~ICOT Technical Report: TR-610

TR-610

Computing Soft Constraints by Hierarchical

Constraint Logic Programming

by
K. Satoh & A. Aiba

January, 1991

E 199, 10T

Mita Kokusai Bldg. 21F (0313456-3191—5

IC: DT 4-28 Mita 1-Chome Telex ICOT 132064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Computing Soft Constraints by
‘Hierarchical Constraint Logic Programming

Ken Satoh and Akira Aiba
Institute for New Generation Computer Technology {ICOT)
4-28 Mita 1-Chome Minato-ku, Tokvo 108 Japan
phone: +81-3-3456-2514, email: ksatoh@icot.or.jp

Abstract

We have formalized soft constraints in [11] based on interpretation ordering which
15 a generalization of circumscription. However, this formalization is written in
a second-order formula and therefore is not computable in general. To make it
computable, we have to introduce some restriction.

In this paper, we propose a semantic restriction. By semantic restriction,
we mean Lhat we fix the considered domain so that interpretations of domain-
dependent relations are fixed, and soft and hard constraints contain only domain-
dependent relations. If we accept this restriction, the soft constraints can be
expressed in a first-order formula. Moreover, there is already a proposed mecha
nisin suilable for computing such restricted soft constraints in the literature, that
is, hierarchical constraint logic programming languages (HCLP langnages) (2, 9].

Firstly, we identify a solution to constraint hierarchy defined by HCLP lan-
guages with the most preferable solution for semantically-restricted soft constraints.
Then, we provide an algorithm for calenlating all the most preferable solutions
for soft constraints withont any redundant calls of constraint solver. Then, we
show examples of computing sofl constraints by using our HCLP language named
{"HAL({Contraintes Hierarchiques avec Logique) [9].

Keywords: constraint logic programming, soft constraint, preference, con-
straint hierarchy, interpretation ordering, circumseription

1 Introduction

In the area of synthesis problems such as job shop scheduling, circuit design and
planning, there are two kinds of constraints. One kind is hard constraints which
every solution is required to satisfy and the other is soft constrainis which provide
preferences over solutions [4, 12]. Most systems manipulating soft constraints nse
evaluation functions lo represent these soft constraints. However, it is hard to debug
evaluation functions if oblained solutions are unsatisfactory. One possible salution to
this problem is to manipulate soft constraints in a logical manner.

We have proposed a logical foundation of soft constraints in [11] by using a meta-
language [10] which expresses an interpretation ordering. The idea of formalizing
soft constraints is as follows. Let hard constraints be represented in first-order for-
mulas. Then an interpretation which satisfies all of these first-order formulas can
be regarded as a possible solution and soft constraints can be regarded as an order
over those interpretations becanse soft constraints represent criteria over possible so-
lutions to choose the most preferable ones. We use a meta-language which represcnts
a preference order directly. This meta-language can be translated into a second-order
formula to provide a syntactical definition of the most preferable solutions.

Although this framework is rigorous and declarative, it is not computable in gen-
eral because it is defined by a sccond-order formula. Therefore, we have to restrict a
class of constraints so that these constraints are computable.

Since the above interpretation ordering is a generalization of circumseription, one
might think that restrictions for computing circumscription can be helpful. However,
previous proposals of restricting circumseription are domain-independent. that s,

5 for ordinary cirenmseription or stratified

syntactical such as separable axioms
axioms [6] for prioritized cirenmseription. Although this technique is applicable in
any domain, this restriction is not so clear at identifving nseful applications.

lu this paper, we propose another restriction based on semantics. By semanfic
restriction, we mean that we fix the considered domain so that interpretations of

domain-dependent relations are fixed, and soft and hard constraints consist of only

domain-dependent relations. This restriction is fairly reasonable because when we
solve any actual problem with solt constraints such as design and planning, we usually
know the domain of the problem. If we accept this restriction, the soft constraints
can be expressed in a first-order formula. Moreover, there is already a proposed
mechanism suitable for computing such restricted soft constraints in the literature,
that is. hicrarchical constraint logic programming languages (HCLP languages) [2, 9].

In the following section, we show a relationship between semantics of soft con-
straints in [11] and constraint hierarchy defined by HCLP language. By this relation-
ship, we use HCLP to compute the most preferable solutions specified by semantically-
restricted soft constraints.

Then, we show an algorithm to compute all simplified constraint sets of the most
preferable solutions from constraint hierarchy withont any redundant calls of con-
straint solver and show examples of computing soft constraints by our HCLP langnage

CHAL.

2 Constraint Hierarchy and Soft Constraints

Ins this section, we define HCLP and then, show a relationship between constraint
hierarchy defined by HCLP and the soft constraints proposed in {11].

We [ollow the definition of HCLP in 2] but extend it by introducing a complex
form of soft constraints. HCLP language is a language augmenting CLP language
with labeled constraints. An HOLP program consists of rules of the form:

he <hy, by
where b, by, ..., b, are predicates or constraints or labeled constraints, Labeled con-
straints is of the form:
label
where (7 is a complex constraint in which only domain-dependent functional symbols
can be allowed as functional svmbols and label is a label which expresses strength of
the complex constraint (.

A complex constraint is a disjunction of conjunctions of domain-dependent con-

straints of the form:

(€112 €125 oos €1my }: (€204 €220 ey Camg Ji oo (Eimts €mzs ooy Cmrin))
where 1 < m and 0 < n; and " expresses a disjunction and ', expresses a conjunction
and ¢;; is an atomic constraint whose constraint symbol is domain-dependent.

The operational semantics for HCLP is similar to CLP except manipulating con-
straint hierarchy. In HCLP, we accumulate labeled constraints to form constraint
lierarchy by each label while executing CLP until CLP solves all goals and gives
a reduced required constraints. Then, we solve constraint hierarchy with required
constraiuts.

An assignment of variables is a mapping from each variables in constraints to an
element of the considered domain. We say an assignmenl # satisfies a constraint if the
substitution of the free variables in the constraint makes the constraint true. An as-
signment of variables are partially ordered by the locally-predicate-better comparator
as follows.

Let # and o be assignments and C}{and C'!} be a set of constraints in the strongest
level of the hierarchy satisfied by #{and 7). and (3{and ("7} be a sel of constraints in
the second strongest level of the hierarchy satisfied by f(and o)...., and Cg{and ')
be a set of constraints in the k-th strongest level of the hierarchy satisfied by #(and
7). 0 is locally-predicate-better than o w.r.t. the constraint hierarchy if

there exists i(1 < i < k) such that €% C C3 if for every j(1 < j <i—1),C4 = C}
where expresses a strict subset relation.

Then, a solution w.r.t. the required constraints and the constraint hierarchy is
defined as an assignment # which satisfics the required constraints and has no assign-
ment e such that « satisfies the required constraints and o is locally-predicate-betier
than #.

Now, we relate solutions w.r.t. required constraints and a constraint hierarchy
with the most preferable solutions for sofl constraints with priority defined in [11].
We regard an assignment of variables as an interpretation and the order defined by
the locally-predicate-better comparator as an order over those interpretations.

Let A be the axioms of the considered dommain D, and M’ and M he interpretations

with the domain [? each of which satisfies A and differs from the other interpretation
in at most the assignments of free variables in constraints. Since M’ and M differs in
at most the assignments of free variables, there is one-to-one correspondence between
an interpretation and the above assignment of free variables. We say a complex
constraint € is salisfied by an interpretation M (written as M |= (') if the following

condition iz satisfied.

1. If ' is of the form e(f,,.... ;) where ¢ is a constraint symbol and #;(1 <1 <1{) is
a term then (1M, 1M} € M where tM(1 < i < [} is an element of D to which
is mapped from ¢; by M and ¢ is a subset of I)' to which is mapped from a

constraint symbaol ¢ by M.

2. If €' is of the form (e, ...y) where (1 <1 < n}is an atomic constraint, then

for everv i{l <1< n) M E .

3. If € is of the form (Dy;...; D) where D,(1 < ¢ < m) is a conjunction of atomic

constraints then there exists (1 < i < m) such that M &= D,.

Let C},...,CL be constraints in the strongest level of the hierarchy and '}, ...,y
be constraints in the second strongest level of the hierarchy,..., and CF, ..., C% , be
constraints in the k-th strongest level of the hicrarchy., Now, we define an order
over interpretations by the above constraint hicrarchy. We say M’ is preferred to M
(written as M' < M) if

M'< M is trne and M < M’ is not true
where M’ < M if for every Vi(l < ¢ < k)M’ =<' M) is truc and M’ < M is defined

as follows:

Wil <j<i— V(1 <1< m)(MECHf M |) then
WI(1 <1< m;)if M= C} then M' |= C}.

We can easily see that this order is equivalent to an order defined by locally-predicate-
hetter comparator from the correspondence between an interprelalion and an assign-

ment of variables,

Let A be the axioms of the considered domain. Then, the most preferable solutions
w.r.t required constraints and the order < is a model M which satisfies A and the
required constraints and there is no model M’ such that M’ satisfies A and the
required constraints and M’ < M. From the equivalence between an order defined by
locally-predicate-better comparator and the order <, the most preferable solutions
w.r.t. required constraints and the order < are equivalent to the solutions w.r.t.
required constraints and constraint hierarchy.

We can give a syntactic definition of the most preferable solutions from the result
in [11]. Let A be the axioms of the considered domain and x be a tuple of all free
variables contained in required constraints and soft constraints and RC(x) be a con-
junction of required constraints and Cj(x), ..., C}, (%) (i = 1, ..., k) be soft constraints.

Then, the following is a syntactic delinition of the most preferable solutions.

AN RCx)A=ZY(ROY) A (y < x) A-{x < y)) ()

=1

where v < x is an abbreviation of (y €' x} A . Ay <* x) and y < x is an

abbreviation of the following formula:

1—=1 ™y .) my)]
(A AT = Gl 2 IACHx) 2 Clly).
J=11=1 =1

Adapted from the result in [11], we can show the following theorem.

Theorem 1 M is a most preferable solution w.r.t RC(X) and the order < if and
only if M is u model of the formula (P).

Although the general definition of the most preferable solution in [11] is wril-
Len in a second-order formmla. the above formula is a first order formula, that is,
computable. 1t is becanse each of the above constraints is a logical combination of
duomain-dependent constraints with a fixed interpretation and therefore, only param-
elers in the above formula are free variables in constraints.

From the point of view of soft constraints in [11], we can regard this restriction
as a semantic restriction because we fix the considered domain and use only domain-

dependent constraints. This restriction is fairly reasonable because when we solve

actual problems with soft constraints such as design and planning, we usually know
the domain of the problem.

Now, we show a relationship between the most preferable solutions and maximal
consistent sets w.r.t. required constraints and constraint hierarchy. This is the key
relation to calculate the most preferable solutions in HCLP languages.

Firstly, we define marimal consistent set of constraints.

Definition 1 Let A be tha arioms of the considered domain and RC(X) be a con-
junction of required constraints and CH{x) be a constraint hierarchy with k levels.
A sct of constraints MC(x) is maximal consistent w.r.t A and BC(x) and CH(x) tf

MC(x) satisfics the following conditions.
[. MC(x) 15 consistent with A.

2. MCix) is logically equivalent to RC(x) ACHNx) A A CHY(x) where CH'(x)

is a conjunction of some constraints in the 1-th level of CH(x).

3. There is no consistent set of constraints M("(X) with A which s logically equiv-
aleni to RO(x) A CH™Y (%) A ... A CH™(x) where CH"(X) is a conjunction of

some constraints in the 1-th level of CH(X) and satisfics the following condition:

There exists ifl < i < k) such that CHY(x) C CH"(x)
if for every j{1 < j <i— 1), CHI[x)=CH"(x).

Then, a relation between maximal consistent sets and the most preferable solutions

is as follows.

Theorem 2 Let A be tha arioms of the considered domain and RC(x) be a conjunc-
tion of required constraints and C'H(X) be a constraint hierarchy, Let MCy(x), MCy(x). ..., MCu(x]
be all mazimal consistent sets w.r.t. A and RC(x) and CH(x). Then, AA(MCy(x)V
MCy(x) V ... Vv M, (X)) is logically equivalent {o the formula (P). In other words,
models of AN (MCH{x)V MCy(x)V ...V MCy(x)) are exactly all the most preferable

solutions.

If we have a satisfaction-complete constraint solver which can determine whether a sct
of constraints is consistent or not, then we neither need to write the first-order axioms
of the domain nor need to use first-order inference rules to infer the most preferable
solutions. All we have to do is to write constraints directly in HCLP and nse the
satisfaction-complete solver to compute all maximal consistent sets by generating

every consistent subset of the constraint hierarchy and checking il it is maximal.

3 Algorithm to Solve Constraint Hierarchy

We show an algorithm for solving constraint hierarchy in Appendix A. Inputs of
the algorithm are a constraint hierarchy and a set of reduced required constraints and
its output is all maximal consistent sets of constraints simphfied by the consiraint

golver. Features of this algorithm are as follows.

|. There is no redundant calls of constraint solver for the same combination of

constraints since it calculates reduced constraints in bottom-up manner.

9. If an inconsistent combination of constraints is found hy calling constraint
solver, il is registered as a nogood and uscd for further contradiction delect-
ing and any extension of the combination will not be processed to avoid vein

combinalions,

4. Inconsistency is detected without a call of constramt solver if a processed com

bination subsumes a registered nogood.

In {2}, Dorning et al. give an algorithm of solving constraint liuerarchy, llowever, it
uses backtrack to get an alternative solution and so. it may call the constraint solver
for the same combination of constraints redundantly.

Although our algorithm has no redundant calls of constraint solver, it will call the
constraint solver 2% — 1 times in the worst case where n is a number of soft constraints.
So. we must ensure that inconsistency occurs at a small combination of constraints or
we must prioritize constranis almost lincarly. If we linearize constraints completely,

then our algorithm will call constraint solver only n times,

7

Our algorithm has been implemented already on P'SI (Personal Sequential Infer-
ence) Machine developed in ICOT. By using the algorithm, we have implemented an
HCLP language called CHAL (Contraintes Hierarchiques avec Logique) [9], an ex-
tension of CAL {Contraintes avec Logique) [7] which is a CLP language developed in
ICOT. In CHAL, we can use the following constraint solvers in CAL. One is an alge-
braic constraint solver which manipulates multi-variate polvnomial equations based
on Buchberger algorithm [3] to calculate Grobner bases and the other is a Boolean
constraint solver which extends Buchberger algorithm to handle propositional Boolean

equations [§].

4 Examples

Now, we show two CHAL examples of calculating the most preferable solutions.
QOne is a meeting scheduling problem solved by Boolean CHAL and the other is a

multi-axis gearbox design problem solved by algebraic CHAL.

4.1 Meeting Scheduling Problem

In this subsection, we show an example of solving meeting scheduling problem
in [11] by using Boolean CHAL.

In a Boolean CHAL program, we express constraints as Boolean equations and in
Boolean equations, we can use the only constraint symbol, = and the function symbols
such as /\ (conjunction), N/ (disjunction), -> (implication), <=> (equivalence}, ~
(negation) and the constants such as | as truth and 0 as falsity and propositional
variables.

Firstly, we regard the following terms as propositional variables. oz} represents
that the meeting will be held on day = and p(r}, v(x).m(x) represent that the presi-
dent, the vice president and the manager attend the meeting on day .

Suppose that we consider a meeting schedule for day 1, 2 and 3 and the following
hard constraints represented in Boolean equations exist.

1. The meeting must be held:

(el 1)\ /e(2)\/e(3)) = L.
2. The president must attend the meeting:

(e{z)->p(z)) =1 for all # = 1,2.3.
3. Since p(x) expresses that the president attends the meeting on day «, if it is true,
¢(x) (the meeting is held on day r} is also true:

(plz)=2c{x)) = 1 forall z = 1,2,3.
4. The same thing holds if the vice president or the manager attends the mecting.
We can expand these constraints as follows:

(v{x)=>e(x)) = 1 for all 2 =1,2,3 and (m{z)->c(x)) =1 for all r = 1,2,3.
5. The president eannot attend the meeting on day 1 and the manager cannot attend
the meeting on day 2:

pll)=0and m(2] =10

And we consider the following soft constraints.

1. The vice president should preferably attend \he meeting. This soft constraint
means that (e{z)->v(x)) = 1 should be satisfied as much as possible for all

I IR

9. The manager also should preferably attend the meeting. This soft constraint
means that (¢{r)=>m(r)) = 1 should be satisfied as much as possible for all

r=1.273

3. The schedule of the vice president is prioritized to the schedule of the manager.
This priority means that (¢{z)->v{x)) = 1 is stronger thau (c(y)->m(y)) = 1
for every r = 1.2.3 and y = 1,2,3. To do so, we attach ihe stronger label to

{e(z)=>v{z)} = 1 than to (e(y)->miy)} =1 for every v = 1.2, 3 and y = 1,2, 4.

Then, a Boolean ('HAL program which builds constraint hierarchy of the above ex-

ample is shown as follows.

meetingl -
bool: (c(1)\/e(2)\/c(3))=1,hard([1,2,3]),s0ft([1,2,3]),
bool:p(1)=0,beol:m(2)=0.

meeting? :- meetingl,bool:v(3)=0.
hard([]).
hard([X|Y]):-
bool: (c(X)<-»p(X))=1,bool: {(v(X}->c(X))=1,bool: (m(X)->c(X))=1,hard(Y).
soft([1).
soft ([X|Y]):-
chal:soft(bool: (c(X)->v(X))=1,0),chal:soft(bool: (c(X)->m(X))=1,1),s0ft(¥Y).

In the above program,

chal:soft(bool: {c(X)->v(X))=1,0) and chal:soft(bool: (c(X)->m(X))=1,1)
express soft constraints. The first argument is a constraint and the second argument
expresses the strength of the constraint. In CHAL, we use a natural number to express
the strength. A soft constraint with the number 0 is the strongest and a constraint
becomes weaker as the associated number becomes bigger.

If we ask ?-meetingl. then Boolean CHAL firstly calculates a sct of reduced
constraints from required constraints and then computes all simplified maximal con-
sistent sets of constraints by solving constraint hierarchy. In this case, Boolean CHAL
returns only one maximal consistent set which includes ¢(1) = 0,¢(2) = 0,¢(3) = 1.
Since on day 3. all of three can attend the mecting, day 3 is selected for the most
preferable date for the meeting.

The conclusion may be withdrawn by adding another constraint. For example,
suppose a new consiraint that the vice president cannot attend the meeting on day
3 is added. That is, the following constraint is added:

v(3) = 0.

This is done by asking ?-meeting2, and Boolean C'HAL returns only one maximal
consistent set which includes o(1) = 0,¢(2) = 1,¢(3) = 0. This means that day 2
is the most preferable meeting date in this new situation becanse the schedule of
the vice president has the priority to the schedule of the manager. This expresses

nonmonotonic character of soft constraints.

10

i

Arial - I 1. -
. U5 0n f
i3 & s T

Axis2 = -1 s—’r#

=
Arisd == 71 ----- I-] t.

Figure 1: Muth-Axis Gearbox

4.2 Gear Design

In this subsection, we show an example in algebraic CHAL adapted from a design
problem for a multi-axis gearbox, A gearbox is used to produce various speeds {rom
the main spin. Figure 1 shows an examnple of a three-axis gearbox.

Cears on Axisl (gy,9; in Figure 1) and Aris3 (g7, ¢s in Figure 1) are [ixed and
gears on Aris? (g, ga. g5, s in Figure 1) are slidable. Shdable gears shde along the
axis and mesh with fixed gears. In Figure L, each pair of (g 3. {g2. 94}, {497,
(6. g8). can mesh. Since there are two gear changes between Arisl and Ars2, and
two gear changes between Aris2 and Arisd, there are totally four output speeds
(= 2% 2) by combinations of those gear changes.

Here, we consider the following design problem for a three-axis gearbox. We
specify the sum of the two intervals between axes and outpul speed ratios each of
which is produced by the combinations of two meshing pairs. We assume that there
are standard radins of gears which take discrete values. We calculate each radius of
gears so that standard gears are used as many as possible.

Yor example, suppose that we give the following specification for a four-speed
gearbox shown in Figure 1. We denote a speed ratio by a combination of two meshing
pairs (g;.y,) and {ge, @) as ratio({g;. a;}. (g, @)}, Then, we specify ratios as [ollows.

ratio{{g1, ga}, (g5, 97}) — 1 ()

ratio{ (gz. ga). (gs. g7}) = 2 (b)

11

ratio(g:, g1} (g6, 98)) = 1 (c)
ratio((gz, 94) (ge. gs)) = 8 (d)

And we specily the sum of intervals as 10 and standard values of radius as 1,2,3.4.
Now, we modify this specification into a set of constraints expressed in equations.
Let r; be the radins of the gear g;. Since ratiol{g;,9,).{g.) = p can be translated

into an equation r; * ry = 7, * r; * p, (a),..(d) are translated into the following

equations.
mxrs=lrraer (1)
Fo=re =2 #Ty®Ty {2)
rierg =4 %ry%rg (3)
Ppsrg =B ar,sry 4

Note that one of the above four equations is redundant.
From the condition of meshing. the sum of radii between meshing pair must be
equal to the interval between axes. We denote the interval between Aris]l and Aris2

as r; and the interval between Ares2 and Arisd as r;. Then, the following constraints

exist.
rMtry=1 (5)
re+re T T (6)
rs + ry = 13 (7)
g+ TR = T3 {8)

From the specification of the sum of the intervals,

ry+xg =10 (7

(13,(4) are hard constraints. To use standard gears as many as possible, we
regard the possible standard values as soft constraints. In other words, we make
the following soft constraints to he satisfied as many as possible for every radius r:

(r; =1V (r=2)vir=3)vir, =4)

Now, we show how the above problem can be solved by using algebraic CHAL. In
algebraic CHAL prograin, we can use the only constraint symhol, = and the algebraic
funetion symbuols such as 4+, *, and variables and fractions. The following programn

builds constraint hierarchy of the above problem.

12

gear :-
ratio(1,2,4,8) ,distance(10),
pos_vali[ri,rﬂ,ra,r4,rE,IE,rT,rBI,[1.2,3,4]}.
ratie(P1,P2,P3,P4) :-
alp:rierS=Plsri*r7, alg:T2*r5=P2*rd=rT,
alg:ri*r6=P3*r3*rh, alg:r2*r6=Pdsri*ri.
distance(D) :-
alg:xi+x2=D,
alg:ri+rd=xl,alg:r2+ré=xl,
alg:r5+r7=x2,alg: r6+r8=x2.
pos_valill,_).
pes_val({RIRL],VL) :- pas_uall(R,VL.G},chal:suft{ﬂ,ﬂ],pus_val{RL,vL},
pos_vali(R, [X],alg:R=X).
pos_vall(R, [X1Y], (alg:R=X;C)) - pos_vall(R,Y,C).

If we ask 7-gear, then algebraic CHAL firstly calculates a set of reduced constraints
from hard constraints and then computes all simplified maximal consistent sets of
constrainls by solving constrainl hierarchy. The result after considering soft con-
straints are shown in Figure 2. There are the two most prelerable solutions. In both
solntions, rq.....rs are not standard gears, This 1s hecause hard constraints prevent
those gears [rom being standard gears. Note that if conslraints of possible standard
values for gear were hard constrainis, then we would not get any solution. In CHAL
program, thanks to soft constraints, we can get solutions such that radii are standard
values as many as possible. In this example, we can make r4....,rs to he standard

EEArs.

5 Conclusion

We compare our work with some related researches.

1. Borning et al. [2] were the first to propose the HCLP scheme. However, in [2],

there is no logical formalization of the most preferable solutions. In this paper.

13

After considering soft constraints

solution
ri = 8/3 .
s = 2 .
r3 = 4/3 .
7 = 4 |
r2 = 16/5
rd = 4/5 |

ré =
8 =

xl =

= I S T N

xZ

solution

ri = 14/3 .
r5 = 1 .

r3i = 7/3 .
rf = 2 .

r2 = 28/5 .
ré = 7/5
6 =
r8 =

¥l =

W o~ e k)

x2 =

golutionend

12203mseac

Figure 2: Solutions to Gear Design Problem

14

we provide a logical formalization by a variant of prioritized circumscription.

In [2]. they discuss a relation of HCLP to nonmonotonic reasoning and claim
that HCLP can handle the multiple extension problems of nonmonotonic logic.
Tlowever, our result shows that a constraint hierarchy defined by HOLP 15 no
more than a variant of prioritized circumscription. This means that HCLP
can handle only multiple extension problems that can be solved by pricritized

cireumseription.

2. Buker et al. [1] give a theorem prover of prioritized circumseriplion. Since they
use the finite domain closure axioms. thev impose that their considered domain

be finite.

On the other hand, if we use algebraic CHAL, our domain is a complex nuinber,
So. semnantic restriction does not alwavs impose that the considered domain be

finite.
Finally, we summarize the contributions of this paper.

I. We show a logical semantics of constraint hicrarchy of HOLE by interpretation

ardering.

2. From this semantics, we point oul that a solution of constraint hierarchy can
be regarded as the most preferable solution defined by semantically-restricted
solt constraints. ln the semantical restriction, the considered domain is fixed

and unly a logical combination of domain-dependent constraints can be used.

3. We propose a bottom-up algorithm of computing all maximal consistent con-

straint =ets without any redundant calls of the constraint solver.

Acknowledgments | would like to thank Jun Arima from ICOT, Vladimir Lifschitz
from University of Texas at Austin and Yuji Matsumoto from Kyote University for
instructive comments on this paper. Special thanks must go to liroyuki Sawada for

tutoring me abont a gear-box design.

Appendix A: An algorithm for solving constraint hierarchy

solve_constraint _hierarchy(CH, RRC)
% Solve constraint hierarchy (" H with a set of reduced required constraints RREC.
begin
PA:={(0, RRC)}
%% PA s a set of pairs of (Combined Constraints, Reduced Constraints).
for every level Lin O'H from the strongest to the weakest do
begin
if L # 0 then
begin
NewPA:=0
for every pair {C's. BC) in PA do
NewP A :=maximal_constraints(L, Cs, RC, NewPA)
FA:= NewPA
end
end
Take every RO of (s, RC) in PA to form a set, S5C.

return S0

end (solve_constraint_hierarchy)

maximal_constraints{ L. Cs, K, PA)
% Find all maximal subsets in L which is consistent with R(C.
begin

QL= {{Cs D RC LYY, NGs = 1.

do

QL, NGs, PA :=maximal_constraints1{ L, NGs, PA)
until QL =0
return PA

end (maximal_constraints)

16

maximal constraints[{Q L, NGs, PA)
% Produce all extended consistent sets of constraints from Q1.
% QL: a list of quadruple of the following sets of constraints:
% {Combined Constraints, Used Constraints, Reduced Constraints, Rest)
% NG's: a set of contradictory combinations of constraints with K.
begin
New@QL =1
for every clement {(Cs, U7C, RC, Rest) in QL do
begin
while (Fest # 01) do
begin
Take one constraint (" from Rest and delete € from Rest,
% Note that Rest is decreased by one element for each while loop
% so that every combination of constraints s checked only once.
Add €' to ("s to get New('s
% We extend s by adding (',
if (" 15 a disjunction then
for every disjunct D in " do
NewQL NGis, PA =
maximal_constraints2(D, NewCs, U, RC, Rest, New@Q L. NGs, P A)
clse
NewQL NGs PA:=
maximal constraints2{ O, NewCs, UC, RO, Rest, NewQ L NGs, PA)
end
cend
return New@L and NG5 and PA
end (maximal_constraintsl)
maximal constraints2({7, NewCs, 17O, RO, Rest, QL Ni7s, PA)
Y% This is the main procedure of calenlating maximal consistent sets of constraints.

begin

Add (7 to UC to get Newl/C.
if there exists N7 € N(Gs such that NG € Newl/(then
return QL and N(zs and P A
9% If we see that a subset of Newl/C' is contradictory then
% we do not invoke solve and no longer extend Newl/C.
NewRC =solve((", RC')
% I " and R(" is consistent then
% solve((", RC') returns a new set of reduced constraints
% otherwise it returns inconsistent information.
if New HC = inconsistent then
begin
Add Newl: (" to Ni(7s.
return /L and NGs and PA
% If we see that NewRC is contradictory then we register it as nogoods
% and use it for further contradiction detecting and no longer extend Newl/(.
end
if Hest # (0 then
Add {(NewCs, Newl'C, New RO, Rest) to QL
if there exists ((s', R(C") € PA such that New('s C ('s' then
return /. and N(Gs and PA
% If New s 15 a strict subsel of another combined constraints in PA
% then it is not a maximal consistent set.
Delete any (("s'. RC") € PA s, (8" C New('s.
% We delete every non-maximal consistent set from FA.
Add (New('s, NewRC') to PA.
return (JL and NGs and PA

end (maximal_constraints)

18

References

[1]

[2]

(3]

[4]

[5

[6]

9]

[10]

1]

[12]

Baker. A. B. and Ginsberg, M. L.: A Theorem Prover for Prioritized Circume
seription, Proc. of IJOCAT'SY, pp. 463 - 467 (1989).

Borning, A., Maher, M., Martindale, A. and Wilson, M.: Constraint Hierurchies
and Logic Programming, Proc. of ICLPSS, pp. 149 - 161 (19583).

Buchberger, B.: (rébner bases: An Algorithmic Method in Polynomial Ideal
Theory, In N. Bose, ed., Multidimentional Systems Theory, pp. 184 — 232, D,
Reidel, Dordecht (1985).

Descotte, Y. and Latombe, J.: Making Compromises among Antagonist Con-
straints in a Planner, Artif. Intell, Vol. 27, pp. 183 - 217 (19585).

Lifschitz, V.: Computing Circumseription, Proc. of IJCAISS, pp. 121-127 (1985)
Lifschitz, V.: On the Declarative Semantics of Logic Programs with Negation, In
J. Miuker. ed.. Foundations of Deductive Databases and Logic Programmaing. pp.
177 192, Morgan kaufmann Publishers (1988).

Sakai. K. and Aiba, A CAL: A Theorctical Background of Constraint Logic
Frogramming and 1ts Applications. J. Symbelic Computation, Vol. 8, pp. 584 -
BOS (1989).

Sakai. K. and Sato. Y.: Application of Ideal Theory te Boolean Constraint Solv-
ing. Proe. of PRICAIG0, pp. 490 493,

Satoh, K and Aiba, A.: Hierarchical Consirain! Logie Language: CHAL, 1COT-
TR 592 {18940).

Satoh. k.o Farmalizing Nenmonotonic Reasoning by Preference Order. Proe. of
InfoJapan90, Part 11, pp. 155 - 162 {19890}

Satol, W.: Formalizing Soft Constraints by Interpretalion Ordering, Proc. of
ECAIS0. pp. 585 — 590 (1990).

Smith, 5. F., Fox, M. §. and Ow. P. S.: Constructing and Mamtaining Detailed
Froduction Plans: Investigations into the Devclopment of Knowledge-Based Fac-

tary Scheduling Systems, AI Magazine. Vol. 7. pp. 45 - 61 (Fall 1956,

19

