the lookup node might be inhibited forever. {However, when this OLDT
resolution is applied to the abstract domain with finite elements, it always terminates undes
any strategy. See Section 3.3.)

3 Abstract OLDT Resolution for Type Inference

It is casy to see the similarity in behavior between the type inference in Section 1 and OLDT
resolution in Section 2,

3.1 An Example of Type Inference

Let us first re-examine the type inference process in Scction 1 using the notions similar to
those in Section 2. Recall the “reverse” program in Section 1.

reverse([ 1.0 1).

reverse([X|L],M} :- reverse(L,N)}, append(N,[X],M).

append([ 1,K,K).

append ( [Y|N] K, [Y|M]} :- append(N,K,M).

Suppose that we are asked: “When the execution of reverse( Lo, Ng) succeeds, to what data
types of terms are Ly and Ny instantiated?

First, an initial tree consisting of the root node labelled with a pair of “reverse(Ly, Ng)”
and <> is generated. (In general, each node of the tree is labelled with a pair of a goal
and a substitution of data types.}) There is also generated an initial table containing a pair
of “reverse( L, N} <>" and an empty list [ ]. (In general, the first element of the pair in
the table is called a key, while the second element a solution fist of the key.) No pointer is
generated vet,

Secondly, the root node is expanded using the program to generate two child nodes. The

left child node generated using the first clause of “reverse” is labelled with a pair of an empty
goal O and an empty substitution «<>. The edge to the left child node is labelled with the

reverse| Lo, Ng)
<

reverse( L, W) <= 1 []

Figure 11: Type Inference in Step 1

11
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€ Ly, Na cil}/‘ \_{L-u -‘:L'& |L|] Ny &= M >

Lreverse(Ly, Ny ), append( Ny, [‘L I, .ﬁ-.ﬂj—|

<‘..:- | s =t

e aw

"
reverse( L, W) <>« [reverse(L W) €L, N <= lisi>]

Figure 12: Type Inference in Step 2

m.g.u. When this node is generated, goal reverse( Ly, Ny) has just been solved instantiating
Ly and Np to lists so that its solution reverse{ L o N) < L N <= lisi > is added to the solution
list of reverse( L, N) <>. The right child node generated using the second clause of “reverse”
is labelled with a pair of “reverse{ L, N\ ), append(N,,[X,]. M\)" and <. The edge to the
nght child node is also labelled with the m.g.u. Note that, reverse( £y, Ny ) <>, the leftmost
atom with the substitution, is a vartant of reverse(L.N) <>, a key in the table. Such a
node is classified into a lookup node. (When the root node was generated in step 1, there was
no such key in the table. Such a node is classified into a solution nede.) The new pointer
connecting from the lookup node to the head of the solution list of reverse(L, N) <> is
generaled.

Thirdly, the lookup node is expanded using the table to generate one child node. Because
the solution in the list pointed from the lookup node is more restricted w.r.1. data types than
the leftmost atom with the type substitution, i.e., reverse(L N} < L, N <« list > is more
restricted w.r.t. data types than reverse(L, V) <>, the atom is solved utilizing the solution
to generate a child node labelled with a pair of “eppend{ Ny, [X;], M1 )" and < Ny <« list >,
The edge to the child node is lahelled with < I, Ny < list>. The pointer from the lookup
node is shifted to the end of the solution list. Becanse append (N, [X,], M) < N <= list >,
the leftmost atom with the type substitution, is not a variant of any key in the table, the
new node is a solution node so that a new pair of key append(N,[X]. M) < N « list > and
solution list [ ] is added to the table,

Fourthly, the new solution node is expanded further using the program to generate two
child nodes labelled with pair (0, <>) and pair (append( N3, K3, M), <N3, Ky < list>). The
left node adds a solution eppend(N,[X], M) < N,M <« list > to the end of the solu-
tion list of append{ N, [X], M) < N « list > (The left node also adds a solution to the
root atom, reverse(L, N) < L, N <« list >, which already appears in the solution list of
reverse( L, N} <>; therefore, it 1= not added to the solution table.} The right node is a
solution node so that a new entry is added to the solution table.

reverse{ Ly, Ng) |

s
S e
O | { reverse(Ly, Ny ), append [Ny, [X1], My )|
<> Ir"' < |
H [ €Ly Wy &= list>
N | appendl ""'1.[131]. M)
.l <Ny &= st >

reverse(L, W) <> [reverae( L. N) <L N & {_l:z_f_‘;]
append(N, [N M) <N <= gt o []

Figure 13: Type Infcrence in Step 3
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___{ append (N, [N, W70)
= N cﬁ} )
e =1L X &= X M =[N E ST < N & [V Na] Xy = X My o= [V |MG] R = [XG] s
nppenrl'}Na.ﬂg M)
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reverse{ L. N} €2 ¢ [reverse(LLN) < LN = fi.ﬂ;:
append{N. [N M) <N < list> : [append{ N, [X], M) < N, M & lisi )
append{ N, b, M) <N & g | ]

Figure 14: Type Inference in Step 4

[ veverse| Lo, Na) |

| o
| o | | reverse Ly, Ny ). appf:l_ﬁ{f'-rg, |T|,].-ﬂf_|,i
be> s e
' a:rmnﬁ';ﬁ] YL Af)
Y ;"\'1 = I:s!“ﬁ-
%
\a._ O | app:ﬂd Ny, R, My
- x| <Ny, vy e it
‘. '\\ . _
N I o elpp#ﬂﬂ&.ﬂ'f";, Ke, M) L.
. <> < Ny, e 4= lrat > =
T 4
o < My &= list » ;
T o ;
"‘.,_ {} | J."
\'11‘ ‘_.-"
peverse] fo W) <% 0 [reversei LN} < L N &= list ] s

append( N[N, M) <N & st > [append[ N, [X] M) < N M = list»] v
appentd| N, M) < N K <= Hat > [append (N, ] N < N KM = st )

Figure 15: Type Inference in Step 6

Fifthly, the new solution node is expanded further using the program to generate twa child
nodes labelled with pair (O, <) and pair (append{ Ng, Ky, Ms), < N5, K <= lisi>, The left
node adds & solutions append(N, K, M) < N, K, M « list> to the end of the solution list of
append( N, K, M) < N, K « list > {The solutions append( N, [X], M) < N, M <= list > and
reverse{ L N < L, N «= ligt > are already in the solution lists.) The right node is a lookup
node so that the new pointer connecting from the lookup nede to the head of the solution
list of appendi{N K M) <N K <= lhst> is generated.

Lastly, the lookup node is expanded using the solution table to generate one child node
labelled with pair (0, <), since the list pointed from the lookup node is not empty, that is,
there  exist  solutions not  yet  utilized. (Althongh  append(Na, K3, M3)
< Ny, Ky = list >, append( Ny, [Xﬂ., M) < Ny <= hst > and FEL'E:TJE{LD, Nu] <> have
been solved when this node is generated, their solutions are already in the solution lists.}

The type inference stops here, becanse no solution node is expansible and the lists pointed
from the lookup nodes are all empty.

13



3.2 A Formalization of the Type Inference

Let us formalize the notions used in the example just examined.

(1) Type and Type Substitution

A type definition is a set of definite clauses enclosed by type and end satisfying the
following conditions:

o The head of each definite clause is an atom with its predicate p and with its argument
either a constant b or a term of the form ¢{ X, X9,..., An), where the unary predicate p
is called a type predicate, b a bottom element and ¢ a constructor of the type predicate.

e The hody of each definite clause consists of atoms whose predicate is a type predicate
and whose argument is X; in the head arguments.

The type of a type predicate p is the set of all terms ¢ such that the execution of p(1) succeeds
without instantiating the variables in it, and denoted by p.

Example 3.2.1 A type predicate “l1517 is defined by
type.
list([ ]).
list({X|L]) = hst(L).
end.
Similatly, a type predicate “num” is defined by
type.
numfzero].
nom(sue(N)) - num(N).
end.
Then fist is {[ L[X].[A,Y],...}, and mum is [sero, suc(zera). suc{suc(zero}),...}. Note
thiat terms in cach type are nol necessarily ground, since the execution of p(f) sometimes
succeeds without instantiating the variables in . For example, we include [X] in list, since
the execntion of listi[X]) succeeds withont instantiating the variable X.

Suppose that there exist k type predicates p, pg, ..., py in program Fsuch that py,ps. ..,
pi are disjoint. (To make our explanation simple, we will consider the simplest type structure
here so that more complicated type structure, e.g., types with non-empty intersections or
polymorphic types [9], ate not discussed.) A type of program P is one of the following £ + 2
sets of terms.

any : the set of all terms,

pi ¢ the set of all terms satisfying the definition of type predicate py,

py ¢ the set of all terms satisfying the definition of type predicate ps,

pi = the set of all terms satisfying the definition of type predicate pg,

@ : the empty set.
The instantiation ordering of lypes is the ordering < depicted on the left in Figure 16, while
the sel-inclusion ordering of types is the ordering C depicted on the right:
In general, a set of terms Ty is smaller than or equal to aset of terms Ty w.r.t. the mslantiation
ordering, and denoted by T7 = Ty, when

e for any unifiable terms #; in T} and 1 in Tz, their most general unification is in T3, and
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Figure 16: Instantiation Ordering and Set Inclusion Ordering

o for any term 1o in T4, there exists a term ty in T) such that ¢ is an instance of ¢;.

Ty is smaller than To w.r.t. the instantiafion ordering, when T} < Ty but ThAT;. As the
execution of a goal proceeds, the arguments of the goal ascend this instantiation ordering.
{Hence, @ denotes over-instantiation, or failure.) Note that the instantiation ordering of types
is just the reverse of the set inclusion ordering, hence if ¢, = tg, then §; 3 t5. (This is not
always the case for some ahstract domains.)

An assignment of type 1 lo variable X is a pair (X 1), and hereafter represented by
X &= 1 A type substitution is a finite set of type assignments such that there are no two type
assignments to the same variahle, and hereafter represented hy

S e — !]....-"n"g = t'lg_.....;{l' =1,
where X, Na, o LAy are distinet rnri_:;h'leﬁ, called the demain variables of the type sohsti-
tntion. Type substitutions are denoted by g, e, A in this section, A restriction of p to the
set of variables ¥V is the type snhsatitntion consisting of all the type assignments in g to the
variables in V.

The type assigned to vadable X by type substitution g is denoted by p{ X ). We assume
that & type substitution assigns any, the minimnm element w.r.t. the instantiation ordering,
to variable X when X is not in the domain variables of the type substitution explicitly. Hence
the empty type substitution <> assigns any to every vanable.

The joined lype substituiion of g and v, denoted by gV v, is the type substitution such
that the domain variables are the union of those of pand v, and pv e{ X} is the least upper
bound of p(X) and »{ X) w.or.t. the instantiation ordering for vach domain variable X,

(2) Type-abstracted Atom and Type-abstracted Goal

Let 4 be an atom and g be a type substitution of the form
<X = 1_1...5:-2 =i, A= 1_;'.}.

Then Ap (or pair (A, u)) is called a type-abstracted atom, and denotes the set of all atoms
obtained by replacing each variable X; in 4 with a term in t;. (Hercafter, we will consider
only the restriction of g to the variables in 4 when Ap is considered.} A type-abstracted atom
A is called an instance of a type-abstracted atom Ap when there exists a type substitution A
such that Av is A(pV AL A type-absiracted alom Bw is called a variont of a type-abstracted
atom Ap when His a variant of 4 and v is ohtained from p by renaming the variables in
the domain of y accordingly. (If two type-ahsiracted atoms are variants of cach other, then
they denote the same set of atoms, but not vice versa.}

Similarly, Gu (or pair (G, p)) is called a type-abstracted goal, and denotes the set of all
goals obtained by replazcing each X; in (¢ with a term in ¢;.

{3) Unification of Type-Abstracted Atoms
Two type-abstracted atoms Ag and Br arc said to be wnifiable when Apn Be £ 0. Let

A be an atom, Xy, X9, ..., X all the variables in A, g & type substitution
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<X =), o=ty Xt >,
B an atom, ¥, ¥a,..., ¥ all the variables in B, and v a type substitution

<Y &= hen.. ey >
Then, how can we know whether Ag and Ar are unifiable, that is, whether there exists &
anification of Aer in Ap and Br in BeT And, if there exists such a unification, what types
of terms are expected to he assigned to Y, ¥s, ..., Y7 by the unifier?

When two type-abstracted atoms Ap and By are unifiable, two atoms A and B must be
unifiable in the usual sense. Hence, the unifiability of 4 and B can be temporarily used as
an easy overestimation of the unifiability of Ap and Be. (This estimation might be inexact,
e.g., the unifiability of p(X) < X <« hist> and plsuc(Y)) <Y < list>.)

When A and B are unifiable, let y be an m.g.u. of 4 and B of the form

<AL= A st A =8, Yo s s Y =
The type information of g is propagated to the variables in B through 5. Let’s divide
the type propagation through g into two phases, inward type propagation and ouwlward type
propugation,

When a term f containing an occurrence of term s is instantiated to a term in £, a type
containing all instances of the occurrence of term s is called an inward type propagation of t
to s, denoted by s/ <1 4= t>. (Exactly speaking, some notation denoting the occurrence of
s should be used instead of the term # itsell.) It is computed as below:

[, when s 1s 1;
any, when { is any;
s/ <y« t;>, whenlisalype p,
1is of the form r‘.ﬁ.,!g,.._,lnj,

sf <l n= .
¢ is a constructor of the type p,

the occurrence of = is in 1;, and
1; is the type assigned to the i-th argument #;;
L@, otherwise.

Example 3.2.2 Tet t be | X|L] and ¢ be ligt. Then

Xl < [X|L] = st >=any, L} <[X|]] <« list >= list.
Let £ be [X|L] and ¢ be num. Then

X/ < [X|L] € num >=0, L) <[X|L] 4= num >=0.

When each variable Z in term s is instantiated to a term in A(Z), a type containing all
instances of 5 is called an outward type propagation of X to s, denoted by s/A. It is computed
as helow:

r i, MZ) =10 for some Z in 5;
Al#), when s is a variable:
r, when s is a bottom element b of a type p or
/A =4 when ¢ is of the form ¢(s;, 84,..., 80},
¢ is a constructor of a lype p and
s1fA, 8afA, .. 84/ A satisly the type definition of p;
L any, otherwise.

Example 3.2.3 Let s be [X|L] and A he < X <= any, L <= list>. Then
/A = hist.
Let s be [X|L] and A be <X « any, L <= any>. Then

sfA = any.
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Let A, N XNy X 0 BV Y20 V7 and # be as before. Then, we can overestimate
the unification of Ay and Be as follows:

1. First, we can check the unifiability of Ap and By by the unifiability of 4 and B. I A
and B are not unifiable, Ag and Bw are not unifiable. Otherwise, let 5 be an m.g.u. of
A and B of the form

{_1-1 E= !1\.‘;2 — :-:r ..... J:k = I:;.]’l "::S]_,}:; f— 32,...1}}]":3]:’.

9 Next. for each occurrence of a bottom clement b in €, 42, ..., 15, We can compute the
type assigned to the occurrence nsing the inward type propagation of g. Similarly, for
each orcurrence of variable & in &, 8o, .., f, we can compute a type containing all
instances of the occurrence using the inward type propagation. By taking their least
upper hound w.r.t. the instantiation ordering for all the occurrences of £ in 1, we can
compute & type containing all instances of 2. 1f

# the tvpe assigned to some oceurrence of the bottom element is not the type of the
bottom element or the type any, or

o the type assigned to some variable is @,

Ap and Hy are not unifiable. Otherwise, we can compute the type substitution A for
all the variables in 1) 2, ..., iy by collecting these type assignments for the variables.

3. Then, we can overestimate the type s’ assigned Lo s; using the cutward type propaga-
tion of A, hence, we can obtain a type substitution ¢" of the form

PR IR T S T PR

by collecting the types for all variables 17, ¥5,..., Y in B.
4, Last, Apn Be is overestimated by B(r v e’}

I'he type substitution # v ¢’ is called the propagated type substitution from p lo v through v,
and denoted by “p L p" or S0 L op"

Note that Bl — v) is a superset of Ap N Be, even il ¢ assigns two Lerms containing a
common variable to two different variables in A. For example, let Ap be p{ X7, X2) <> and
Br be p(Y, . ¥2) < V) &« list> (Hence pis, ep., < X| = ¥, Yo <= ¥a>) When p(Z,Z) in
Apand p([], W) in By are unified, their unification p{[ ],[]) is in p(¥1,Y2) <¥1,¥2 4= lisi >,
which is still included in Bip Low), e, plY, Ya) < ¥y < list>. Though the fact that ¥3
has been instantiated to [ ], i.e., the type assigned to Y3 has ascended wor.t. the instantiation
ardering, is not precisely reflected in the computation of “g = »,” the final estimation

B{p %, w) is a superset of Ap N By, sinee 2t ifty <.
(4) OLDT Structure for Type Inference

A search tree, a solution table, an association and an OLDT structure arc defined in the
saine way as belore except for the bllowing peints:

s The label of each node is a pair of a goal and a type substitution.
s Earch edge from a lookup node is labelled with a type substitution.

e leys and solutions in a salntion table are type-abstracted atoms.



(6) OLDT Resolution for Type Inference

A node in a search tree of OLDT structure (T'r, T8, As) labelled with (“4, 4a,. .., A.", p)
is said to be QLOT resolvable when p(X) # @ for any variable X in A, As,..., A,, and Ap
satisfies either of the following conditions:

s The node is a leal solution node of T'r, and there is some definite clanse “H =~ By, Ba, ...,
B." (m > 0) in program P such that A and B are unifiable, say by an m.g.u. 7. (We
assume that, whenever each clanse is vsed, a fresh variant of the clanse is used.}) The
pair of the (possibly empty) goal “B), By, ..., B, A, ..., A" and the type substitu-
tion “p V(g —<>)" (or possibly the restriction of “u v (g Z<>)" to the variables
in “Hy, Ba, ... B, Aa, oo, AR") is called the OLDT resolvent. The substitution 7 is
cilled the substitution of the OLD T resolution.

¢ The node is a looknp node of Tr, and for some type substitution A (for the variables in
A). there is some variant of A{p Vv A) in the associated soluntion list of the lookup node.
{We assume that A(g Vv A) is a fresh variant of the solution.) The pair of the {possibly
empty) goal “Aa, ..., 4,7 and the type substitution “g v A" (or pussibly the restriction
of “p# v A" to the variables in “Ay,..., A,") is called the OLDT resolvent. The type
substitution A is called the type substitution of the OLDT resolution.

(6) OLDT Refutation for Type Inference

An OLDT subrefutation of a type-abstiacted atom and an OLDT subrcfutation of a
type-abstracted goal are defined in the same way as belore except for the following points:

s A iype-abstracted atom Ag iz used instead of an atom Ao,

» A type-abstracted selution Aw is used insiead of a usual solution Ar.

& The join of type substitutions is used instead of the nsual composition of substitutions.
® 4+ vis used instead of  to specily the label of the node next to the solution node.

An st OLDT structure and ertension of OLDT structure are defined in the same way
as before except that the edge from a parent nade v to a child node is labelled with a type
substitution of the OLDT resolution when v is a lookup node. An QLT refutaiion is defined
in the same way as before.

3.3 Correctness of the Type Inference

This type inference 1s safe, i.e., will not miss any atoms at calling time and exiting time during
the top-down execution. More precisely, the correcteness is stated as Theorem 2 below. The
proof of the theorem crucially depends on the fact mentioned hefare that B(p = v)is a
superset of Ap N By,

Theorem 2 Let P be a program and QA be a type-abstracted goal.

¢ If an atom Br appears at the leftmost of a goal during OLD resolution of a goal in
A using P, then some extension of the initial OLDT structure of QA in P contains a
nade with head type-abstiracted atom Bw such that Ae isin By (Correctness of Calling
Patterns).

18



e If an atom is solved with solution A7 during OLD resolution of a goal in QA using
P, then some extension of the initial OLDT strncture of QA in P contains & unit
subrefutation with solution Aw such that Ar is in Av (Correctness of Exiting Patterns).

Proof. See Appendix.

Note that any extension of the initial OLIYT structure of (¢, p) in program P generates
ouly a finite number of nodes, because program P is assumed to be a finite set of definite
clauses, hence the conditions of Kénig's lemma are satisfied as {ollows:

s The number of type-ahstracted atoms is finite, since the atom part of each type-
abstracted atom must be an atom in the bodies of the clanses in P or an atom in
7. and the number of type substitutions for the variables in the atom is also finite.
Hence, the extensions at solution nodes occur only a finite numhber of times, since the
number of head type-abstracted atoms is finite. Therefore, the length of each label 1s
bounded by

|7] + “the number of the extensions at solution nodes™ x |C|mar
where |G] is the length of G and |C]pa; i5 the maximum length of the bodies of the
clanses in P, sinee the extensions at luokup nodes only generate child nodes with shorter

label. Thus, the length of each path is finite, since the number of solution nodes on it
is finite, and there can’t be an infinite number of lookup nodes an it.

» Eaclisolution node can be a parent node of only finite nodes, since program F is a finite
set of definite clanses. Each lookup node can be a parent node of vnly finite nodes,
since the number of type-abstracted atoms, hence that of solutions is finite. Thus, the
number of branches at each node is finite,

Due to the finiteness, the process of extension under the depth-first from-left-to-right strategy
{(or any other strategy) always terminates. The above theorem implies that any maximally
extended OLDT structure for type inference in finite steps covers the atoms at calling time
and exiting time during the top-down execution of the goals in Gp.

4 Tmplementation of the Abstract OLDT Resolution

The processing of unit subrefutations seems troublesome in OLDT resolution of Sections 2
and 3. To make the conceptual presentation of OLDT resolution simpler, the details of how
it is implemented have not been mentioned intentionally. In particular, it is not ohvious in
the “immediate extension of OLDT structure”

» how we can know whether a new node is the end of a unit subrefutation starting from
some solution node, and

# how we can obtain the salution of the unit subrefutation efficiently if at all.

In the actual implementation, we will use the fullowing modified framework.

4.1 A Formalization of A Modified Type Inference

(1) Modified OLDT Structure for Type Inference

A search tree, a solution table, an association and an OLDT structure are defined in the
same way as before except for the following points:
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Input : a node u.

Output : 2 node.
Procedure : Let the label of & be of the form {(“A, ae,.. ., 02", gl
Step 0 : Wien u is OLDT-resolved with “B = By B, ..., B,"in P,

s let Gy be a generalized goal “8;, By, ..., B dA n.n],eq,. .., 0" and

& let pg he “p L{},“
where 57 is an m.g.u. of A and B. When n is OLDT-resolved with “A{p v A)" in Th,

e ]

» let G be a generalized goal “as, ..., a,." and

o lel vp be “p v AP

Initialize ¢ to 0.

Step | If the leftmost of & is a call-exit marker J4; 01, gap w1 ]
o let 7,5 be & other than the leftmost call-exit marker,

e let vy, be “ppy = p." and
o add A, 04 to the end of 4,51 0407 solotion list i it is not in it

Increment ¢ by 1. Repeat this step until the leftmost of G 1s not a call-exit marker.
Step 2 : Hetorn a node labelled with (G, ).

Figure 17: Modified OLDT Resolution for Tyvpe Inference

s The goal part of each node label is a generalized gonl. A generalized goal is either O
or a sequence “A, a0 0, wWhere oy is either an atom or a call-exed marker of the

form [ B, v, q].

o The edges are not lubelled with substitutions.

{(2) Modified OLDT Resolution for Type Inference

A node in asearch tree of OLDT structure (Tr, Th, As) labelled with (A, o0, ... 0,7, g)
is said to be OLDT resolvable when p{X) # @ for any variable X in 4, Az, ..., An, and Ap
satisfies either of the following conditions:

e The node iz a leal solution node of T'r, and Lthere is some definite clause “B = By, Ba, ...,
Be" (m > 0) in program P such that A and B are wnifiable, say by an m.gu. .

o The node is a lookup node of T'r, and for some type substitution A (for the variables in
A), there is some variant of A(s v A) in the associated solution list of the lookup node.

The OLDT resolvent is obtained through two phases, called the calling phase and the exiting
phase, since they correspond to a “Call” (or “Redo™ ) line and an “Exit” line in the messages
of the conventional DEC10 Prolog tracer. A call-exit marker is inserted in the calling phase
when a node is OLDT resolved using the program, while no call-exit marker is inserted
when a node is OLDT resolved using the solution table. When there is a call-exit marker at
the leftmost of the goal part in the exiting phase, it means that some unit subrefutation is
obtained.

The precise algorithm is shown in Figure 17. The processing in the calling phase is
performed in step 0, while that in the exiting phase is performed in step 1. Note that each
node is labelled, say with (7, g}, in such a way that the following property holds: “the type
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substitution part g always shows the type information of atoms to the left of the leftmost
call exit marker in G.” When there is a call-exit marker [A;, ;. ;] at the lefimost of goal
part in the exiting phase, we need to update the substitution part by propagating the type
substitntion to g; through yj in order that the above property still holds after eliminating the
call-exit marker. The sequence vy, 1o, ... denates the sequence of updated type substitutions.
In addition, when we pass a call-exit marker [A4;, g;. ;] in step | with substitution v;, the
atom A;v; denotes the solution of a nnit subrefutation of A;u;. The solution A;y; 15 added
to the solution list of 4;p;.

(3) Modified OLDT Refutation for Type Inference

An ruitdad QLDT structure and an erfension of QOLOT structure are defined in the same
way as hefore except that a new solution is added two the solution table at the OLDT resolution
step above, An OLDT refutation of Gp is a path in the search tree of same extension of the
initial OLDT structure of Gp from the root node to a null node. Let » be the substitution
part of the null node. Then the solution of the refutation is Gu.

Note that we no longer need to keep the edges, the non-leaf selution nodes or the null
nodes of search trees.

4.2  An Example of the Modified Type Inference

Let us show a different example. Consider the following program defining “mult™ and “add.”
muelt{zere,Y,zerol.
mult (suc{X),¥,2) :- mult(X,¥Y,W), add(Y W,Z).
add(zera,Y,¥).
add (suc(X),Y,suc{Z}) :- add(X,Y,2).
Then the type inference of muli{ Xg, Yo, £o) <> proceeds as follows:
First, the mitial OLDT structure is generated,

Secondly, the ot node (“malt{ X, Yo, £5)".<>) 1s OLDT resolved using the program.
The left child node gives a solution mult{ Xo, Y5, Z0) < Xo, Z0 <= num >. The right child
node is a lookup node.

Thirdly, the lookup node is QLDT resolved using the solution table. The generated child
node iz a solution node. Fourthly, the solution nede is OLDT resolved [urther using the
program. The left child node gives two solutions add(Ys, Wa, Za) < V5, Wa, Z9 <= num > and
mult{ XNo, Yo, Zp) < X, Yo, Zo <= num >. The right child nede is a lookup nede. Fifthly, the
lookup node is OLDT resolved using the solution table.

Sixthly. the first lookup node is OLDT resolved using the new solution. The generated
child node is a solution node. Seventhly, the generated solution node is QLI resolved nsing
the program. The left child node gives a new solution add(Yy, Wy, Z4) < ¥y, Wy, 2y = num >,
The right child nade is a lookup node. Lastly, the lookup node is OLDT resolved using the
solution table. Because the generated child node gives no new solution, the extension process
stops.

muf.!().'.«.. ¥a. 29}
o>

mult( X, ¥V, 7} <> : []

Fignre 18: Modified Type Inference in Step 1
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| mult| Xo. Yo, Zu)
= >

g

]
[ < Xo. 2y = nums>|

¢

-

mult{ Xa, Yo, Wa), add(¥a, Wa, Z2), 1] |
o>

- ——

mult(X,Y, 2) <> : [mult(X,Y,Z) <X, Z < num>|

Figure 19: Modified Type Inference in Step 2

mult(Xg, Yo, Zo)

o>
— ™ _
| 0 Lmﬂ!t{;\';.}’-;.H"-;}.ﬂdd[5’1|‘r'ﬂ1fﬁ]-|] |
| < o . ==

XNog. dp = pum >

I
.-l|l ﬂddiln' H.r?' 'zi ]'! I]
! <Ws = nnm >
b '/Kdd(} Wa, Za 0
I a B We 2y 1
Vo Nes Yo, 2o = num > < W, = num > T
1"., | Y
1.‘__‘-“ n 3
T <Xy, Yy, &y & pum > |
x\\ 1
mult{ XY, Z) <> [multi X, Y. 2V <X. 2 + num > Ymult{X, ¥, 2) < X ¥, Z < num > ,rI
add (YW, ) < W = num > : [add{V, W, Z) <V W 2 = num > ,,"r
= -

o e -

Figure 20: Madified Type Inference in Step 5

This problem is not so trivial as one might think at first glance, For example, suppose
that the predicate “mult”™ iz defined by

mult{zere,Y,zero).

mult{suc(X),¥Y,Z) :- mule(X,¥,¥W), add(W,Y,7).
by exchanging the first and the second arguments of *add.” Then, one of the exit patterns of
mult (X, Y, Z) <> is mult{ X, Y, 7) < X <= num >, hence, we can’t conclude that the third
argument is a number. For example, mult{sue zero), 1, Y) succeeds for any Y.

4.3 Correctness of the Modified Type Inference

This modified type inference is a correct implementation of the type inference of Section 3,
hence the same theorem as Theorem 2 holds.

Theorem 3 Let P be a program and QA be a type-abstracted atom.

s If an atom Br appears at the lefimost of a goal during OLD resolotion of a goal in
£2X nsing #, then some extension of the initial OLDT structure of QA in P contains a
node with head type-abstracted atom Bw such that Ae is in By {Correctness of Calling
Patterns).

o If an atom is solved with solution Ar during OLD resolution of a goal in QA using
F, then some extension of the initial OLDT structure of @A in P contains a unit
suhrefntation with solution A such that Arisin Av (Correctness of Exiting Patterns).

Proof. To prove the theorem, it suffices to show that there exists an extension of an initial
OLDT structure of Section 3 il and only if there exists an extension of an initial OLDT
structure of Section 4 satisfying the following correspondence:

22



i fﬂ:uﬂ{:{g, Yu. E.-.}
L <

a
(£ Xg, Zp &= num >

Cadd( Y5, Wo, 20 1 add( Y., Wa, £2),
| < Wy & num> < ¥y, Wy &= num >
7 H_Y':

f ? mult( Xz, Yq, Wa), add( Yz, Wa, Z2). []
' <»

0 | add(Yy, Wa, Za L 1 [& add(Ye, We, Ze ) 1T |
<Xo, Yo, &p = num> | W, & num> ", < Xo, Yo, o & num>| | <V, We 4= num >
J ] -

m] | =
E{Xﬁ,ﬂ,?ﬂ{-l‘tﬂm} < Ko, Yo, Fo o= num >

mult{ X, ¥, 2) <> : [mult(X, ¥, Z) <X, Z &= num> mult( XY, Z) <X, Y, 2 & num ::‘;
add (Y, W, Z}) < W &= num > : [edd(V, W Z) <Y, W, £ = num > o
add(Y, W, Z) <YW & num> : [add(Y,W,2) <V, W,Z & num>]

Figure 21: Modified Type Inference in Step &

{a) The corresponding search trees have the identical form and satisfy the following con-
ditions:

s The goal parts of the correspunding nodes are identical except for call-exit markers
(if any).

« The head atoms of the corresponding nodes are identical (although the substitution
parts are not necessarily identical).

s The computed solutions of unit subrefntations are identical.
{b) The corresponding solution tables are identical.
{c) The corresponding associations are identical,

Due to space limit, we will omit the details of the proof.

5 Discussion

in the abstract interpretation of Prolog programs, what we would like to analyze are the
run-time properties of a given goal when it is executed using the nsual top-down Prolog
interpreter. As mentioned in Section 1, some operation which is botlom-up in nature is
inevitahle. According to how the boitom-up operation is integrated, the frameworks of the
abstract inlerpretation are classificd as follows.

The pure bottom-up abstract snterpretation approach is based on the bottom-up inter-
preter, i.e., hyper-resolution. This approach was applied to type inference by Kanamori and
Horiuchi [11], and generalized by Marriott and Sendergard [17].

The hybrid abstract interpretation approach is based on both the top-down interpreter
and the bottom-up interpreter. Depending on how these two interpreters are combined, the
approach is divided into the two-phase hybrid abstract interpretation or the one-phase hybrid
abstract interprelation.

The two-phase ahstract hybrid interpretation was proposed by Mellish [19] to give a the-
oretical foundation to his practical techniyues for analyzing determinacy, modes and shared
structures {18). His approarh derives simnltaneous recurrence equations for the sets of goals
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at calling time and exiting time during the top-down execution of a given top-level goal,
and ohtains a superset of the least solution of the simultaneous recurrence equations using
a botlom-np approximation. The reason for the separation inte two phases, simulating the
top-down execution and solving by the bottom up approximation, is two-fold. One is that,
by simulating top-down execntion, we can focus our attention on just the goals relevant to
the top-level goal. The other is that, by solving by bottom-up approximation, we can obtain
solutions without entering a ron-terminating computation loop. (See Kanamori [15] for a
Justification of Mecllish’s approach.)

The one-phase abstract hybrid interpretatron is the vne we have presented in this paper.
The approach differs from the two-phase approach in that it starts with OLD'T resolution
from the beginning. OLDT resolution can compute solutions of a given top-level goal without
either entering a non-lterminating computation loop (unlike the uswal top-down interpreta-
tion) or wasting time working on goals irrelevant to the top-level goal {unlike the usnal
bottom-up interpretation), so that the corresponding abstract hybrid interpreter achieves
the same effects as Mellish’s approach without the separation into two plases.

Similar approaches have been proposed independently by several researchers. Tao intro-
duce the operation bottom-up in nature, Bruynooghe [1,2,3] employed abstract AND-OR
graphs, Mannila and Ukkonen [16] generalized the techniques of the data flow analysis of
the conventional programs, and Debray and Warren [6,7] ntilized extension table in database
query processing. {Our idea of using OLDT reselution to e,xplam abstract interpretation was
propagated to [22] through [2].)

6 Conclusions

We have presented a nnified framework for logic program analysis using a type inference
problem as one of its examples. This approach was implemented in our system for analysis
of Prolog programs “Argas/A” from April 1886 to March 1988 [12,13,14].
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Appendix Proof of the Correctness

The definition for OLI tree is the same as that for search tree of OLDT resolution, except
that OLD trees contain only solution nodes. When new nodes are added, they are always
solution nodes. henee the solution table and association pointers are not required. The
definitions for OLD resolution, OLD refutafion etc, carry over in the obvions way. A path
in an OLD tree (ur a search tree of OLDT structure) starting from a node labelled with
(“A, ", ) is called a partial subrefutation of Ae when it does not contain any subrefutation
ol Ae as ils prefix. Using these notions, the correctness of OLDT resolution is siated as
below:

Theorem 1 {Correctness of OLTIT Resalution)
Let @ be a goal, Ty be the initial OLD tree of @, and &; be the initial OLDT structure
af 7.
(a) Some extension of Ty contains a node with head atom Br, if and only if some extension
of & contains a node with head atom Br. (Correctness for Calling Patterns)

(b} Some extension of ¥3 contains a subrefntation with solution A+, if and ouly if sowme
extension of S; contains a subrefutation with solution A7, (Correctness for Exiting
Patterns)

Proof. Althowgh our standard hybrid interpretation is slightly diferent from the original

OLDT resolution by Tamaki and Sate [19], these differences do not affect the theorem. The

prool of the "if” part is by induction on the structure of OLDT structures. Due to space

limit, we will emit it. The “only if” part is an immediate consequence of the following lemma:
Let T he an extension of an initial OLD tree, and let & be an extension of an initial

OLDT strcture,

(a) If T contains a partial subrefutation of As whose last node has head atom Br, and
& contains a node with head atom Ae, then some extension of § contains a partial
subrefutation of Ae whose last node has head atom Br.

(b} IT 7" contains a suhrefutation of Ae with solution A7, and & conlains a node with head

atom Aeg, then some extension of § contains a subrefutation of Ag with solution Ar.
The proof of the lemma is almost the same as that of the lemma in Theorem 3.3. See the
following proofl of Theorem 3.3.

Similarly, nsing the notions about OLD resolutions, the correctness of the type inference
is stated as below:

Theorem 2 (Correctness of the Type Inference)
Let QA be a type-absiracted goal, Ty be the initial OLD tree of a goal in @A, and & be

the initial QLD structure of QA

(a) If some extension of Ty contains & node with head atom Br, then some extension of &
contains a node with head type-abstracted atom By soch that Bris in By, (Correctness
fur Calling Patterns)
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{b) If some extension of Ty contains a subrefutation with solution Ar, then some extension
of 85 contains a snbrefutation with solution Ar such that Ar is in Av. (Correctness for
Exiting Patterns)

Proof, ‘The theorem is an immediate consequence of the following lemma:

Let T be an extension of an initial QLD tree, and S be an extension of an initial OLDT
structare.

(a) If T contains a partial subrefutation v of Ae whose last node has head atom Br, and
5 romtlaing a2 node v with head Lé’pe-ahﬂracieﬂ atom Ap such that Ag is in Ap, then
some exlension of S contains a partial subrefutation of Ap whose last node has head
type-abstracted atom He such that Bris in B,

(b) 11 T countains a subrefutation vy of Ae with solution Ar, and & contains a node v with
head type-abstracted atom Ap such that Ae is in Ap, then some extension of & contains
a subrefutation of Apg with selution Ap such that Aris in Ae.
The proof of the lemma is by induction on the trio (7,8, v), ordered by the following well-
founded ordering : {+,8,v) precedes (7,8, ") if and only if
o Iyl < Y] or
e |7] = |7'], and v is a solution node, but v’ s a lookup node,
where 1= means the number of the nodes contained in the path + ([19] pp.93 94).
Base Case - When |%| = 1, the pari{a) of the lemma is trivial, since Bris Ag, hence Ap
can be Br. The part (b) is vacantly trne, since |4] > 1 for any subrefutation.
Induction Step : When |v| > 1, we will consider two cases depending on whether the node
v iz a solution node or 2 lookup node. Let « be the starting node af 5.
Case 1 - When ¢ is a solution node, let o' and %° be the next node and the remaining
path of the {partial) subrefutation =, and C be the definite elanse in P used in the first
step of the (partial) subrefutation 5. Then, the label of o' s (“4}, Ag,..., Ay, .. 7, &),
the OLD resolvent of » and €. From the assumption, the v is also OLDT resolvable with
¢, and the OLDT resolvent {“A;, A2, An, .. " ") is snch that (A, A2,... As)e’ is in
(A Ag, o AL due w the property of © Z.* Extending § (if necessary) by the OLDT
resalntion for type inference at the node v. we can get an OLDT structure §' in which v has
a child node ¢ labelled with {“A4,, Aa, ..., An, .7 "), As for the part (a), %" is divided into
v ¢ subrefutation of 4;¢" with solution 4,0'8,,
<2 1 subrefutation of Aze'#; with selution Aze'8, 04,

7 partial subrefutation of Aye'8y .. #,_, such that |v&] < [¥].
From the induction hypothesis, we have successive extensions 8;,84,...,9% of & such that
each & containg a path 8;8; ... 6§ as below:

§, : subrefutation of A, p" with solution A,w, such that 4,#'¢; is in Ay,

B - subrefutation of 4.y with solution Aste such that Aae'8 8, is in Agis,

b : a partial subrefutation of Ayp'
whose last node has head type-ahstracted atom Bw such that Brisin By
The path in &, starting from v and followed by 81, 62,..., 8 constitutes the required partial
subrefutation of Ap. The part (b) is proved similarly using the property of w X
Case 2 : When v is a lookup node, there is a corresponding solution node vo labelled with
(“Ag....", po) such that Ag is a variant of Agpe. From the induction hypothesis for (v, S, w),
we have an extension &' of § such that §' contains a subrefutation of Aypy with solution
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Av (starting from vg) such that Ar is in Av. By the operation in step 3 of the definition of
the OQLDT structure extension, the solution list of Ap in 8" includes the solution Av. Now
consider the label (*A4,..7", u) and the solution Awr. Since (“A,...", #) and unit clanse Ar
have an OLD resolvent, the label (“4,...7, #) and Av also have an OLDT resolvent. This
means that §' can be extended (if necessary) to 8" by the operation in step 1 in the definition
of the OLDT structure extension. Then, § contains a subrefutation of Ag with solution Aw

{starting from v) such that A7 is in Aw.
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