ICOT Technical Report: TR-605

TR-605

Computing Abduction by Using the TMS

by
K. Satoh & N. Twayama

Mowvember, 195

o e, 1COT

Mty Kokwsal Bidg, 21F (03)3456-3191~5

" :O I 4-2% Mita |-Chome Telex ICOT 132964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Computing Abduction by Using the TMS

Ixen Satoh, Noboru Iwayama
Institute for New Generation Computer Technology
4-28 Mita 1-Chome Minato-ku, Tokyvo 108 Japan
email: ksatoh@icot.or.jp

November 2, 1990

Abstract

We present a method to compute abduction in [Eshghig9, Kakas00a,
Kakas00b]. We translate an abductive framework into a general logic
program with integrity constraint and show the correspondence be-
tween generalized stable models defined in [Kakas9a, Kakas00h] and
stable models for the translation of abductive framework. Then, we
show a procedure to compute stable models for a general logic program
with integrity comstraint. This procedure js based on a procedure of
calculating grounded extension of Doyle’s TMS [Dayle79, Satoh90]
and can be regarded as an extension of a well-founded procedure to
calculate stable models for a general logic program without integrity
constraint[Fages9(. Saccad].

1 Introduction

In this paper, we present a method of caleulating ahduction in [Eshghi89,
Kakasl0a, Kakas9Ub]. Recent researches have revealed that abduction plays
important role in artificial intelligence, as stated in [Eshghisy]. Various
researchers have studied abduction in terms of logic programming frame-
work [Eshghis9, KakasY0a, Kakas90b] and shown relationships with non-
monotonic reasoning {ramework such as negation as failure, truth mainte-
nance system and autoepistemic logic.

[Kakas90a] shows the abduction procedure to calculate hypotheses to ex-
plain a given observation. This procedure extends the top-down procedure
in [Eshghi8Y] in order to manipulate arbitrary hypothesis. However, this
procedure inherits the problem of the previous procedure of [Eshghig9] that
correctness does not hold in general for logic programs with recursion as
shown in [Eshghig89, p. 251].

In this paper, we give an abduction procedure which is correct in any
general logic program. To do that, we first give a translation of abductive
framework to a general logic prorgram with integrity constraint and show that
a stable model [Gelfond38] lor the logic program colucides with some general
stable models defined in [Kakas80L]. We also show that explanation defined
in abductive framework coincides with the stable models for the translated
logic program plus a special integrity constraint.

Then, we provide a bottom-up procedure which calculates a stable mod-
els for a general logic program with tegrity constraint. This procedure
is based on a procedure calculating grounded extension of TMS [DoyleT8,
Satoh90] and can be regarded as an extension of well-founded bottom-up
procedure for calculating stable model for logic programs without integrity
constraint [Fages90, Sacca%0).

One might think that it is sufficient to calculate stable models for a gen-
eral logic programs by the method of [Fages90, Sacca90] and then select
stable models which satisly integrity coustraint. Theoretically speaking, this
naive process does not cause any problem. Practically speaking, however,
we can save search space by excluding unsatisfiable stable models by check-
ing mtegrily constraint during computing stable models. Our procedure not
only checks integrity constraint dynamically but also uses integrity constraint
actively to derive some facts.

2 Translating Abductive Framework to Logic
Program with Integrity Constraint

We follow the definition in [Kakas90a. Kakas90b] but restrict ourselves to
considering propositional case. If we consider predicate case, we change it
into ground logic programs by instantiating every variable to an element
of Herbrand universe of considered logic program to obtain propositional

[EN]

program.
Firstly, we define general logic program and mtegrity canstraint.

Definition 1 Lei A be a proposition symbol, and Ly, ..., Lu{m = 0) be propo-
sitinnal literals. A general logic program consists of (possibly countably infi-
nite] rules of the form:

ALy Ly . L.

We call A the head of the rule and L,,.., L,, the body ol the rule. Let R
he a rule. We denote the set of positive literals in the body of R as pes(R)
and the set of atoms which are abtained by removing negation symbal from
negated atoms in the hody of R as neg{ R).

Definition 2 Let Ly, ..., Ly(m = 0) be propositional literals. An integrity
constraint consisis of {possibly countably infinite) erpressions of the form:

— I.-]. L-:. ---.Lm.

Let ¢ be an integrity constraint. We denote a set of positive literals in ' as
pos(C') and a set of atoms which are obtained by removing negation symbol
from negated atoms in C as neg(C).

We also define stable models for a general logic program with intcgrity
constraint as follows.

Definition 3 A general logic program with wntegrity constraint be a pair
(T, 1) where T consists of rules and I consists of integrify constraints. A
stable model for a general logic program willh integrity constraint 15 a set of
proposifions M.

1. M is equal to the minimal model of TV where T™ is obtained by the

following operation from T. We say thal M is the stable model of 1",
(a) Delcling every rule R from T thel some N € neg(R) s in M
{b) Deleting every negated atom in the remained rules.
2. For every C' € I, there is some P € pos(C) which 15 nof in M or some

N € neg(C) which 1s tn M. We say thai M satisfies or does not violate
C and wrile ns M | C.

This definition gives a stable model of T° which satisfies any integrity con-
straints in €.
We follow the definition of abductive framework in [Kakas90a, [xakas300L)|.

Definition 4 An abductive framework is a triple (T, A, 1) where

I. A 1z a (possibly countably infinite) sci of propesitional symbols called
abducible propositions.

2. T is a general logic program where no rule’'s head s equal 1o any element

of A.
3. 1 15 a set of integrily constrainis.

To be precise, we only consider a special form of integrity constraints whereas
Kakas and Mancarella allow any closed formulas as lnlegrity constraints,
However, Lthose constraints can be translated into our form of integrity con-
straints.

We follow the definition of generalized stahle models and explanation with
respect to (T, A, T} in [Kakas90a, Kakas90h].

Definition 5 Let (T, A, I} be an abductive framework and A be a subset
of A. A generalized stable model M(A) of (T, A. 1} is a stable model of
(T UM) where TUA denotes TU{P —| P e A},

Definition 6 Let (T, A, I} be an abductive framework, and Q@ be an atom
called observation, and A be a subset of A. @) has an abductive explanation
with set of hypothesis A if and only if there exists a generalized stable model
M(A) such that Q@ € M(A).

At first sight, an abdncible has somewhat different character, bt it turns
oul that there is a correspondence hetween an abductive framework and a
logic program with imtegrity constraint as lollows. We translate an abductive
framework as follows.

For each abducible F in A, we introduce a new propositional symbol P
which is not used in {1, A, f). We denote a set of such new propositional
svimbols as A’. Then, we add the following rules in T for each abducible /
in A and obtain a logic program with integrity constraint.

o ﬁ'

and B
Pe =P

We denote a set of all of the above rules for every abducible as I'(A). The first
rule expresses that if £ is not helieved, then P is believed and the second rule
expresses that if £ is not believed, then P is believed. P, therefore, means
that # is nol believed. The first rule is used to assume F and the second
rule 15 used not to assume P and is especially used to avoid contradiction if

P is forced not to be believed by the program.
Then we can have the following correspondence between ahductive frame-

work and its translalion.

Theorem 1 Let be (T, A, T} be an abductive framework and (TUT(A), T} be
its translation and A be a subset of A. M(A) is a generalized stable model
of (I, A, I} if and only'if there exists a stable model M’ for

(TUT(A)T)

such that
M = M(AYU (4 = A")

where A is a sel of corresponding newly introduced symbols in A" for all
symbols in A

Proof: See Appendix.
Example 1 Gencralized stable models [Kakas90b, p. 387]

Consider the following logic programs T

oo b (1)
q+—a (2)

witl abducibles A — {a, b},
and the following integrily constraints J:

—ghb _ (3)
— g A b (4)

From the ahove logic programs, we can get M, = {b,p} and M; = {a, ¢} as
generalized stable models.

Translation from this abductive framework is as follows. We will add the

following rules, T'{A) to logic programs.

@ = i (5)
a = —a (6)
b b ()
b = —h (8)
Then, consider the following two sets of propesitions M| = {a.q.b} and

M; = {bp.a} for (1}~(§). We show that these sets are actually stable

models,

Since the above sets satisfies integrity constraint (3) and (1), 1t suffices
to show that those sets are stable models of TUT{A). We denote 1" T'[A)

as T

T'™i becomes the following:

p—b

g+

a —

b—
whose minimal model is equal to M.
T™: hecomes the following:

pe—b
§—a
a —
b

whose minimal model is equal to AL}
Therefore, M; and M] are stable models of T'. Morcover,

M, U{A” A= {a,q, b} = M

and

MU (A = A') = {b,p.&) = M.

We have another correspondence with respect to explanation.

—
[=Tk . | o

S L
H e

(1)
(2)
(6)
(7y

Theorem 2 Let (I, A, 1) be an abductive framewark and (T UT(A)T) be
its translation and Q be an observation and I' be J U {+— -@Q}. Q has an

]

erplanation with a sct of hypothesis A if and only if there is a stable model
M for
(TUT(A), 1)

such that
A=A A

Proofl: See Appendix.

Example 2 Frplonation

Cousider the abductive framework in Example 1. Suppose an observation g
s given. Only explanation for this observation is {a}. We put the following
integrity constraint inte [to obtain [

— g

and consider (T, I'). Then, among models of (T, 1), only M! = {a,q,b} is
a stable model which satisfies — =g and M N A = {a} which is cqual to
explanation.

3 Computing Stable Models for Logic Pro-
gram with Integrity Constraint

In this section, we give a bottom-up procedure to compute stable models for
logic program with integrity constraini. To combine the previous translation
and the following procedure, we can calculate abduction.

From the definition of stable models, one might think that it is sufficient to
use the procedure of [Sacca90, FagesUl] and remove every stable model which
does not satisfy some integrity constraint in order to obtain all stable models.
However, we can save search space if we can check integrity constraint du rng
the process of constructing stable models. ‘I'he following procedure performs
not ouly such dynamic checking of integrity constraint but active use of
integrity constraint to derive some facts.

Let (T, I} be a gencral logic program with integrity constraint.
A Procedure to Compute a Stable Model

ti=0,

My, My := propagale(d,0).

I Myn My #£ 0 Lthen fail.

Step 1:
Select a rule { = A « L, L,,....L,, in T salislying the following
conditions and go to Step 2.

I. Ag M,
2. For every P € pos(R). P £ M,,
3. For every N € neg(R).N & M,.
If such rule is not found and there is an integrity constraint € in [s.t.
M EC

then fail
else return M.

Step 2:
=i, _
M, M; := propagate(M;_y U {A}, M;._, Uneg(R))
If M; 11 M, # O then fail else go to Step 1.

propagate{ M, H]

begin
k=0, MP = M, M® := M.
do

ko= k41, MF:= MFYME = M
Forevervrule R= A+~ Ly, [s. ... L,,in T

LITA§ M and for every P € pos(RR),P € M*' and for every
N € neg(R), N € M*"', then add A to ME

A | A = M* ' and there exists P € pos(R) s.t. for every P! € pos(fl)
except P, P' € MF1, for every N € neg(R),N € M*' then add P
o U"

3.1 A € M*" and for every P ¢ pos(R),P € M!' and for every
N g neg(lt),N € AU" !, then fail.

For every integrity constraint C =« Ly, Ly, ..., L, in [,

4. I there exists P € pos(C) s.t. for every P’ € pos(C) except P, P' €
MF', and for every N € neg(C), N € M’“ ', then add P to M"

8

5. If for every P € pos(C), F € AMF-Vand for every V € neg(C),N €
M, then fail.

until M = ,Hf"l and M* = M},
return M}, ME
end

In the procedure, select in Step 1 expresses nondeterminism and fail ex-
presses going back to the recent choice point. M; expresses a set of propo-
sitions which 1s decided to be in the belief set after selecting ¢ rules and Af;
expresses a set of propesitions which is decided to be out of the helief set.
And if there is a conflict between M, and HL- then Af; is not possible candi-
date for a stable model. These set, M; and iﬁ; are equivalent to A, and ﬁ,
in the procedure of [Sacca90, p.215] except that in our procedure, we check
integrity constraint dynamically (the conflict checking in Step 2 and cases of
3 and 3 in the subprocedure of propagate) and M; might increase by cases
of 2 and 4 in the subprocedure of propagate.

We compare our procedure with the procedure of [Sacca90] with integrity
constraint check alterwards. The following simple example expresses the
differcnce.

Example 3 Difference of Two Procedures
Consider the following programn:

P (1)
g+ p (2)
and the integrity constraint:

-7 L':“

The procedure of [Sacca®] produces stable models {p} and {g¢} for a logic
program of (1} and (2} and then we select {g} by integrity constraint ().
S0, Lhiz execution has nondeterminism.

On the other hand, the execution of our procedure is as follows.

0. My = {a), My = {p}, B
because from (3), p must be in My by case 4 in propagate,
and from (2), ¢ must be i My by case | in propagate.

9

1. Since there is no selected rule, My is returned,

Therefore, in this example, we can calculate a stable model deterministically
in our procedure. Note that in this execution, integrity constraint is used
not only to derive that p s out of belief but also to derive a fact ¢. So, this
example shows active usage of integrity coustraint in our procedure.

In more complex example, we can propagate the information that a propo-
sition is out of belief to other rules in a top-down manner thanks to case 2

in propagate.
Example 4 Propaguation of Information of Disbelieved Proposition
Consider the following program:

peg (1)
r e g (2)
q+— -7 t]

and the integrity constraint:

—7r (4)
The execution of our procedure is as follows.

0. ""lfﬂ = {:F'}1 "'”0 = {Pu q}l .

because from {4), p must be in My by case 4 in propagale,

and from (1), ¢ must be in My by case 2 in propagate,
and from (2), 7 must be in My by case 1 in propagate.

1. Since there is no selected rule, Afy is returned.

We can show that the above procedure relurns every stable model by appro-
priate selection of rules.
Theorem 3 Lef (T, 1) be a logic program with integrity constrainl.

1. If the procedure oulpuls M, then M is a stable models for (T, 1}.

2. If the procedure terminates withou! any outpuls, then there is no stuble

maodels for (T 1).

10

3. I T and I are finile, then the procedure outputs all stable models by an
exhaustive search.

Proof: See Appendix.

Therefore, we can calculate abduction by combining the translation from
abductive framework into logic program with integrity constrainl and the
above procedure to compute stable models for the logic program with mn-
tegrity constraint.

Example 5 Combination of Translation and Hotlom up Procedure

Consider Example 1. We calculate the stable model for (1)~(8] in Example 1.
We show a process of execution. We show how M, and Af; are constructed
for all combinations for selection of the rule.

Selection 1.
0. flhfu = ﬂ, Jﬁﬂ = [.'!
1. Select rule (5). Then, M, = {a,q,b). M, = {7, b}.

2. Since there is no selected rule, A} 15 returned.

Selection 2.
0. Mo =0,My = 0.
1. Select rule (6). Then, M, = {@}. My = {a}.
2. Select vule (7). Then, My = {@,b,p}. AL = {a,b.q).

3. Sinee there s no selected rule, My s returned.

Selection 3.
0. Mg =0,My =0
1. Select rule (6). Then, M, = {a}, M, = {a}.

2

. Select rule (8). Then, M, = {&b}, My = {a,b}.

Ll

3. Althongh there is no selected rule, M, does not satisfy integrity con-
straint {4). So, this process [ails.
Selection 4.
0. My =0, My = 0.
1. Select rule (7). Then, M, = {b,p,a}, A, = {b,q,a}.

2. Since there 15 no selected rule, M 15 returned.

Selection 5.
0. My =0, My = 0.
L. Select rule (8). Then, M, = {b}, A, = {b}.
2. Select rule {5). Then, M, = {b.a.q}, M, = {b,a}.

3. Since there is no selected rule. Al is returned.

Selection 6.
0. Mﬂ = H,Hﬂ = ﬂ
. Select rule (3). Then, M, = {E}, _ﬁl = {h}.

—

. Select rule (6). Then, M, = {b.&}, M, = {b,a).

o]

3. Although there is no selected rule, AJ; does not satisfy integrity con-
straint (4). So, this process [ails.

5o by exhaustive search, we find all stable models for {1)~(8), that s, {a, q,E}
and {b,p,a}. '

4 Related Work

4.1 Eshghi’s Topdown Procedure

In [Eshghi89], Eshghi and Kowalski give a restricted top-down procedure
for abduction to handle negation by failure. Kakas and Mancarella extend
this procedure so that arhitrary abducible can be used [Kakas90a]. However,
these procedure is not correct for the following program [Eshghis, p. 251].

roe— —r

re—gq

p e g

This program is translated into Lhe [ollowing abductive framework of
[Kakas00a).

roe— "
roe—
P

g
with abducible {p*, g%, 7"} and integrity constraint:

—_ T
Py
—q.q
gV
—r "

vt

If an ohservation pis given then Lheir procedure return the explanation {q7}.
However, tlus explanation is not correct becatise there is only one generalized
stable model M(A) whose A is {p*} which does not include {g*} and this
means Lthat there is no explanation for the observation p.

On the ather hand, thanks to our bottom-up nature of our procedure, we
can not produce any explanation for the observation p by exhaustive search
and this is a correct answer. More generally, our procedure is guarauteed to
be correct in producing explanation by Theorem 2 and Theorem 3J.

13

4.2 'Truth Maintenance System

There are a lot of researches on semantics of Dovle's TMS [Elkan20, Fujiwara89,
Junker80, Pimentel89, Reinfrank89). However, none of works except [Fujiwara89]
considers integrity constraint (nogoods in TMS terminology) explicitly in the
defiuition of TMS. We have given a procedure which computes a grounded ex-
tension of TMS including nogoods [Satoh90]. From the relationship between
TMS and logic programming which Elkan gives in [Elkan¥0], stable model for
lagic program without integrity constraint is equivalent to the grounded ex-
tension of TMS. In this paper, by generalizing this relationship, we translate
our procedure of TMS into logic program with integrily constraint.

In this connection, an algorithm in [Junker90] is also related, but it docs
not consider nogoods explicitly.

Eshghi [Eshghid0] gives an algorithm using ATMS and a filtering mech-
anism to compute labels of propositions i stable models of propositional
logic programs with negation as failure. However, like [Junker90], he only
considers logic programs without integrity constraint.

Giordano and Martelli [Giordano80] gives translation of TMS program
with nogoods to another TMS without nogoods to produce every grounded
extension including extension obtained by dependency-directed backtrack-
ing(DDB). Although it is important in its own right to give a semantics
for DDB of Doyle's TMS, it scems to be unsuitable for checking update in
integrity constraint. Even il update i3 violated by the current integrity con-
straint, we might gel other consistent states by perfornung DDB. Consider
the following program

pegmr
with integrity constraint
— P_
If we add ¢ to the program, we will get inconsislency and therefore ¢ should

he prohibited. However, Giordana and Martelli translate this program into
the tollowing program

P o

ot

q" —p, T

P

If we add ¢ to this program, we will no longer get inconsistency and therefore
g can be added. This change correspands with performing DDB.

5 Conclusion

In this paper, we give a method of ealculating abduction by translating ab-
ductive framework into logic program with integrity constraint and comput-
ing a stable model for the program.

Since our bottom-up procedure calculates all states of propositions, some
of them is not relevant to explanation. In this case, we should pursue some
top-down expectation to control bottom-up construction. This should be
done as a future research.

Acknowledgments

We thank Natsumi lnoue from ICOT and Vladimir Lifschitz from Stanford
University and The University of Texas at Austin for helpful discussion.

References

[Doyle79] Doyle, 1., A Truth Maintenance System, Arfificial Intelli-
gence, 12, pp. 231 - 272 (1979).

(Elkan90] Elkan, €., A Rational Reconstruction of Nonmonotonic
Truth Maintenance Systems, Artificial Intelligence, 43, pp.
219 - 234 (1990).

iKshghisg] Eshghi, 1., Rowalski, R. A., Abduction Compared with
Negation hy Failure, Proc. of ICLP 89, pp. 234 — 254 (1989).

[Eshghigy] Lishghi, K., Computing Stable Models by Using the ATMS
Proc. of AAAT'90, pp. 272 - 277 (1990).

12

[Fages90]

[Fujiwarasg)
[Gelfond88]

{Giordano90]

[Junker90]

[Kakasia]

[Kakasg0h)]

[Pimentel53]

[Reinfrank39]

[Saccaf0]

[Satoh90]

Fages, F., A New Fixpoint Semantics for General Logic
Prograims Compared with the Well-Iounded and the Stable
Model Semantics, Proc. of ICLP'90, pp. 442 - 458 (1590).

Fujiwara, Y., Honiden, 5., Relating the TMS to Antoepis-
temic Logic, Proc. [JCAI'89, pp. 1199 — 1205 (1959},

Gelfond, M., Lifschitz, V., The Stable Model Semantics for
Logic Progranuning, Froc. of LP'88, pp. 1070 - 1080 (1938},

L. Giordano, Martelli, A., Generalized Stable Models, Truth
Maintenance and Conflict Resolution Proc. of ICLP 91, pp.
427 - 441 (1990).

Junker, U., Konolige, K., Computing the Extensions of Au-
loepistenic and Default Logics with a Truth Maimnmtenance
System, Proc. of AAALD'S0, pp. 278 — 223 (1990).

Fakas, A. C., Mancella, P., On the relation between Truth
Maintenance and Ahduction, Proc. of drd Nonmonotonic
Reasoning Warkshop, pp. 158 = 176 (1990).

Ivakas, A. C., Mancella, P., Generalized Stable Models: A
Semantics for Abduction, Proc. of ECAD'9, pp. 385 - 391
{1990).

Pimentel, S. G., Cuadrado, J. L., A Truth Maintenance Sys-
temn based on Stable Models. Proc. of NACLFP 89, pp. 274 -
290 (1990).

Reinfrank, M., Dressler, O., Brewka, G., On the lelation
between Truth Maintenance and Autoepistemic Logic, Proc.
LJCAT'ES, pp. 1206 — 1212 {1989).

Sacca, D., Zaniolo, C., Stable Models and Non-Determinism
in Logic Programs with Negalion, Proc. of PODS'90, pp.
205 - 217 (1990).

Satol, K., Iwayama, N., Sugino, E., Konolige, K., An Imple-
mentation of TMS in Concurrent Logic Programming Lan-
guage: Preliminary Report, [COT-T-568, 1COT (1990).

16

Appendix

Proof of Theorem 1:
We first prove the following Lemma.

Lemma 1 Let M' = M{A)U{A"— A" and T" =T UT(A). Then,
miu{:{""wj = min{{1T'UAMEY A - AN

where min(T) means a minimal model of a negated-atom-free logic program
T.

Proof:
min(T™)
= min{(T UT{A)NM)
= min(T“J L P{A}"'P]
= nl,!;ﬂ{:r'a'lrf{a,'ll.l{,i'—&':l L l"[A}[Ml.ﬁ.}—ﬂ]u.ﬁu[.-i'—5‘]}

Since T" does not contain any symbols in 4° = A’
TAM(AJ[A'=AT) _ pAf{a)

And since I'{ A) does not contain any symbols in M{A) — A,
[{ A)(MI2)-AUAL(A"- A%) — Py g)Aud'=a’)y,

For every rule in I'(A), if P € A then
[P P P ~p}aula-a1 = (p)
and if P A, thatis, P € (4" = A") then
(P _.p.f_'. T i U {j;’-}
Therefore,
D{A)AA=2 = A U (A" — A').
Thus,
min (TAAIAA=8')) T A4)(M(8)-BJusu(A=a")
= min(TMRV AU (4 - A'))

min{(TU A)MEHY (A = A%)) since TMB U A = (U AYMB),
min((T U A)M B U (4" — A") since no connection in 7'UA and A°. O

17

Now we prove Theorem L.
(1) Assume M(A) = min((T U AV and M{A) satisfies all of integrity
conslraints in [.

min(T"™")
min((T U A)ME U (A = A') by Lenima 1,
M{AYU (A — A") by the assumplion,

= M
This means that M' is a stable model of T'. Since M{A) € M', M’ also
satisfies all of integrity constraints in [
(2) Assume M' = min(T"™") and M’ satisfies all of integrity constraiuts in
I,

i

'iJ;'.'iﬂI[f.!'_"""”rE J
= mn((I" U AYMEH U (A — A') by Lemma 1,
= M(A)U (A = A') by the assumption.

Since min{(TUA)MEY) and (A'— A") are exclusive and M(A) and (4"~ A')
are exclusive,

man((T U AYMEBY = M(A).
"T'his means that M(A) is a stable model of T'U A, Since every integrily
constraint in J uses propositions only in 7" and A which receive same inter-
pretation in M and M{A), M(A) also satisfies all of integrity constrainls in
1.0

Proof of Theorem 2:

Suppose M(A) is a generalized stable model for (T, A, I} and @ € M(A).
This means M(A) | (+ =Q). Therefore, M(A) is also a generalized stable
model for {T, A, I'). From Theorem 1, there exisls a stable model A" for
{Tur{A), I') such that M' = M(AYU (A = A"). Thus, M'N A = A
Suppose M is a stable model for (TUI'(A), I'). From Theorem 1, there exists
a generalized stable model M(A) for (1', A, 1"} such that M' = M(A)u (A"
A, that is, MM A=A 0

Proof of Theorem 3(Sketch):
Consider the following simple procedure to compute a stable model.

Let (T, I) be a general logic program with integrity constraint.
A Simple Procedure to Compute a Stable Model

1:=10

18

Step 1:
Select a rule B; = A; « L, [4,..., L, in T satisfying the following

conditions and go to Step 2.

1. A, & M,
2. For every P € pos{R;), P € M,.
3. Tor every N € neg{H;),N & M,.

If such rule is not found and there is an integrity constraint C in [s.t.
M FEC
then fail
else return ;.

Step 2:
My = M; U {.‘L‘}
If there exists {0 < & < 1) such that
for some N € neg(By), N € My,
then fail
else ii=i+1, go to Step 1.

We denote our procedure in Section 3 as proe(0) and denote the above simple
procedure as proc(S). We can show the following.

Lemma 2

1. If there is a selection of rules such that proc(O) oulputs M, then there
12 a selection of rules such that proc(S) also oulputz M.

is

If proc(Q) ferminates wathout any outputs, then proc(S) alzo termi-
nates without any oufputs.

ST and I are finite and theve 15 a selection of vules such that proc(S)
outputs M, then there is a selection of rules such that proc(()) alse
outputs M.

Then, we show the following.
Lemma 3

L If proc(S) outputs M, then M is a stable models for (T, I).

19

)

If proc{S) terminates without any oulputs, then there is no stable mod-
els for (T, 1).

S 0f T and I are finite, then proc(S) oulputs all stable models by an

exhaustive search,

To show Lemma 3, we need the lollowing deflinttion of grownded model,

Definition 7 Let be (T, 1) a logic program 1" with integrity constraint 1. A
set of propositions M is a grounded model for (1, 1) if the following arc
safizfied,

1. M is a model of T'.
8 M satisfies cvery O € 1.

3. M can be written as a sequence of propositions (Py, Py, ...} such that
each PJ; has at least one rule Rj- such thal ;m&(ﬁ] C {P. . P_r'-l} where
Py, Pioy are the element of the sequence and for every N € neg(R),
N @M. We say a sequence of such rules for every propositions in M,
(R, Ry, ...), is @ a sequence of supporting rules for M.

And we need the following lemma.

Lemima 4 Let be {T,I) a logic program T with integrity constraint I, A set
of propositions M 15 a grounded maodel for (T, T} if and only if M is a stable
model for (T, 1}.

Proof: From [Elkan90, Theorem 3.8}, M is a groundcd model for {T,0) if
and only if M is a stable model for {7".8). {Note that his result is applicable
even if T 15 countably infinite.) Il M is a grounded model for (T, I}, then
M satishies every ' € I, sa M is a stable model for (7. 7). The canverse is

similarly true. O
Proof of Lemma 3:

1. If proc(S) outputs M with a finite sequence of selected rules Ry, ..., 7,
then this sequence actually gives a sequence of supporting rules. And
it is clear that M satisfies every C' € I. Therefore, Af is a grounded
model and, so, a stable model for {(T', [} by Lermna 4.

20

2. Suppose proc(S) terminates without any output and there is a stable
model M. If M is infinite there is a infinite sequence of supporting rules.
Ry, ... and proc(5) does not termnate by applying this sequence as a
selection of rules, so, M must be finite. Then, there is a finite sequence
of supporting rules Ry...., B,. We can select rules along this sequence
in proc(5) and the above procedure outputs M. Contradiction.

3. Let {T, I} be a finite logic program 1" with integrity constraint I. Sup-
pose M is a stable model for (T, f). Then, there is a finite sequence of
supporting rules Ry, ..., .. We can select rules along this sequence in
proc(S) and the above procedure oulputs M.

|

Thearem 3 is proved by Lemma 2 and Lemma 3. O

21

