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ABSTRACT

We studied several important properties of Boolean polynomial rings
m [SaSa 90]. Especially we saw ideal plays a central role for solving
a Boolean constraint. This paper gives an algorithm which produces a
rowriting system for a given fluitely generated ideal in the nng of Boolean
polynomials. The rewriting system reduces all Boolean polynomials that

are equivalent under the ideal to the same normal form.

1. Boolean polynomial ring

We assume that the reader is familiar with clementary algebraie notions such as rings and
ideals (see [Waerden 37, 40], for example], in particular Boolean algebras (see [Halmos 63].

for example), and the ternunology of rewnting systemns (see [Huet 80), for example).

For a Boolean algebra (V. A, .0, 1,), define a+ b =g {an=b)v(—anrb) aud a x b =4, arbd
for each a, b in B, then {H, «, 4} is known to form a Boolean ring, namely, a commnutative
ring with a unit with the following properties.

(Bl) Vae B ad4a=10

(B2 %YecB uxu=a

In what follows, let B be a fixed Boolean ring, Elements of B are denoted by typed variables
a,be.. .. (possibly with suffix). As usual, we omit symbols =, e, a = b is denoted by ab,

for example.

The following notions may intuitively clear to the reader. However, we give a formal

defimitions to them for ease of later discussion.

First., assume that we have a denumerable set V' of variables. We denote variables by
tyvped variables X, Y, Z. ... (possibly with suffix). A power product 15 a finite sequence

XX .. X, (nZ=20)
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of variables. We do not distinguish two power products that contain the same number
of the same variables in different order. Therefore, a power produect can be regarded as
a finite multiset [Dershowitz 79] of variahles. The empty power product is denoted by 1.

Power products are expressed by typed variables a, #.+,... (possibly with suffix).

A polynomial is a function ¢ from the set of all power products to B such that ¢¥(a) =0
for every but a finite muuber of power products e. The value (o) is called the coefficient

of . As usual, we express a polynomial in the following way:
ajog + agoey + - Faga,  (n=0)

which means the coeflicient of @; is ; and the coefficients of all the power products other
than a;s are 0. When a; = 1, the coefficient a, 1s often ommited. It is called & monomial
if n = 1, and it is denoted by 0 if n = 0. Polynomials are expressed by typed variables

U, @,y .. | possibly with suffix).

We define operations + and = on polynomials as follows:

(w+aila)l=uvla)+ dlal, (@ = a)la)l= Z {3} % o),

Hy=n

where F~ denotes the concatenation of 9 and 4 as strings (or the union as multisets). As
is well-known, the set of all polynomials forms a ring w. 1. t. the operations + and =. We
denote this ring by B[V]. We omit x symbols also for polynomials.

A funetion @ from Voto B is called a substitution. A subsoitution # 18 extended to a

function from power products and polynomials homomorphically in the following way.
(1) BN AL X =68 (X)) 8,

(2) Blajog + azag + -+ agtn) — @ 8lay ) + aflng)-- -+ a.flo,)

2. Reduction

In the rest of the paper we often denote a polynomial in the additive form aa + ¢ (ic. a
sequence of a monomial, a + svmbol and another polynomial in this order). In this case,

we assume that ¢ # 0 and ¢(a) = 0 unless otherwise stated.

Let — ., denote rewriting over polynomials which reduces the order of a monomial by using
the property (B2} of & Boolean ring once. More precisely, aX Xa + ¢ — aXa + for any

variable X. For example,
aXWZ 4+ XY Z 4+ cXZ% i (at WXYZ +eXZ5
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It is clear that the following holds:

Proposition 2.1
The rewriting system {— .} is confluent and terminating.

For a polynomial ¢, ¢] expresses the canonical form of ¢ by the rewriting system {— . }.

Let B(1") denote the set of all polynomials in canonical form. If we define a new operation
by ¢ x' = (v %" @)], then B(V) forms a Boolean ring w. r. t. the operations + and w!,
We call this the Boolean polynomial ring. For convenience, let us call an element of
B{V'} a Boolean polynomial. Similarly, a monomial in canonical form is called Boolean
monomial. We omit x' symbols also for Boolean polynomials. Therefore, in what follows,

W stands for v x' @ if both ¢ and ¢ are Boolean polynomials and ¢ x ¢ otherwise.

For a finite set F' = {&1....,¢n} of Boolean polynomials, let I{ F') denote the ideal over
B{V) generated by F,ie

II\F’ = {7‘:']@1 R t"r:ﬁ*nlﬂ'l ----- i, £ Bl‘”-

Let > be an ordering on power products. The ordering is said to be admissible if the

following hold:

(1} @& > 3 for anv power product o and ¥ such that o 2 F in the sense of multiset

inclusion.
(7)) M a >4, then oy > 3~ for any power product a, 3, and 4.

Let S be a fixed finite set of variables. The fact that an admissible ordering on power
products consisting ouly of the variables in S is well-founded is well known as Dickson’s

lezmna [Dickson 13], or easily proven as its corollary.

In what follows, let > be a fixed admissible ordering on power products. Moreover, we

assume that = is total.

The leading power product of a polynomial is the greatest power product with non-zero
coefficient. Let a notation aa & ¢ express polynomial oo + ¢ with o as its leading power
product, that is, a > 3 for any d such that ¢(#) # 0. Note that every non-zero polynomial

is uniquely expressed in the above form.

We extend the ordering > to polynomials in the following lexicographic way. First, we
define 00 > ¢ for any polynomial ¥». Next, we define aa & @0 2 b & ¢ if and only if one of

the following conditions holds:
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(?) & = 3 and a > b by the natural ordering in Boolean algebra B.
(3) a=4d,a=>5 and v = ¢ in the recursive sense.

Now, we define reduction by a Boolean polynomial aa 3 ¢. Let ¢ be a Boolean polynomial
such that bad + v, and ' 1s a Boolean polynomial such that ' = o + M1 + alaf + abfs.
Then, if ab # 0, we wrile ¢ = .06 . Similarly, if ¢ is a polynomial such that o = baid 44,
ab # 0. and 2" 15 a polynomial such that @' = v 4+ W1+ ajaf+abdo, we write o =, 0y .

These mean ' is obtained from ¢ by substituting aa for ¢ by using equation aa = ag.
That 15, bad is splitted to W1 + a)ad + baad first, and then ea is replaced by a¢. The

condition ab # 0 15 indispensable in order to make the reduction terminate.

Let It be a set of Boolean polynomials. We write ¢ =5 o if there exists » € R such
that ¢ = «, and ¢ ;?‘H' v if there exists a sequence dp, dy, ... dmim = (). of Boulean
polynomials such that ¢ = ¢ =g ¢, =g ... =*g ¢;m = v. That is ::-ﬂ is the reflexive
transitive closure of =g, We write 0 =g v if ¢ — . © or ¢ —, v for some ¢ € R. LH 15

. - o ¥ . .
defined as the reflexive and transitive closure of — g, and + g as the symmetric, reflexive

and transitive closure,

Temma 2.2
Let R be a set of Boolean polynomials. If ¢ — 5 i, then & > 1 for any polynomials ¢ and
1. I @ =g v, then @ > v for any Boolean polynomials ¢ and 4.

Proof: Easy to check. .

Corollary 2.3

Both of — 5 and = have a termination property. That is, there exist no infinite reductions

such a8 op — @) —Rr @2 —FH -« OT 90 = &1 =0 R 07 = <o e

3. Boolean Grabner base

In what follows, we will discuss ideals in Boolean polynomial ring. Intuitively, an ideal can
be regarded as the set of all Boolean polynomials of value 0 under a certain constraint.

{See [SaSa 90])

Let T bhe an ideal of the Boalean polynomial ring. A subset B of I is called a2 Boolean
Grobner base for T if it has the following two conditions,
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(1) Ife+rvellore=u {mod I)), then there exists a Boolean polynomial, ¢, such
* %
that 1* =g ¥ and 1 =5 .
(2} Any ¢ € R is not reducible by = for any ¢ € R which 1s distinct from .
Moreover if & has the following property, it is called normal.

(3) Elements of R have no common leading power products, Le. if aa & ¢, a'a’ & ¢ are

distinet elements of R, then a # a'.

Theorem 3.1
Let F be an arbitrary finite set of Boolean polynomials, then a Boolean Grobner base for
the ideal generated by E exists and, furthermore, we have an algorithm to construet it

from E.

Lutuitively. an element of the generated ideal is a Boolean polynomial of value 0 under
iLe constraint that all clements in E have value 0. A Grdbner base can be viewed as a
mechanism to determine whether & certain polynomial is in the ideal. First. we give an

algorithm, then show its correctness. We need to define several notations.

Definition 3.2

Let R be a set of Boolean polynomials. For each Boolean polynomial é. ¢ g denotes n
- , .. - - .

Boolean polynomial, v, such that ¢ =g ¢ and ¥ is irredneible by = g, 1.e., there exists no

Boolean polynomial », such that ¢ = p ¢, and called a normal form of ¢ by =g. (Note

that Corollary 2.3 assures the existence of such i However, it may not be unque. ¢lg

denotes one such 1.}

Definition 3.3

Let aa = o be a Boolean polynomial. Then a Boolean polynomial ag + ¢ is called a
coefficient self-critical pair of aa & ¢ denoted by csclaa® ), and o Boolean polynomial
X + o for auy Boolean variable X in o is called a variable self-critical pair of an & 0

denoted by vsclaa & @), (Note that this is not determined unigue. )

If ane & & is in an ideal, 1, then so are all the coefficient self-critical pairs and variable

self-critical puirs of oo = 0.

In fact. let X € a. ie.. o = X3 for some {possibly empty) power product, 4. Then,
aXdé e Iimplies {a+ 1) eXJdd¢)=as+o e ], and (X + NWaXide)=Xd+oel

Example 3.4
Let aa & ¢ be aXY & bY . Then, its coefficient self-critical pair is {ab+ b)Y The variable
sclf-critical pairs are bXY + X and 0(= bY'Y + Y}
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Definition 3.5

Let aa & ¢ and b3 7 o be Boolean polynomials, and 4 the intersection of @ and 3 as

sets. Accordiag to tradition, let us call ¥ the GCD (greatest common divisor) of @ and 3.
Suppose that 4 # 1,ab # 0,a = ya' and 3 = v/#'. Then, a Boolean polynomial b3'¢+ aa'y

1s called the critical pair between aa 0 ¢ and b3 3 4, and denoted by cplaa T @, 53 G 3.

If an &8 & and b3 & 1 are in an ideal, I, then so is the critical pair between aon & ¢ and

b3 By Infact, bi'(aaE o)+ an' (b3 & v) = bi'e¢ +aa'v & .

Example 3.6

Let aaifig = aXY (00X and bdaw = bY Zwal” where ab # 0, then (020X ) +{aX )(aY ) =
bZ X +aX'Y. Therefore, bZX + a XY is the critical pair between aXY 00X and Y Z G al.

Definition 3.7

Let o be a Boolean polynomial and R be a finite set of Boolean polynomials, then CP(¢. I?)
denotes the set consisting of all the non-zero eritical pairs hetween ¢ and each element of

F and all the vanable self-critical pairs of 4.

Diefinition 3.8

Let B be a finite set of Boolean polynomials, Glue( R) 1s a finite set of Boolean polynomials
defined as fullows, For each power produect o which is the Boolean power produet of some

Booleau polynomiel in R, let {a;a@¢,. .., apaitdy | be the set of all Boolean polynomials
it B which have o for the ]ﬂrgf-ﬁ‘r. power prndurt. Then (g + ...+ ay, Rl B e Y |
£ Glue{ I2). All the elements of Glue I} are such Doolean polynomials.

Example 3.9

Let R ={aXY $ X, 0XY G Y DXZ @ X XZ & 2}, then Glue(R) = {{a + 8) XY & (X +
YiLib+ 1 XZ 0 (X +2)}).



Mo v the algorithm can be presented.

input £
R+—— 1
while E # i
choose ¢ € E
E +— (E={o})U {cse(¢)} and ¢’ — olr
if ¢' £ 0 then
for every an 51y € B
if ca =4 2
then E«— EU{{¢y+4)]} and R +— R — {ea & '}
else B — (R — {aa D }) U {aa & (V'L rogey )}
end-if
end-for
Fe— EUCP(¢' . R)ond R+— RU{g"}
end-if
end-while
output Glue(R) (Glue(R) is a normal Grobner basce)

(In this algorithm, the choice of an element in E should be fair. That is, any elcment of E
should be chosen at some stage in the ontermost while loop. )

This algorithmn terminates and returns a Grébuer base. To prove the correctness of the

algorithin, we study a more general form of the algovithm.

Diefinition 3.10

We define inference rules on pairs ( E, B of finite sets of Boolean polynomials.

Rule 1 'EE i;{; where ¢ =g ¢
Rule 2 E%EF
Rule 3 E Riu{aa &0} where ¢+ = g

E. R U {aa & ¢}
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E. R {baf G )

, G 6e R ab d

Rule 4 EUTHL+ a)ad + abio 0] R where aa # € Roab# Dand o £
Rule & EU{v}.R

e EU {csc(v)} BRU {)
Rule 6 E,R 1 yv,o & Rand ep(vh, o) # @ (critical pair)

— - where 1", ¢ WLy
E U {eplvn o)} R v '
- E R o o .. .

Rule 7 where " € B (variable self critical pair)

E U {vse(v)}, R

Definition 3.11  {General form of the algorithm )

Let Ey = E, Ry = 0. For each 1, let E;,, and R;4; be obtained from E, and R, by one
of the above rules. In the following, U2, N7 E; is denoted by E™ and UX, N% R, by
R™. We give priority to Rules 1 and 2. We need two restrictions to make the algorithm

COorrect.
(i} The algorithm must be fair, i.c., E™ = §.

(1)  Any possible critical pair or variable sclf-critical pair must be taken, i.e. for each
v © R, any vsc(y) must be pnt in some E, by Rule 7 and for each v, p € R™,

cp(t, ) must be put in some E, by Rule 6.

Then for some i, E; is empty and Gluc(R;) is a Grobuer base. (Note that the previous

algorithm takes the form defined here. )
To prove the last statement, we need some more definitions.

Definition 3.12

Let ¢ and ¢ be arbitrary polynomials such that ¢ — ¢ = B¢ for ¢ € E,. We associate
this equation with an ordered pair ({y, ¢'}. o), where {p, ¢} is & multiset., Similarly, we
associate the reduction ¢ — 4 4 for ¢ € R; with an ordered pair ({2}, ¢). We also associate
the rewriting «» — . ¥ with an ordered pair ({,2}.9). where o it a special constant. We
introduce an ordering on the above ordered pair defined as follows. The first componcnt
15 compared by the multisct ordering induced by the ordering on polynomials and the
second component is comparcd as a Boolean polynomial., We define o as bigger than any
Boolean polynomial. Finally, we define an ordering on ordered pairs lexicographically by

the components. We denote this ordering . Note that this is well-founded.
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Definition 3.13

Let o and v be arbitrary polynomdals. If there is a sequence =, Z4,...,=m such that each
=; s an equation §; — (4 = 5,9, for ¢; € E; (which is denoted by (; =4, (j41) or a
reduction from ¢ to (j4; or from (4, to (; by —, for ¢; € I or by — . where {; = ¢

and (ney = ¥, we write J’[’EEIR.] v, and the sequence is called its evidence. Note

that there might be many evidences of :t“:;..‘ my ¥ in general. We define an ordering
on evidences as the multiset ordering induced by the ordering on equations and reductions
defined above. Note that this is also well-founded.

Note that the definition of the ordering does not depend on 1. Therefore, we can compare

. * . . * , o - . .
an evidence of ¢ — g, g, ¥ and an evidence of o ) gy ¥, evenif s and j are different.

" . * ;o . . L ,
We write o < g g) U, if there exists 1 such that » :‘{Ei_ﬂl’] P,

ln the Definition 2.6, » = ' if ab = 0. In order to make the following proofs simpler, in
this case we also abusc the notation ¢ —anme ' as an dummy reduction in an evidence.

That is, the evidence actually does not include this dummy reduction.

Lemma 3.14
Suppose that Rule 1, 3, 4, or 5 is applied in the i-th step and a Boolean polynomial in E;
or R, say v, is eliminated. Any equation using @ or reduction using — can be replaced

by a smaller evidence in (. 40

Proof:

Rule 1: Let ¢ = bad + » € E;. Let aa & ¢ € Ru 1) =yame t*. and ¢ € Eipy. Given an

: . . * . ¥
equation =y £. Let  —ranape (" and £ —sa00 :t- Then ( —uame Cr Tt 'J:' =g §'lx —

;J
o

— £ It is easy to see that this evidence is smaller than ¢ —y £ (Note that there
are several cases this evidence includes dummy reductions such as when abe = 0. In thus

case the evidence is nothing but { = £.)

Rule 3: Let aa v ¢ R; and ¢» =4 ¢ € Riz, for ¢ € R,. Given a reduction { —gag4 &-
Then £ —4 £ —aa - It is easy to see that this evidence 18 smaller than { —aape £
Rule 4: Let ba 3 € Ry, aad o € R, and bad+4 =5, 50 (M1 +aladtabdd4+)] € Eoa.

. . - * *
Given a reduction ¢ —pagey & Then £ —anae & —x &L S(hi1+aiad+abforiil ('] =

(" = game C. It is casy to see that this evidence iy smaller than ( —segaye £-

-



Rule 5: Let v = aa @ ¢ € E,, v € R4y and csc(v?) = {{a + 1)) € E;yy. Given an

evidence is smaller than =yt '

Corollary 3.15

C s ¥ . : :
Ifi<i, ¢ =g r)t = 9 =g, k) v for any polynomial o, ¢

: * . . . .
By this, we can see — p p) 1s an equivalence relation over the set of polynomials.

Lemma 3.16
. . : - — .. . .o
Let { and £ be arbitrary polynomials, and =;,=5..... = o muninal evidence of { = £,

Thew,
(1} There is no equation in it which uses a Boolean polynomial in some E,.

(i1 There is no j such that =;_4 is a reduction from £ to &0 and =5 is a reduction

from &, to £, (we denote this situation £, « & €ivi).

Praof:

By the ahove lemma, for each j = 1,....m, =; is neither an equation using a Boolean
polynomial eliminated by Rule 1 or 5 nor a reduction using a Boolean polynomial eliminated
by Rule 3 or 4. In other words, unless =; is a reduction by — ., =; is either an equation
using a Boolean polynomial in E™ or a reduction using a Boolean polvoomial in B, By

the condition (1) of the definition of the algorithm. E™ = §. Hence (1) follows,
Suppose we have £,y + & — &,41. There are several possibilities.

Case 1: Both reductions are .. In this case, £, 1} = £,41]. Therefore, £; | « £; — £,

can be replaced by
* *
tfj—] —u Ej--ll - ff;+|l —x ~fg+1-
which is easily verified to be less than £, — £, — €,41. This contradicts the minimality.

Case 2: One reduction is — . and the other —g~. We can assume £, 3 + « £; —pe £t

withont generality. There are three subcases.
Subcase 1: §; = +aXXa, & =p+aXa ¢ —p~ @' and §4 = ¢ +aX Xa
Subcasc 2: £ = ¢ +aXXa, i =p+aXNo, ae =g~ and £, = ¢ + X Xy

—10-



Subcase 3: §; = ¢ +aXXal, {1 = ¢+ aXad., aXaf —sxaqpe v for bXo i ¢ and
Eip1 =@+ X¢

We ronsider only Subease 3. The others are much simpler. Let ¢ —pvame @' by rewriting
4 monomial of a form eXad in ¢. (If this is not possible, it is just a dummy reduction).
Thew, &1 = ¢ +aXad —ixame ¢ + ¥ —bxage ¥ + ¢ =xXvtp ¢ + XU = L Note
that Xu» + ¢ = ab3(Xé + ¢). By the condition (ii) of the definition of the algorithm,

Xé + o € Ey for some k. By replacing =xy4y by an evidence using =yg+ge, We can

easily get an evidence of &1 g, gy £j+1 which is smaller than the original evidence

£ioy — & = & This contradicts the mimmality.
Case 3: Both reductions are — goo. There are three subcases.
Subcase 1: £ = p+aa+bd, aa —ge ¢, & = b3, b3 =g 0, and £ = ptaa+to

Subcase 2 £, = p+cady.oady,bIdoe BT L0 =9+ ¢f1 4 ayady + eadyy, and
fiv1 =9 + {1l +blady + chavyo, where ca,ch £ 0.

Subecase 3: £, = ¢ + caliyd, and T b3y F o E R Ly = +ell+ a4 + cavdur,
and £+ = ¢ + o1+ bjadyé + cbado, where ca,ch # 0, and a My = 1.

We consider only Subease 3. The others are much simpler. £,y = p+e(1+aladyé +cayby
—piyme ¥ Fell 4+ all +bjadyd + ol + n)badd + caydy —*r-,; (o+ell+alll+badys+
ol 1+ albabd + cardi )] =ppsaney (¢ +Hell+al(l+bladyé +e(l+blaydy + cbadp) e
A l+all+bladve +cll+blayéy + chabg —aasme v Hell+bladyd + chadd = E54 -
Note that (b + aael] = eplaad 5 ¢.bdy & @), By the condition {ii) of the algorithm.
this is in Ej for some k. H is easy to see the above evidence is smaller than the original

evidence. (When ab =0, (2 + ¢l 4 a)(1 + blafvé + ol 1 4 albudd + cavdy)] = (¢ + el 1+
al(l 4 Dadvd + of 1+ blavéys + chad¢)!. Hence eritical pair 1s not needed. )

This contradicts the minimality. |

Lemuma 3.17

{—. ¢ € R™} U {—.} is a confluent and terminating rewriting system on polynomials

N . Ed
for equivalence relation (g g;.

Proof: Confluence is an easy consequence of the above lemma and its proof. Termination
i« Corollary 2.3. 1
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Lemma 3.18

. . #* . .
Let » and + be arbitrary Boolean polynomials such that ¢ e gy U then there is a

Boolean polynomial, ¢, such that » by Ree ¢ and ¢ = R O

Proof: Let ¢ be the normal form of @ and g by {1 |[( € R®}U{—}. Since the rewriting
system is confluent and terminating, whichever order we take for applying rewriting rules.

we finally reach ¢ from » or v*. Apply — .. as far as possible in the reductions from » and

. *
t*. Then we get reductions ¢ =g ¢ and v = g . |}

Lemuna 3.19
The same statement as the above lemma holds for some R, instead of R™.

Proof: Since Ej is finite, only a finite number of Variables appear in the algorithm.
Moreover only finite number of elements of I (say 5 appear as coefficient of Boolean
polynomials in Eq. Note that any coeffcient of Boolean polynomials in U (E, U R,). is in
the subalgebra generated by § which is also finite. Therefore only finite number of Boolean
polynomials appear in the algorithm. Especially R™ is finite. Therefore, there exists some
R, such that # C R, by definition of B>, Clearly the assertion holds for this R,. |

Proofof the last statement of the definition of the algorithm: We first show the termination
of the algorithm and that R is a Boolean Gréoboer base, e, it has the properties (1) and

(i1).

Note that for each b o € B, == ¢ 4!4”.:.;“ (). Take 1 such that the above lemuma holds.
Sinee any pin Ly s reduced to 0 by =g, by applying Rules 1 and 2 several timnes, say
Ftimes, E,; will be empty, ie. the algorithm terminates, and output R,y for B. Note
that the above lemma also holds for R,y Therefore, in order to see R has the "only if”
part of (i) of the definition of Boolean Grébner base, it suffices to show the next lemma.

Lemma 3.20
Let [ be an ideal generated by a finite sot, E. of Boolean polynomials. Then for each

Boolean polynomial, - and v,

. » .
y=v (modI] il =g g,y

Proof: Easy to check. |



i

"if" part is straightforward, since ( € I for cach { € R. The property {ii) of the definition
clearty holds by the definition of algorithm.

To complete the proof, it suffices to show =g and =g, gy have the same normal form.

The property (11} is trivial.

Lemma 3.21
=g and =guor have the same normal form, ie. for each Boolean polvnomnial &, the

irreducible forms by reductions = g and =gy, are same,

Proof:

Let aja 5 @y.....apa & ¢, be all Boolean polynomials in B which has o as the largest
Boolean product. Let a =a; + ... 4+ 0. 0 = @1+ ...+ ¢, and ac L ¢ in Gluel H). Note
that when we do reductions to get a normal formn by = g, we can choose whatever order
of reductions we like, For a monomial of the form bad, apply = a,ace, - =g, abd, I
this order as far as possible. Then we get bad =, a6, 1+ a))od + bay 3y = a,a0a.
B 1+ay i L4ag)ad + b{14ay s dos+baydoy = .. =4 ase, B 1+a ) l+ag). .. (14a, )aid+
Ml+adl+ap).. . (1+an_ilanddnt ...+ b1 1:ﬂ1]ﬂ-23¢ft + baydey =Ml +a +..0+
)03+ ban 3on+. ..+ baydo; (since aa; = 0ifi # 7)) = W1+ ajad+bFaidi+... +aa¢q)
= K1+ ajad + bafe (since ag = ag; + ... + ad, = a,¢ = ;¢ for cach 1 = a0 =
a1+ A agd — aydy <.+, o, ) We can nomore reduce this by any =, a1, We also

have bod =040 b1 4 a)ad + baFé. By the above, we can see = 5 and =y, gy have the

same normal form. i

The next lemma is an important property of normal Boolean Gribner base,

Lerurna 3.22
Under a fixed admissible ordering on Boolean monomials, normal Boolean Grobner base is

deternuncd unique.
Froaf:
Easily proved by property (i) and (iii). [l
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