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Abstract

We address the problem of answering queries in circumscrip-
tion and related nonmonetonic formalisms. The answering pro-
cess we describe uses resolution-based theorem provers recently
developed for circumseription. Tn a way analogous to query an-
swering techniques in classical predicate logic, the process ex-
tracts information from a proof of the query. Circumseriptive
theorem provers consist of two processes, generating explanations
for the theorem to be proved and showing that these explanations
cannot be refuted. In general, many explanations compete in sup-
porting the theorem. We show thal queries can be answered by
finding certain combinations of explanations, and present results
to search the space of explanations, while carrying out significant
pruning on this space. L'he resulls are relevant to other nonmono-
tonic formalisms having explanation-based proof procedures.
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1 Introduction

For the first-order predicate logic, techniques developed by Green [1969a] are
the hasis for query-answering systems extensively used in deductive databases,
logic programming and synthesis problems such as planning. These tech
niques rely on resolution-based theorem provers that attempt to prove the
query while keeping track of the information generated during the proof.
Theorem provers can decide whether a query follows from a given theory,
and thus answer questions such as “Is there a coffee cup?”; the correspond-
ing query-answering procedure computes the instance for which the query
holds and can provide answers to questions such as “Where is the coffee
cup?”,

This paper addresses the query answering problem for logic databases
augmented with a cireumseription axiom [MeCarthy, 1986] and related non-
monotonic formalisms. As in the first-order case, the answering procedure
we present extracts information from a proof of the query. We build on exist-
ing proof procedures for circumscription that have recently been developed
[Przymusinski, 1989; Ginsberg, 1989; Inoue and Ilelft, 1990].

While existing theorem provers for cireumseription can correctly answer
whether or not a formula follows from a circumscription, Green's techniques,
although necessary, are not sufficient to provide answer extraction. The rea-
son is the following. Circumseriptive theorem provers are based on finding
explanations, or arguments, for the theorem to be proved, and showing that
these explanations cannot be refuted. In general, many explanations com-
pete in supporting the theorem, and a certain combination of these has to
be found. We show that to an informative answer corresponds a particular
combination of explanations, and present a procedure to find these combi-
nations, together with results to scarch this space and carry out significant
pruning.

Although we focus on circumscriplion, the results we present obviously
apply to its restrictions, as lor example logic databases using different types
of closed-world assumptions, and similar default reasoning systems having
explanation-based proof theories [Geffner, 1990; Poole, 1989).

The next section 1s a summary of results concerning circumscription and
its theorem provers. Section 3 illustrates the problem through an example,
and Section 4 provides the main results on extracting answers from a proof.



2 Background

This section gives a very brief survey on circumseription and its proof pro-
cedures. Additional background can be found in [McCarthy, 1986; Lifschitz,

1985].

2.1 Circumscription

T'he circumscription of a first-order theory T is its augmentation with a
second-order axiom CIRCIT; P; Z), where P and Z denote sets of predi-
cate symbols of T, whose model-theoretic characterization is based on the
following definition and result.

Definition 2.1 Let M; and M; be models of 7. Then M, <pz My il M,
and M, differ only in the way they interpret predicates from P and Z, and
the extension of every predicate from P in M) is a subsct of its extension in
My, A model M of T is (P, Z)-minimal if for no other model M" of T it is
the case that M’ <pz M.!

The predicates in P are said o be minimized and those in 7 to be vari-
ables; () denotes the rest of the predicates, called parameters.

Theorem 2.2 CIRC\T; F; Z) |= F il and only if M |= F, for every (P, Z)-
minimal model M of 7.2

2.2 Theorem Proving Results

General circumscription is highly uncomputable [Schlipf, 1986), and exist-
ing theorem proving results apply Lo restrictions of circumseriptive theories.
From now on, T' is a first-order theory without equality, consisting of finitely
many clauses, each of which is a disjunction of possibly negated atoms called
literals, augmented with the Unique Names Assumptions, that is, different
ground lerms denote different elements of the domain. We also assume that
the Domain Closure Assumption is satisfied since this is necessary to guaran-
tee the soundness of the query answering procedure described in this paper.

'We will often just say minimal maodels, P and Z being clear from the context.
u}: i clasaieal first-order.



Queries to be answered are restricled to existentially quantified formulas
(note that this includes ground formulas).

Theorem proving techniques for circumnseription are based on the follow-
ing results [Gelfond ef al., 1989; Przymusinski, 1989; Ginsberg, 1989].

Definition 2.3 Let T be a theory, CIRCIT; P; Z) its circumscription, £ a
formula, and let P* (P~) denote the set of positive (negative) literals whose

predicate symbo! belongs to P,
1. P~ 4+ )7 is called the erplanation vocabulary.

2. A finite conjunction £ of literals from the explanation vocabulary is an
elementary explanation for F relative to T if

{a) T+ E | F, and
(b} T E'is consistent.

A digjunction of elementary explanations is called an explanation.

3. Let L be an explanation. An elementary explanation for = £ is called
a counter to F.

4, Il an cxplanation has no counters it 15 valid.

5. A valid explanation E is minimal if there is no other valid explanation

I5" such that E'"E FE.

Theorem 2.4 CTRC(T: P; Z) = F if and only i there exist a valid expla-
nation for F relative to the theory T'.

Example 2.5 Consider the theory

T ={ ¥z bird(z)A-ab(z) > flies(x),
bird{tweety) s

where P = {ab}, @ = {bird} and Z = {flies}, so that the explanation
vocabulary is {ab}™ + {bird}* + {bird}~. Let us consider the query

I = flies(tweety).

3We identify @ with the set of all lilerals whose predicate symbols are parameters.

5



Now, —ab{tweety) is an explanation for F, as it implies I together with T
and belongs to the explanation vocabulary. It has no counters, as no formula
from the explanation vocabulary can be consistently added to T to deduce
ab{tweety). F is thus a theorem of CIRC (T'; {ab}; { flies}).
Next, let
" = T { ab{tweety) V ab{sam) }.

Then =ab(sam) is a counter to =ab(tweety) relative to T'. As no other valid
explanation for F exists, F' is not a thearem of the circumsecription of 77.

2.3 Query Answering Procedure

In line with the above results, the task of a query answering procedure for
circurnscription is to search for explanations of the query and test their va-
lidity.

To do so, the answering procedure can rely on an explanation-finding
algorithm. Such an algerithm is provided with a set of clauses T, a clause
F, and a vocabulary, and returns an explanation F, that is, a conjunction of
literals from the vocabulary, consistent with T, such that T+ I &= F. The
computation of explanations is based on the observation that such T, F and

E verify

(a) T+ —=F | -E, and
(b) T £ —E.

Explanations can thus be obtained by computing the set
New(T,=F)=Th(T + =F) - Th(T)

that belong to the vocabulary Pt + ¢). We call these the new theorems of
= I" relative to 7.7 The negation of each of such clauses (a conjunction of
literals from the explanation vocabulary) is an elementary explanation and
any disjunction of these is an explanation.

Testing the validity of an explanation represents the same computational
problem: if an explanation £ has no counter, then there is no new theorem

#Note that Ncwi‘}",-'.}"'} does not include clauses implied by T alone becanse their
negations are inconsistent with T and they cannot be counters. The predicates of P have
their sign changed because we look for the negation of B,
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of E relative to T, belonging to the vocabulary P* 4+ (. In symbols, given

an algorithm to compute the set New(T, F), we are interested in
Ezplanations(T, F') = -New(T,~F)

and
Valid( E, T) « New(T,E) = 0.

Algorithms based on ordered-linear resolution [Chang and Lee, 1973 are
known to perform this computation [Praymusinski, 1989; Oxusoff and Rauzy,
1989; Siegel, 1987; Inoue, 1991], and are used in many abductive proce-
dures [de Kleer, 1986; Poole, 1989]. The explanation-finding algorithm 1s
not a concern of this paper. The results we present concern how to com-
rine explanations in order to extract answers from a proof. We thus as-
sume such an algorithm exist and return the correct explanations, and con-
centrate an the query answering procedurc. The following one has been
shown to correctly return yes/no answers, and is used in [Ginsberg, 1989;
Przymusinski, 1989).

Algorithm 2.6 (Yes/No Answering Procedure)

Step 1. (Generate Elementary Explanations)
Compute elementary explanations of F relative to T

Step 2. (Combine Elementary Explanalions)
Set the explanation £ to the disjunction of all elementary explanations,
and represent it in conjunctive normal form (i.e., as a set of clauses).

Step 3. (Test Validily)
Test if £ has no counter, in which case answer “Yes”; otherwise answer
“No™.

This query answering procedure is not an exact implementation of The-
orem 2.4 in one respect. The Theorem stipulates the need for an arbitrary
valid explanation, while the answering procedure, in Step 2, only tests one for
validity, namely the disjunction of all the elementary ones generated in Step
1. This is enough to return yes/no answers. The reason is that if a certain
disjunction of valid explanations exist, then the maximal disjunction 1s valid.
This maximal disjunction is then tested for validity. The example we present
next illustrates the inability of this procedure to provide answer-extraction.
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3 Example

I have to do some Prolog and Lisp programming this morning, and I need
the manuals. Asking people around, I collect information about who has
recently been using them. T know the office number of my colleagues, and [
also know that normally people leave hooks in their offices. However, there
arc exceptions to this rule: for example, some of my colleagues work at
home and don't bring back the books to the office. The information I have
can be expressed with the following theory T', where predicate symbols and
constants have obvious intended interpretations:

Wa ¥y Ve had(z,y) A office(x, 2) A —ablz) D at(y, 2),
had( fred,prolog-manual) v had(mary,prolog-manual),
had(harold, prolog-manual),
had{kurt, lisp-manual),
office( fred, FJ225),
office(mary, £J230),
office{ harold, EJ235),
office( kurt, £ J240),

YWy Ve differeni(y, z) D —al{z,y) V -at(z, 2),
different( BJ225, EJ230) A - - -
<o A different{ EJ235, EJ240).

Where should I look for the manuals? Suppose I submit to the theorem

prover the query
F =3z 3y at{z,y).

I am not really interested in knowing whether F is true or not. I would
like to know how to get the manuals back, and do so without inspecting all
the offices around.

If we set P = {ab} and let the rest of the predicates vary, the minimal
models of T' can be divided in three groups, in each of which exactly one of
—ah(harold), —ab(mary) or —ab{ fred) is true. In the first group of these

at( prolog-maenual, EJ235)



holds. In the second and the third groups,
at(prolog-manual, EJ225) V al(prolog-manual, £J230)

holds, Thus

at(prolog-manual, £J225) V at{ prelog-manual, £.J230)
V at( prolog-manual, £J233)

holds in all minimal models, and no subdisjunction does. Moreover, in all
minimal models —ab{kurt) is true, which means that

at{lisp-manual, £J240)

i5 another theorem of the cirenmscription. These two smallest disjunction of
answers provide me with information about where the manuals are.
However, Algorithm 2.6 produces the following.

Step 1. Three elementary explanations are computed:

E1 = —ab(fred) A ~ah(mary)
E2 = -gblhareld)
E3 = —ablkurt)

Step 2. The disjunction F1V E2V ES is translormed (o conjunctive normal
form. This is the conjunction of the following clauses:

—abl fred) Vv —ab{ harold) V —ab{ kurt)
—ab(mary} V —ab( harold) V —ab{ kurt)

Step 3. These clauses, when added to 7', produce no new theorem in the
vocabulary of positive ab predicates, showing that the disjunction of
explanations is valid, as it has no counters. The procedure correctly

answers “Yes",

There is no way instances of the query can be returned with this pro-
cedure. The reason is that the actual substitution for the variable in the
query is lost in step 2, when the explanation is converted from disjunctive
to conjunctive normal form. The rest of the paper describes a methodology
and results on how to combinc clementary explanation in a more carcful way
in order to produce the informative answers.
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4 Answer Extraction

We consider informative answers Lo a query F' relative to a circumscription
CIRC (T; P; Z) to be the most specilic instances of F entailed by the cir-
cumscription; in the sequel we simply call them answers to the query.

Definition 4.1 Let CTRC{T; P; Z) be a circumscriptive theory, & an exis-
tentially quantified query. An answer to I is a formula A such that

1. CIRCIT P, Z) = A,
2. AEF, and
3. No A’ different from A satisfies (1), (2) and A’ = A

We now show how to produce such answers.

4.1 Obtaining Instances of the Query

As we said before, we assume that an explanation-finding algorithm returns
explanations for the query. The problem we address is that of finding answers,
that is, most specific disjunction of instances of the query entailed by the
circumscription. To compute such instances of the query, we use Green’s
techniques for first-order logic [Green, 196%a; Green, 1969bj, that consist of
associating with F the clause

F' = =F Vv Ans(x)

where x = #,,...,z, stands for the vanables appearing in ¥. During the
proof of F, Ans keeps track of the substitutions for which F holds at no
extra cost. The explanation-finding algorithim 1s thus the same resolution-
based algorithm used by existing theorcmn provers for circumscription [Gins-
berg, 1989; Przymusinski, 1989], but instead of supplying the negation of the
guery F' to compute ~New(T, ~F), we supply F' and compute New(T, F').*
Accordingly, instead of obtaining explanations

E, ..., E,

“The answer predicate Ans is added to the voeabulary Pt + ),
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for F', we obtain
Ey o Ansy, ..., B, D Ans,,

where each Ans; keeps the substitutions for a disjunction F, of instances of
F explained by FE;, that is,

T+EEF {i=1,...,n).

4.2 Computing Answers

Given a query, the explanation-finding algorithm can compute the candidate
answers [, I, ..., the explanations for each of these £y, Ejs, ..., and their
counters Cyq, Chyz,. ... An answer is a shortest disjunction of F; that has a
valid explanation, that is, for which at least one explanation exists with no
counter.

Suppose two instances of the query F) and F; have elementary explana-
tions £y and I, neither of which 1s valid. F; and E; thus have counters
"y and 3. Now (' = () A (5 is a candidate counter for £ = F), v IYy in
the sense that as T + C; | =E;, obviously T + C; A Oy | =E. But still C
might not be a counter to £ because, although each C; is consistent with T,
" mmight not be, If € is not consistent with T, and no other counter exist,
E will be a valid explanation for Fy v Fy.

Thus while certain explanations may have counters, their disjunction
might not, as the corresponding conjunclion of potential counters is inconsis-
tent. Thus, compared with theorem provers that return yes/no answers, the
only addittonal computafion needed is the consistency check on combinations
of counters.

So the search problem consists of finding the disjunctions of instances of
the query such that the potential counters of their explanations are incon-
sistent. A counter ' is inconsistent with T if and only if T' = =(C'; and such
counters belong to a particular vocabulary. It 1s thus rewarding to compute
the following set of clanses.

Definition 4.2 Let CIRC{T; P; Z) be a circumscriptive theory. A charac-
teristic clause of CIRC(T; P; Z) is a clause C that satisfies the following.

1. Every literal of ' belongs to P* 4+ Q.
2 TEC.
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3. No other clause " satisfies (1), (2) and ' k= (.

These are the restriction of the prime implicates [Reiter and de Kleer,
1987] of T to a particular vocabulary. They can be compuled with the same
lincar resolution algorithm used by the explanation-finding procedure, as

shown by [Inoue, 1991].
We can take advantage of this set in at least the following ways.

1. Lel E be an elementary explanation, and C a counter to F. Then T 4
(& ~F, and thus T = =’V ~E. As the explanation-finding algorithm
retirns the shortest of such clauses, =V = F is a characteristic clause
of the circumscription. In other words, to compute counters to an
explanation, we consider the negation of its elementary components.
The counters are the negation of the complement within a characteristic

f‘.]r’!l.'l'l‘Fil’,‘:.

2. IET + C is inconsistent, and thus T = =, then ~C s implied by
a characteristic clause of the eircumseription. This means that the
consistency test on a combination of counters can bLe performed by
entailment tcsts on the characteristic clauses,

The above ideas can be implemented using different search strategics,
which are not our concern. The following is a possible implementation of
an algorithm® to return informalive answers to a query in a circumscriptive
theory.

Algorithm 4.3 (Query Answering Procedure)

Step 1. (Compilation)
Compute the characteristic clauses of the cirenmseription.

Step 2. (Generate Llementary Explanalions)
Compute elementary explanations of F relative to T

Step 3. (Compute Counters)
A counter to an explanation is the complement of its elementary com-
ponents within the characteristic clauses. If an explanation has no
counters, output the instance of the query explained by it.

BStrictly speaking, this is not an “algorithm®. The reason is, in Step 1 or 2, it may
produce an infinite number of characteristic clauses or elementary explanations.
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Step 4. (Combinations of Counters)
Compute the conjunctions of counters whose negation is entailed by
a characteristic clause. Such a conjunction of counters is inconsistent
with T, and the corresponding disjunction of elementary explanations is
valid. If such an explanation has no other counters, the corresponding
disjunction of instances of the query is an answer,

4.3 Example

We consider again the example of section 3.

Step 1. Since al is the only minimized predicate, the only characteristic
clause of the circumscription is:

ab{ harold) V ab{ fred) vV ab(mary).

Step 2. We provide the explanation-finding algorithm with the clause
—al(x,y) V Ansz,y),

and the answer predicate Ans.
Then we obtain the new clause

ab( fred) vV ab{mary)
VW Anas(prolog-manual, F.J225)
v Ans(prolog-manual, EJ230),

indicating thal
Ey = —ab( fred) A —ab{mary)

explains
Ay = at{prolog-manual, EJ225)
v at{ prolog-manual, EJ230).

In a similar way,
E; = —ab{ harold)

explains
Ay = al{ prolog-manual, EJ2335),
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and

Ey = —ab(kurt)

explains

As = at(lisp-manual, EJ240).

Step 3. (') = —ab{harold), 15 a counter to Fj.
('3 = —ab( fred) A —ab(mary), is a counter to Es.
£5 has no counters, thus A, is output.

Step 4. The only characteristic clanse subsumes (in fact, is equivalent to)
the disjunction of the negation of the two counters € and Cy. This
indicates that T + ) A (73 is inconsistent, and as E, v F; has no other
counter, it 15 a valid explanation for 4; V A,

5 Conclusion

Nonmonotonic theorem provers often consist in a two-step classical deduction
— making a default proof in which explanations are collected and checking
validity of the explanations. We showed that the substitutions neceded for
query answering are lost in this process, and a combination of theses need to
be found to produce the required answers.

We presented a procedure for combining explanations in order to obtain
informative answers, and results that enable an answering procedure to re-
turn the interesting answers with minimal search.

The importance of the resulls presented lies in their applicability to a wide

class of systems that are either a restriction of circumseription, for example,
databases using different types of closed-world assumptions (see [Przymusin-
ki, 1989; Gelfond ef al., 1989]), or similar default reasoning systems having
cxplanation-based proof theories [Poole, 1989; Geffner, 1990].
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