|ICOT Technical Report: TR-608

TR-908

A Debugger for ANINOR Parallel Logic
Programming Language ANDOR-II

by
K. Takahashi & A. Takeuchi (Mitsubishi)

December, 1990

€ 1990, 1COT

Mita Kokusai Bldg, 21F (03)3456-3191 ~5
I GD I 4-28 Mita 1-Chomse Telex ICOT 132954
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Debugger for AND/OR. Parallel Logic Programming
Language ANDOR-II

Kazuko TAKAHASHI Akikazu TAKEUCHI

Central Research Laboratory
Mitsubishi Electric Corporation
8-1-1, Tukaguchi- Honmachi,
Amagasaki, 661, JAPAN

(TEL) +81-6-497-7141
(FAX) +81-6-497-7289

takahashi@sys.crl.melco.cojp takenchifisys.crl.melco.cojp

Abstract

This paper discusses a debugger for an AND/OR parallel logic programming lan-
guage ANDOR-IT . Debugging a parallel programming language is complicated and
hl:r-r]ens.nme_ since the nser has to handle the ca:rnputat.ioh On mult.iple worlds. We
propose a method that selects a representative world and peels it from the multi-
ple worlds. Compuotation of ANDOR-IT in this rsinglr world is tquivalem to that of
committed-choice languages. Therefore, debugging in a single world is attributed to
that of committed-choice languages. Although this method alleviates the burden in
debugging, if we perform reasoning over the worlds, more effective bug location can be
realized.

1 Introduction

Due 1o the rapid progress of parallel architectnre, there has heen increased anticipation
{or parallel computation, which accelerates the research on concurrent programming tech-
niques as well as efficient and sophisticated algorithms suitable for parallel architecture.
In the field of logic programming, new languages are developed which exploit both AND-
and OR-parallelism [Barget and Gregory 89][Clark and Gregory 87](Haridi et al. 8] [Naish

87] [Takeuchi et al. £8][Yang and Aiso 86]. They provide declarative descriptions for deter-

minate and nondeterminate phenomena, and the programs written in these languages are

executed in parallel utilizing powerful reasoning mechanisms. However, it is very difficult

to debug these languages. If one writes/runs a program in such an AND/OR parallel logic
programming language, what kind of cnvironment is desired?

In parallel programming, the burden of debugging is so heavy, because: (1) It is hard to
follow multiple reductions execnted in parallel with a sequential interface; we have to follow
several reductions in an interleaving manner; (2) The time to bind the value to variables
and the time of the hinding’s propagation are unknown and nendcterminate.

However, in committed-choice languages, much research has been undertaken lo realize
a declarative debugger [Huntbach &7)[Lichtenstein and Shapiro 88][Lloyd 87][Lloyd and
Takenchi 86] [Takenchi 86][Tatemura and Tanaka 89][Ueno and Kanamori 80].

For AND/OR parallel logic programming languages, debugging is much harder because
the nser has to trace all possibilities. And almost no debugging tools are developed for this
class of langnages so far. It is necessary to provide some environment for these languages,
and it is high time to discuss this issue.

In this paper, we propose a debugger for an AND/OR parallel logic programming lan-
guage ANDOR-II [Takahashi et al. 90)[Takcuchi et al. 88] [Takeuchi 80]. The idea is a
debugger which focuses on “one possible world.” In ANDOR-II , computation proceeds
based on “eolored worlds.” All possible computations are executed on the colored worlds
independent of one another, and solutions from all the worlds are collected. A buggy
program may generate an incorrect amswer or [ail unexpectedly. In this case, we want to
inspect the single world that generates an incorrect answer or fails, rather than inspect
the behaviors of all the worlds. The reason is twofold: (1) it is easier to inspect a single
world and (2) several worlds may share a computation, and fixing a bug in one world may
simultaneously fix bugs in other worlds. When debugging, at first we perform the compu-
tation to record the history called computation forest, then we peel a tree corresponding
to a representative world from the whole forest, and reconstruct the computation along
this tree. This tree is equivalent to the computation tree of committed-choice languages.
Therefore, debugging in a single world is equivalent to debugging in committed-choice lan-

guages. It implies that we can use the debugging methodology or techniques developed for

committed-choice languages.

This method of debugging greatly alleviates the burden of debugging. However, if we
survey more than one world, new facts can be obtained by reasoning on solutions and their
associated colors. For instance, assume that a color consists of two parts, and that the
following two facts are obtained as a result of computation.

(1) Computation succeeds if we take the red path in the first part and the white path in
the second part.

(2) Computation fails if we take the red path in the first part and the blue path in the
second pard,

In this case, we can infer the fact that the red path in the first part is safe and the
blue path on the second part causes a failure. Therefore, we examine only the blue path
instead of examining all paths. Such meta reasoning realizes more effective bug location.

This paper is organized as follows. In section 2, we overview the language ANDOR-II
and its computation model. In section 3, a framework of a debugger is provided. In section
4, mela reasoning over wotlds is discussed. And in section 5, conclusion and future works
are shown.

Familiarity with GHC [Ueda 86] is assumed.

2 Language ANDOR-II

2.1 Syntax

In ANDOR-II | a program is a set of AND-predicate definitions and OR-predicate defi-
nitions. An AND-predicate definition consists of a mode declaration and a set of AND-
clanses. An AND-clause has the same syntax as that of GHC [Ueda 86). An OR-predicate
definition consists of a mode declaration and a set of OR-clanses. An OR-clause has
no guard goals. A predicate defined by an AND{OR) predicate definition is called an
AND(OR)-predicate. A clause of either lype can contain both AND-predicates and OR-
predicates in its body part. An ANDOR-IT program can be 1ead in the same way as GHC

except for the OR-predicates. Similar to flat languages, a goal in & guard part is restricted

to a tesl predicate.

Mode declaration is in the form of

; =mode P{my,... my).

where P, N, m; are predicate symbol, arity, mode of n-th argument of P, respectively. m;
is either + or — which stands for reference-only/read) or write, respeclively. Relerence-
only mode means that the corresponding arguments are never instantiated during the
computation of P 1, and write mode has the complementary meaning. A variable appearing
in reference-only mode in a head never appears in the write mode in the body in the same
claunse.

Let us show an example of a program of cycle, which consists of two processes interacting
with each other. If a component which forms a cycle has nondeterminacy, it is troublesome
for a conventional language to give them a declarative expression, since the user has to be

concerned about expressing synchronization. ANDOR-IT provides a declarative deseription

for such a problem.
Example 2.1

%% AND-predicates
- mode cycle(=).
eyele(Y) = true | p1([2]X],Y), p2(Y X). % C1
- mode pl{+,-).
pl([stop],Y) = true | Y=[]. % C2
p{[X]X1],Y) = X\ =stop | multi(X,A), Y=[A|Y1], p2(X1,¥1). % C3
- mode p2{+,~).
PA([X|X1],Y) - X<20 | wave(X,A), Y=[A[Y]], p2(X1,Y1). % C4

p2([X[X1],Y) - X>=20 | Y=[stop]. % C5
%% OR-predicates

.- mode wave(+,—).

'The computation of en atom means the whole computation tree, the root of which is the atom. And if
the predicate symbol of the atam is P, we simply call it the computation of P,

wave(X,Y) - Yi=X-1. % C6
wave(X,Y) - Yi=X+1. % C7
- mode multi{+,—).

multi{X,Y) = Yi=X«X. % Cs8

multi(X,Y) - Yi=XsXaX. % C9

In the clause defining cycle, processes p1 and p2 form a cyclic structure with commu-
nication channels X and Y. pl receives the stream via its first argument, and executes
the goal mults on the received element. mults has two possibilities, generating a sqnared
value or generating a cubed value. pl sends the results to p2 via its second argument. p2
receives the stream via its first argument, executes the goal wave on the received element,

and sends the results to pl. In this way, the values put onto each cell of the siream X and

¥ are determined incrementally by affecting each other.

2.2 Semantics

Next, we will show an operational semantics of ANDOR-JT . Further discussion is given in
[Takeuchi 90].

The computation starts from the inilial world and proceeds by reducing the goals in
parallel. The world is a set of conjunctive goals. Reductions are controlled by the following
four rules.

The reduction rule of AND-predicates is similar to that of GHC [Usda 86]. Here, by
the term guard compatation of a clause C, we mean both head unification and exeention

of the guard part.

Rule of Suspension Unification invoked directly or indirectly in gnard computation of
an AND-clause C called by a goal atom G cannot instantiate G. A piece of unification that
can succeed only by violating the above rules is suspended until it can succeed without

such violation.

Rule of Commitment When some AND-clause € called by a goal G succeeds in solving
its guard, clause C tries to be selected for subsequent execution of G. To be selected, T
must confirm at first that no other clanses in the program have been selected for G. If
confirmed, € is selected indivisibly, and the execution of (7 is said 1o be commilled to the

clause €, and the reduction is said to be A ND-reduction belween G and C.

As for the reduction of OR-predicates, two rules are imposed.

Rule of Suspension Head unification between a goal atom G and an OR-clause
cannot instantiate G. A piece of unification that can succeed only by violating the rules

ahove is suspended until it can succeed without such vielation.

Rule of Proliferation When N OR-clauses Cy,...,Cx called by a goal atom G succeed
in head unifications, they all try to be selected for subsequent execution of G. To continue
the execution, N copies of the current world must be made indivisibly, and the current
world is said to proliferate into N m-nrlda, and the reduction is said to be OR-reduction

between G and Cy,...,Cx.

2.3 Implementation

Although the semantics shown above implies an eager copying of the world at every OR-
reduction, a lazy copying scheme called coloring scheme is adopted in the actual implemen-
tation [Takeuchi 90]. The debugger discussed here is also developed based on this coloring

scheme.

2.3.1 <Colored World

In ANDOR-II , computation starts from a given goal on an initial world with an initial
color and proceeds as follows. All conjunctive goals in a world are executed in parallel.
AND-predicates are reduced similarly as these in GHC. In case of OR-predicates, instead of
immediately making all copies of the current world, copy worlds are constructed incremen-

tally: first new distinct colors are determined for each new world, then the computations

6

corresponding to all definition clanses are executed in parallel. As a result, if a variable
comes Lo have multiple bindings, it 1s represented in a form of a special data structure
called colored vector. An element of the colored vector is a pair of a value and a color,
which denotes the value of the variable corresponding to the color. And on the other hand,
when the gozl to be reduced has a colored vector in its argument, copies of the goal are
made in the same number as that of the elements of the colored vector, and reductions are
performed for each one. Incremental copying of the world is realized in this way.

Now, we will present a formal definition of a color,

Definition 2.1 (primitive color) A primitive color is a pair of symbols (P,5) where P
and 5 are called a branching point and a branching arc, respectively. Two primilive colors
are defined to be orthogonal with each other if and only if they share the same branching

point, but have different branching ercs.

A branching point is a unique identifier of the event invoking an OR-predicate, and a

branching arc is an identifier of the selected clanse at that invocation.

Definition 2.2 (color) A color s defined to be a sel of primitive colors, in which no
element is orthogonal with each other. Two colors a, # are defined to be orthogonal iff

Ipy € a,pz € A, such that p; and py are orthogonal with each other.

Every goal has a color of the world where it is invoked and it has a channel between itself
and the manager which is responsible for identifying branching points. At an invocation of

an OR-predicate, a new primitive color is added to the current color. New primitive colors

are determined as follows: the branching point is given by the manager and the branching

arcs are given as the numbers corresponding to each definition clanse.

Definition 2.3 (colored vector) 4 colored vector is a finite set of pairs of terms and

colors. A colored vector is denoted by
< T, ..., T*e* >

where k is the size of the set, T is a term and a''s are orthogonal colors.

As a resuli of the computation of an OR-predicate, the variables in write mode are
bound to the colored vector < T'la!,... , T*|a* > where T'(i = 1,...,k) is the binding
to the variable in the world whose color is a'. When a goal G receives a colored vector,
the computation is possible only for the value whose attached color is not arthogonal with
that of the world where G is called.

Let G be a goal p(Xy,...,Xa, Y1,..., Ym) Where Xiy... Xy are the arguments in
reference-only mode, and Y3, ..., Y arein write mode. Assume that argnments Xy, X2

receive the following colored vectors in the world with the color ap.
<Tlel,.... T o} >

a ks, k
< THad,..., Ty |ag* >

< Tilab,....Thwlok >

The following computation is needed for each set of colors ot ..., af* such that no two
of them are orthogonal with each other, where for each i(i = 1,...,n}, afi e {al,....a{")
and af* is not orthogonal with ag. Let o be the nnion of the colors ag,at',...,af=, and 8

be the substitution { X} ITIF U oo, Xo/TE). If pis an AND-predicate, then the reduction
between the goal G8 and a clause C is carried out in the world with the color a. I p is
an OR-predicate, then the reduction between the goal Gé and the clauses ©y,...,Cn 15
carried out in the world with the color . Note that a's are orthogonal with one another.

Here, we define the concepts success, failure and suspension of the computation.
success, failure and suspension in a single world are defined similar to committed-choice
languages. If the computation of a goal @ succeeds in some world, then the computation
of Q is defined to be success; if it fails in all the worlds, then the computation of @ is

defined to be failure; otherwise, the computation of @ is defined to be suspension.

? Actually, only the arg-um:nn which are referred to in at least one clause during head unification or
guard computation are to be considered. Here, to simplily the problem, it is assumed that all the arguments
are these types.

3 Debugger for ANDOR-II

As the execution of ANDOR-IT is extended over multiple worlds, its debugging seems to
be complicated and burdensome. However, it is “a bug” that has en effect on bugs in
several worlds, and it is encugh to examine a representative world. At first, we perform
the computation to record the history called computation forest, peel a tree corresponding
to a representative world from the whole forest, and reconstruct the computation along
this tree.

Following [Lloyd and Takenchi 86], we consider the following three erroneous compu-
tations:

{1) success with an incorrect answer

(2) unexpected failure

{3) unexpected suspension
3.1 Meta Interpreter

First of all, we show a fundamental meta interpreter in KL1 in order to capture a behavior
of the execution of ANDOR-II program. Then, we will enhance it for a debugger.

An ANDOR-IT program is preprocessed so that it can make an interface for a meta
interpreter.
An AND-clause

Head :- Guard | Body.
iz transformed into the clanze

reduction{ Head, Clause, IDc, Ctl) :- Guard | Clause=Body.
An OR-predicate definition

P[Xn.-. ..}'[Lﬂ] = Hud}*,.

p{Km11' . ‘l}[mﬂ.] - Bod}’m.
is transformed into the clanses

reduction({ p(Yi,...,Y5), Clause, IDe, CtI') - true |

Clause = [pr{Yyp oY)y o Pl Y1, - Yn)]

reduction{ py(Xi1,.. .. X1a), Clanse, IDe, Ctl) =~ true | Clause=Body,.

reduction{ pu(Xmiy - tomn), Clouse, [De, Cil) o~ true | Clavse=Hody.,.
where p;'s (i=1,..., m) are new distinet predicate symbols.

For each predicate, the clause handling the failure case is added to the end of the trans-
formed program preceded by ‘otherwise’ clause so that it is invoked when all the other
clauses fail 1o be committed.

reduction{ _, Clause, _, _) - tine | Clause = "#failure§’.

Here, Col denotes the color attached to the world where the goal is called. Ids denotes
the channel expanded between goals and the manager called bp_hendler. This manager
is required to assign a unique number to cach invocation of an OR-predicate, since such
invocations may oceur at soveral places in parallel. Fach goal sends a request to the
bp_handler via this channel when il invokes an OR-predicate, These requests are merged

and sent to bp_handler. The request is in the form of

get _bp(Bp)

where Bp is a variable used for a back communication. When bp_handler receives the
request, it determines the unigue identifier and sends it back to the goal process. Ctlis a
channel onto which the user sends a contol message. I De is the clause identifier. Ctl and
II}s are not used in the fundamental meta interpreter.

Below, we show the top level of a fundamental meta interpreter. The predicate reduce
plays the main rele which is a goal reduction. In the program, user-defined predicates are
placed in the guard part for making the description simpler. ‘— >’ is a macro definition of

EL1 which indicates the conditional.

reduce((G1,G2), Col, Ids) =- true |

merge({ 1ds1,Ids2 }, Ids), % division of the stream

10

reduce(G1, Col, Ids1), % reduction of a goal G1
reduce{G2, Col, Ids2). % reduction of a goal G2
teduce(Goal, Col, lds) :- is_colored_vector(Goal) |
T receiving a colored vector
pickup_non_orthogonal{ Goal, Col, SletdGoals).
% picking up the elements of the colored vector
% whose colors are not orthogonal with Col
dofor_each_goal(SletdGoals, Ids).
% execution of the goal with the union color
T for each element
reduce(Goal, Col, Ids) = is_or_pred(Goal) |
% OR-reduction
reduction({Goal, Clause, , .},
do_for_each_clause{Clause,Col,1,Ids).
T setting of the initial value of the branching arc
% and reduction for each clause
otherwise,
reduce{ Goal, Col, Ids) =- true | % for AND-clause
reduction| Goal,Clause, ., .),
{ Clause = "#failure$’ — > substitute_void{ Goal), Ids=[] ;
otherwise: irue = > reduce(Clause,Col Ids)),
do_for each_clause([C]Cls],Col,BAre Ids) - true |
Ids=[get_bp(Bp)|Idss), % request for giving the branching point
Idss={Ids1,Ids2}, %% division of the stream
add _color_element(Col,(Bp,BAre),NewCal),
% addition of a new color element
BArcl:=BArc+1, % branching arc for the next chosen claunse

reduce(C,NewCal,lds1), % reduction of a clanse

11

do_for_each _clause{Cls,Col BArcl Ids2).
do_for each clanse([|,-,-,I1ds) = true |
Ids=[]. % closing the stream
dofor _each_goal([(G.Col})|Gs], Ids) :- true |
lds={Ids1,Ids2}, % division of the stream
teduce(G,Col,Ids1), % reduction of = goal
dofor_each_goal(Gs,lds2).
do_for_each goal([], Ids) :- true |

Ids=[]. % closing the stream

If a goal receives a colored vector, it performs the reduction only for the value with the
color which is not orthogonal with the current color. This is the most important process in
the execution of ANDOR-1I . We have to handle all cases in which each variable is bound to
a colored vector. There are several patterns depending on the variable which is bound to
a colored vector. Therefore, in fact, several clanses are created in this case, and the actual
implementation realizes the mechanism in the same way as that in the compiler [Takeuchi
90].

3.2 Meta Interpreter Recording A History

Now, we will introduce a meta interpreter enhanced for debugging. I11s the meta interpreter
which records the history of computation. Assume that all the clauses in the program are
given distinct numbers and the goals in a clanse are given locally distinct numbers. When
a goal with a history H is invoked, it accumulates its own identifier (C, &) onto H where
¢, G are a clause identifier and a goal identifier, respectively.

Similar to the fundamental meta interpreter, an ANDOR-II program is preprocessed in
the same way, except that a clause for handling the deadlock case is added *.

reduction(-, Clause, ., deadlock) :- true | Clause = “$suspensiond’.

3 The user can know deadlock, for example, by checking the number of reductions executed so far. It is
assumned that deadlock is informed to each process by the user.

12

The top level of the meta interpreter which records the history written in KL1 is shown
below. In this case, reduce should have three additional arguments: Forest, Label and
C1l. Forest denotes a history of the computation. Labe! denotes the label of the eurrent
node in a form of the triple (C,G,a), where C,G and o are a clause identifier, a goal
identifier and a current eolor, respectively. €l is a channel onto which the user sends a

control message.

reduce((G1,G2), Col, lds, Forest, node(IDc IDg,Col}, Cil } :- true |
merge({ IdslIds2 }, Ids), % division of the stream
Forest = (LF, RF), % branch of the forest
reduce((1, Cel, Ids1, LF, node(IDe,IDg,Col), C11)% reduction of a goal G1
[Dgl:=IDg+1, % increment a goal 1D
reduce(G2, Col, Ids2, RF, node(1De,IDg1,Cal), C1l).
% reduction of a goal G2
reduce{ Goal, Col, Ids, Forest, Node, Ct]) - is_colored_vector{Goal) |
% receiving a colored vector
pickup non_orthogonal{ Goal, Cel, SlctdGoals).
Y picking up the elements of the colored vector
% whose colors are not orthogonal with Col
do_for.each_goal(SletdGoals, lds, Forest, Node, Ctl).
% execution of the goal with the union color
% for each element
reduce(Goal, Col, Ids, Forest, Node, Cil) :- is_or_pred{Goal) |
% OR-reduction
reduction(Geal Clause,.,Ctl),
do_for_each_clause({Clause,1,1ds, Forest, Node, C1l).
" setting of the initial value of the branching arc

% and reduction of each clause

13

olherwise.
reduce({ Goal, Col, Ids, Forest, node(ID¢,IDg,.), Ctl) :- true |
% for AND-clanse
reduction{ Goal, Clause, IDcl, Ctl),
{ Clause = "$failure$’ — >
substitute_void({Goal), Ids=] |,
Forest=[node(1De,1Dg,Col),failure] ; 7 storing the result
Claese = '$suspension®’ = >
substitute_suspend{ Goal), Ids=[],
Forest = [node(IDe,IDg.Col),suspension] ; % storing the result
otherwise; ttne — >
Forest = [nade{1Dc,IDg,Col),F1], % storing the result
reduce(Clause,Col,Ids F1,n0de(1Dc1,0,Col),Ctl).
% reset of the goal ID
dofor_each_clause([C|Cls),Col, BArc,1ds, Forest,Label,Ctl) :- true |
Ids=[get bp({ Bp)|Idss],

% request for giving the branching point

Tdss={Ids1,Ids2}, % division of the stream

add _color_element({Col {Bp,BArc),NewCol}, % addition of a new color element
BArcl:=BArc+1, % branching arc for the next chosen clause
copy node(Forest, F1,F2), % copy of the node for the next clause
reduce(C,NewCol lds1,F1,Lahel Ctl}, % reduction of a clause

do for_each _clause(Cls,Col,BArcl,lds2 F2,Label,Ctl).

do_for_each clause(]],-,.,Jds,Forest,_,) - true |

Ids=[], % closing the ID-stream

end of copying(Forest). % lermination of copying of the node

dofor_each_goal([(G,Col)|Gs), Ids, Forest, Label, Ctl) :- true |

Ids={Ids1,1ds2}, ox division of the siream

14

copy -nodel Forest F1,F2), % ecopy of the node for the next goal
reduce(3,Col, Ids1,F1, Label , Ctl), % reduction of a goal
do_for_each_goal{ Gs.Ids2,F2 Label Cil).

do_for_each goal([], Ids, Forest, _, _) - true |
Ids=[], % closing the ID-stream

end _of_copying(Forest). % termination of copying of the node

Now, we explain how to record a history of computation based on this program.
Rule of Labelling

Let JDc and [Dyg denote identifiers of a clavse € and 2 goal G.
(1) Add the label root to the root node.

{2) When the AND-reduction between a goal ¢ and a clause C is carried out in a
world with a color o, and the goals G,..., Gy are invoked, then add the labels

(IDe, IDgy, &), ..., (IDe, T Dgy, o) to the nodes corresponding to Gy, ..., Gy,

{3) When the OR-reduction between a goal G and clauses Cy,...,Cy, is carried out in
a world with a color o, and the goals Gy, .., Gigyyeooy Gmnyeo oy Gy, are In-
voked, let the new colors corresponding to €,...,C be Ay, ..., 0. Add the labels
(IDey, IDgyy, a1)y-.. (I Dey, IDgyk, o)y ... (1D, I DGy, 0y oo, (T Dy I D gy 00)

to the nodes corresponding to Gy, ..., Grgyse oo Gty oy Gy, » TeSpectively.

(4) When a goal G receives a colored vector € Te',...,T"e" > in a world with
a color a, let g%, ...,8™ be the colors which are not orthogonal with o where
#(j=1,....m})€ {a*,...,a"}, and G# be the goal obtained by applying the sub-
stitution & corresponding 1o 7 to the goal G. If G is a goal of an AND-predicate and
for each j(j = 1,...,m), the reduction between the goal G# and a clause C; is carried
out and the goals Gy, ..., Gji, are invoked, then add the labels (1 De;, I.Dg_;1,§5], ceey

{fﬂrj,fﬂgjh.,ﬂ-‘-) to the nodes corresponding to Gji,...,G;k,, Tespectively. f&Gis

15

a goal of an OR-predicate and for each j{j = 1,...,m), the reduction between the
goal G# and clauses Cy,...,Cn are carried out and the goals Gyy,...,Gp,,-- -,
Gxtyoo-2 Gaiy are invoked, then let the new colors corresponding to Cy,...,Cx
be 81,...,8%. Add the labels (IDc;,IDgyy,B),...,(IDecy, IDg1,B),- -,
(IDen,IDgn1, B%)s -, (IDen, IDgnky . B) to the nodes corresponding to

Gryyeeoy Grigy ooy Gy oo o, Gk, Tespectively.

(6) When 2 built-in goal G succeeds, fails or suspends, add the label success, failure
ot suspension o the leaf node corresponding to sueccess, fatlure or suspension,

respectively. 1

When the computation terminates, the history of the computation is obtained in the
furm of a forest whose node corresponds to each goal. For a goal of an OR-predicate
and a goal which receives a colored vector, several reductions are called. Therefore, the
corresponding node stands for a set of reductions. We call these nodes multi-nodes.

The structure of the forest is shown below.

Foresi = [Label, Nodes] | [I..a.bEI, < Nodesy, ..., Nodes; > |
Nodes ::= (Foresty, ..., Foresty) | success | fadlure | suspension

Label ::= node(ClauselD,GoallD,Color) | root

When Forest is in the form of [Label, < Nodes;, ..., Nodes, >], the root node of this

forest is a multi-node.
The obtained computation forest is eguivalent to an AND/OR-tree and, a history in a
single world is equivalent to an AND-tree.

The computation forest of the example cyele is shown in Figure 1.

3.3 Reconstruction of A Computation with A Designated Color

If in some world, an expected solution is not obtained, we start debugging. Debugging

consists of two phases, reconstruction of buggy computation and its diagnosis. We adopt

16

two methods for reconstruction: reconstruction with a designated color and reconstruction
by stepwise selection.

In this subsection, we explain the former reconstruction method. This method is useful
in case the world in which a bug appears is clear. If an incorrect answer is oblained in some
world, we know that a bug exists in the computation in that world. If failure/suspension
is obtained in some world despite the fact that all possible compntations are expected to
succeed, we also know that a bug exists in the computation in that world. In these cases,
we take one buggy world as a representative and start reconstruction with its color. The
reason why a representative world is taken is: (1) it is easier to inspect a single world, (2)
several worlds may share 2 computation, and fixing a bug in one world may simultaneously
fix bugs in other worlds.

Reconstruction of computation in the world specified by a color is achieved by re-
execuling the initial goal. The execution is guided by the special meta interpreter, which
takes the computation forest and the eolor as the additional arguments. At each branching
point, the meta interpreter traces only the world with the designated color. As for the other
worlds, no computation is performed. On the multi-nodes in the computation forest, only
the nodes with the designated color are re-executed, and the other nodes remain untraced.
Thus, the computation with the designated color is reconstrucied jusi as the tree with the
color is peeled from the forest. Formal description of the meta interpreter is shown below.
Rule of Reconstruction of the Computation

To a given computation forest F and a designated color ap, apply the following proce-
dure. Let IDe and T Dg denote the identifiers of clause ' and goal G.

[initial state]

If a root node is not a multi-node and a forest is in the form of [root, (Foresty, ..., Forest,)],
then let Forest, be [node(ID¢', IDg',), Nodes), and perform the reduction between the
given goal and clause C'. If a root node is a multi-node and a forest is in the form of

[root, < Nodesy,..., Nodesy >], then peel the multi-node.

17

[expansion of & node]

If a forest is in the form of [node(] De, I Dg,a),{ Foresty,..., Forest,)], let Forest, be
[node(l De', I1Dg", a), Nodes), then perform the reduction between goal G and clanse C'.
[peeling of a multi-node]

If a forest is in the form of [nede(IDe, [Dg,a), < Nodesy,..., Nodesy >], let ai(i =
1,...,k) be a color in the label of Nodes;. If (fDe,IDg) is a goal of an OR-predicate and
oo does not contain the branching point of this node, then do nothing. Otherwise, peel the
nodes Nedesp(F € {1,...,k}) where aF is not orthogonal with ag. That is, if we assume
that Nodesp is (Forestg,, ..., Forestpy,) and Foresty, is [node(IDep, 1Dy’ aF), Nodes],
then perform the reduction between goal G and clause Cp.

{termination]
For a forest [node(I De, I Dy,), Node] where Node is either success, failure or suspension,

execute the goal G. B

‘The above rule guarantees the reconstruction of the computation in the world. It is
proved as follows. We assnme without losing generality that every predicate has at least
one argumeni in write mode to make the discussion simpler.

For a multi-node, let Nodes,, ..., Nodes, correspond to oy, ..., 0, respectively.

Assume that the multi-node corresponds to the goal of an OR-predicate and the desig-
nated color oo does not contain the branching point of this node. Since all the history of
the concerned branching points are passed to the final solution and reflected in its color,
the node is unrelated to obtaining the solution, and the hranching arc at that point does
not affect the computation which gets the solution. Therefore, the computation which gets
the solution is reconstructed even if such a node is ignored.

Assume that the multi-node corresponds to the goal of an OR-predicate and o contains
the branching point P of this node. Let Sy,..., Sy be the branching ares of that branching
point. Note that a;{(i = 1,...,%) has (P, 5;) as a primitive color. It is proved that there

is only one Nodesr whose color is not orthogonal with ap, since if @p has (P, Arc) as a

18

primitive color, Are is one of 5;,...,5;, and the primitive colors (P, 51),...,(P, 5;) are
orthogonal with one another.

Assume that the multi-node corresponds 1o the goal receiving a colored vector. In this
case, there is only one element that is not orthogonal with ag. This is shown by deriving
contradiction where there are two such elements. Suppose that there exist two colors oy
and a;(1,5 = 1,...,k) which are not orthogonal with ag. As o; and a; are orthogonal
with each other, they have different branching arcs 5; and 5; at the branching point P.
Let op have (P, 5) as a primitive color, 5 and 5 are not orthogonal, 5 and 55 are not
orthogonal, while 5; and 5; are orthogonal with each other. Thisis a contradiction. Thus,

there is only one Nodesp whose coler is not erthogonal with agp.

Therefore, no colored vector appears in reconstruction, since only ane world is selected
at each branching point. Most branches are pruned, and only the branches on a peeled
tree can be performed.

In this method, which clause is used in each reduction is determinate. Therefore, the
computation can he reconstructed without considering the synchronization, Note that the
reconstructed forest is an AND-tree which has no multi-nodes. Therefore, it is equivalent
to the computation tree of GHC.

Ignoring the unrelated nodes implies that the solutions other than the target one are
not generated even in the same world.

For a forest F, take a node N whose color is a and the corresponding goal is 4. Let
Ry,..., Hy be the solutions in the worlds whose colors are not orthogonal with a. Assume
that the subtree whose root node is N contains a node corresponding to the goal of an
OR-predicate. If we take o as the designated color, then the computation which generates
A is reconstructed. However, branching points under N are undefined, and no reduction
corresponding to these is performed. As a result, the solutions R},..., R (m < n) are
obtained where R} is possibly a partially specified form of R; for some j(j =1,...,n).

The above discussion implies that the following theorem holds.

19

Theorem 3.1 Assume that the erecution of a goal G terminates. Let o be the color af
the world in which a goal alom A appears, and let F be the compuiation forest of gool G.

Then, the computation which generates A can be reconstrucied from F and .

We illustrate the debugging procedure by Example 2.1. Each definition clause is labelled
with the identifier Ci{i = 1,...,9). And for each clause, goals are labelled with the identifiers
G1,...,Gn fiom left to right where n is the number of body goals of the clause.

Invoke the goal eyele(Y'), then the following solutions are gained.

Y = [4,9,64],
[4,9,5121,
[4,9,100],
[4,9,1000],
[4,27]1,
[4,25],
[4,125],
[8,45],
[8,343],
[8,81],

[8,729]

Suppose that the clause CT is replaced by
7 wave(X,Y) - true | Yi=X+10.
Then, the following solutions R1,R2,. . R11 would be gained. The sequence of digits
dgd, ---d,, denotes the color of the corresponding world, where d;(f = 0,1,...,n) corre-
sponds to the branching arc of the i-th hranching point. d; = 0 means that j-th branching

point is not selected yet.

Y = [4,9,64], 1101000110 ::R1

[4,9,512], 1101000120 ::R2

20

(4,9,361], 1101000201 ::R3#
[4,9,6859], 1101000202 ::R4»
[4,27], 1102000000 ::R5
[4,196], 1200100000 ::R&+
[4,2744], 1200200000 ::R7e
[&,49], 2010010000 ::R8
[8,343], 2010020000 ::R9
(8,324], 2020001000 ::R10#
[8,8832] 2020002000 ::Rii=

* denotes incorrect AnNEWers

Among the solutions, R3,R4,R6 R7,R10,R11 are the incorrect solntions. We select one
of them, say, B3, and start debugging. The designated color a is *1101000201." The
first element “17 of the color “1101000201™ means that the branching arc “1” is selected
at the branching point “0.” Similar analysis can be done for the other elements. Given
a computation forest, the branching point of a multi-node which corresponds to the goal
of an OR-predicate can be gained in the following manner. Consider a multi-node has a
label [Label, < Nodes;,... Nodes, > |. Let ay,...,ay be the colors of Nodes,,...,Nodes,,
respectively. ay,..., oy are orthogonal with one another and differ only in one branching
point. If i is such a point, then { is the branching point of the node. The computation
forest for Example 2.1 is shown in Fignre 1. The number added to the top-lefi of a multi-
node denotes the branching point of that node. For example, since the colors of the nodes
(6,1,a3) and (7,1, a4) are “1100000000" and 1200000000, respectively, the branching
puint of their parent node (4,1,0q) is “1.7

Reconstruction starts from the root node root with the designated color “1101000201."
As the root node is not a multi-node, and its child nodes are (1,1,aq) and (1,2,),

perform the reduction between the goal cycle(Y) and the clause C1. Asa tesult, the child

nodes (1,1.aq) and (1,2, ag) are traced. Then, for the forest whose root node is (1,1, a5)

a1

which has the child nodes (3, 1, ag), (3,2, ag) and (3,3, a4), perform the reduction between
the goal corresponding to the node (1,1,a¢) and the clause C3. As a result, the child
nodes (3,1,a¢), (3,2,ag) and (3,3,ap) are traced. As (3,1,aq) is a multi-node, check
its child nodes (8,1,a) and (9, 1, a2), where oy and o are the colors “1000000000” and
“2000000000,7 respectively. Peel the node (8,1, o) since oy is not orthogonal with the
designated color. In this way, the reconstruction proceeds.

In Figure 1, the nodes in the computation forest are located in the several layers. And
in the reconstruction with the color “1101000201,” only the nodes in the surface are peeled

off, and the computation in this world is reconstructed.

3.4 Reconstruction by Stepwise Selection

Another method of reconstruction is the reconstruction by stepwise selection. This method
is useful for the case in which the world in which a bug appears is unclear. It is hard to
distinguish unerpected failure from ezpected failure since only “faslure” is gained as a result
of that world. In this case, the desirable methed is to choose a color incrementally as
computation proceeds., Al every invocation of an OR-predicate, we designate the clause
to be used, namely, the branch to be followed. The remaining branches are pruned, This

method is similarly realized with the previous method.

4 Discussion

4.1 Meta Reasoning

The method of debugging described so far greatly alleviates the burden of debugging.
However, if we survey more than one world, more effective bug location is possible.

Execution of ANDOR-/T gets all solutions in parallel for all possible cases. In addition,
not only solutions but also their histaries can be obtained in the form of a color. Therefore,
it is possible to perform meta reasoning on these solutions and colors to accelerate bug
location algorithm.

Suppose that, a bug manifests in some world while there also exists a world in which the

22

computation terminates successfully. In such a case, we can derive some useful information
by eomparing their colors, and hence narrow the bug’s location.

Consider the cycle example again. Several interesting observations are obtained directly
from their colors.

First of all, note that colors attached to the answers are orthogonal with one another.
Any pair of them have different branching arcs at only one branching point. Let @ and g
be colors with an incorrect answer and correct answer, respectively. Comparing o and S5,
the selected branching are at a branching point causes the difference of getfing a correct
answer and an incorrect answer.

For example, comparing the color of 3 and the colors with correct answers, O1, 02

and O3 are ohserved.

o O1: Selecting “27 at branching point *7" canses the difference. {from R3 and Hl{or

R2))

» 02 Selecting “17 at branching point “3” causes the difference. (from R3 and R5)

e 03 Selecting “1" at branching point “0" causes the difference. (from R3 and R&{or

R9))

If we check other answers, there is no success world in which branching are “27 is
selected at hranching point “7." Therefore, for O1, we consider that the observation is
admissible. However, since R1 is a snccess case in which branching arc “17 is selected
at branching point “0," and “1” is selected at “3," 02 and O3 are considered to be not
admsashle.

This procedure is summarized as follows. Let €, and Cs be a set of colors attached to

incorrect answers and correct answers, respectively. For a pair of @ € C, and g € Cg, let

23

P be the branching point both a and § have, and let o have (P, 5.) as a primitive color.
If there exists no element in Cg that has (P, S,) as a primitive color, then the observation
Obs: Selecting S, at branching point P causes the difference.
is admissible. In this case, the selection 5, at P is a candidate for the cause of the bug.
If there exists an element in Cg that has (P, S5,) as a primitive color, then the above
observation is not admissible. In this case, the selection 5, at P does not directly caunse
the bug. As further compntation proceeds after passing branching point P, there exists
another branching point at which the selection may be a candidate for the cause of the
bug. Namely, P is too far from the bug.

For example, there are three admissible observations in this example.

o O1:: Selecting “2” al branching point “7" causes the difference. (from R3 and R1)

o O4:: Selecting “2” at branching point “2” causes the difference. (from R10 and RE&)

s 05:: Selecting “2" at branching point “1” causes the difference. (from R and R5)

In the given computation forest, all the branching points “1,” 2" and “7" correspond
1o the goal (4,1). Hence, reasoning on these observations and the forest brings up a new

fact:

e F1:: Reduction between the goal (4,1) and the clanse corresponding to branching
are “2," namely, the reduction of the leftmost body goal of clause C4 and the second

definition clause of that predicate, canses a bug.

This is a procedure to find a set of nodes of branching points which are as close as

possible to the nodes which correspond to the incorrect goal atoms in the computation

24

forest, and then to get the fact that narrows the bug's location. Tracing staris from
the reduction indicated by the fact since computation before the point is guaranteed to be
correct. However, the bug is not always located in the subtree whose root node corresponds
to that goal. It may be located in another subtree, because reduction itself is correct, and

the imported binding 1o the goal at a distance canses the bug.
4.2 Coordination with Other Methods

Several years have passed since algorithmic debugger was proposed as a declarative debug-
ging method instead of conventional tracing [Shapiro 84). Our approach is similar to an
algorithmic debugger in the sense of constructing a computation forest(tree) and narrow-
ing a bug’s location. The algorithmic debugger of ANDOR-IT would be the one traversing
the forest, and several nodes or arcs are detected as buggy reductions, since a bug affects
several worlds. This process seems quite complicated and the method of picking vp a
target world seems to be simpler and more suitable. It would be interesting to pick up a
represeniative world and carry out an algorithmic debugging with the oblained knowledge

hy meta Teasoning.
5 Concluding Remarks

In this paper, we have proposed a debugger for an AND/OR parallel logic programming
language ANDOR-II . We proposed the method of selecling a representative world and
peeling it from the multiple worlds. Debugging of the ANDOR-I computation on this single
world is equivalent to the debugging of the computation of committed-choice langnages.
Farthermore, we showed that if we survey over the worlds, we can perform meta reasoning
over the observations, and a more effective bug location algorithm can be realized by taking
advantage of the results.

Debugging of AND/OR parallel languages has scarcely been studied. The debugger
proposed here is under development, but it leaves lots of room for future works. The most

urgent issue to consider is the adoption of some strategies for taking the designated color.

23

If we take some color, the bug is found easily while if we take another color, the bug is
hardly found or takes a long time to find. Some strategies should be adopted for obtaining
the designated color. Furthermore, formalization of meta reasoning over the worlds is
required. An efficient algorithm to get a set of admissible observations and to obtain the
fact that narrows bug’s location from these observations and the computation forest need

to be considered.

Acknowledgements

This research was done as one of the subprojects of the Fifth Generation Computer
Systems (FGCS) project. We wonld like to thank Dr K Fuchi, Director of ICOT, for the
opportunity of doing this research and Dr. K. Furukawa, Vice Director of ICOT, and Dr.

R. Hasegawa, the Chief of Fifth Laboratory, for their advice and encouragement.

REFERENCES

{Bahgat and Gregory 89] Bahgat,R. and S.Gregory, “Pandora: Non-deterministic Par-
allel Logic Programming,” Proc. of 6th International Conference on Logic Programming,
pp.471-486,1989.

[Clark and Gregory 87] Clark,K.L. and S.Gregory, “PARLOG and Prolog United,”
Proc. of 4th Int. Conf. on Logic Programming, pp.927-961,1987.

[Haridi et al. 88] Haridi,S. and P.Brand, “ANDORRA Prolog - An Integration of Prolog
and Committed Choice Languages,” Proc. of International Conference on Fifth Gener-
ation Computer Systems, pp.745-754, 1988,

[Huntbach 87] Huntbach M.M., “Algorithmic PARLOG Debugging,” Proc. of Sympo-
sium on Logic Programming, pp.288-297, 1987,

[Lloyd 87] Lloyd,J., “Declarative Error Diagnosis,” New Generation Computing, pp.123-
154, Vol.5, No.2, 1985.

|Lloyd and Takeuchi 6] Lloyd,J., “A Framework of Debugging GHC,” ICOT TR-188,

1986.

[Lichtenstein and Shapiro 89] Lichtenstein,Y. and E.Shapiro, “Abstract Algorithmic

26

Debugging,” Proc. of 4th Int. Conf. on Logie Programming, 1988,

[Naish &7] Naish,L., “Parallelizing NU-Prolog,” Proc.of Logic Programming, pp.1546-
1564, 188E.

[Shapiro &4] Shapiro,E.Y., “Algorithmic Program Debugging,” The MIT Press, 1983.

[Takahashi et al. 90] Takahashi K., A.Takeuchi and T.Yasui, “A Parallel Problem Solv-
ing Language ANDOR-IT and Its Parallel Implementation,” ICOT TR-558, 1990.

[Takeuchi 86] Takeuchi,A., “Algorithmic Debugging of GHC Programs and Its Imple-
mentation in GHC,” ICOT TR-155, 1986,

[Takeuchi 90] Takeuchi, A., “Parallel Logic Programming,” PhD. Thesis, The University
of Tokya, 1930.

[Takeuchi et al. 88] Takeuchi,A., K.Takahashi and IL.5himizu, “A Paralle]l Problem
Suvlving Language for Concurrent Systems,” ICOT TR-418, 1988, also in Concepts and
Characteristics of Knowledge-based Systems, M.Tokoro,Y.Anzai and A.Yonezawa(eds.),
North-Holland, 1989,

[Tatemura and Tanaka 89] Tatemura,J. and H.Tanaka, “Debugger {for Parallel Logic
Programs: FLENG,” Proc.of Logic Programming 89, pp.133-142, 1989,

[lfeda 86] Ueda,K., “Gnarded Horn Clanses: A Parallel Logic Programming Language
with the Concept of a Guard,” ICOT TR-208, 1986,

[Ueno and Kanamori 90) Ueno,M. and T.Kanamori, “GHC Program Diagnosis Using
Atom Hehavior,” Proc.of Logic Programming 90, Springer(to appear), also in ICOT TR-
, 19590,

[Yang and Aiso 86] Yang,R. and H.Aiso, “P-Prolog: A Parallel Logic Language Based on
Exclusive Relatinon,” Proc.of 3rd International Conference of Logic Programining pp.255-

269, 1986,

27

7
(1,

;(“{ 4 1,053 (4,200 (4,305
M > 1
SUCCESS @

el

g ¢ 00000000007
) ¢ 10000000

@3 . "2000000000" .
g - 1100000000 multi-node
@y 0 “1200000000" LIJ'

@3 . “1101000000"
e ¢ “1102000000"
@y : “1101000100"
ag - “1101000200"

Figure 1: Compntation Forest uf eycle(above) and Corresponding Goals(below)

28

