ICOT Technical Report: TR-598

TR-598
Implementing Reflection in GHC
by
1. Tanaka (Fujitsu)

(October, 1991)

@ 1990, ICOT

Mita Kokusai Bldg, 2IF (03)3456-3191~ 3
" :D | 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo |08 Japan

Institute for New Generation Computer Technology

Implementing Reflection in GHC
(Extended Summary)
Jiro Tanaka

IIAS-SIS, FUJITSU LIMITED,
1-17-25 Shinkamata, Ota-ku, Tokyo 144, JAPAN
email: jiro@iias.fujitsu.co.jp

Abstract

Implementation of reflection in GHC is presented in this paper. Though GHC is an
parallel dialect of Prolog, we can regard it as a parallel ohject-oriented language since it
has the notion of ebject and communicalion between objects.

After reviewing the language features of GHC as a parallel object-oriented language,
we consider the realization of GHC meta-computation system first. Based on the meta-
level representation of GHC, an enhanced GHC meta-program is proposed. Then we
propose Reflective GHC, where reflective tower can be constructed and collapsed in a
dynamic manner using reflective predicales.

Reflective GHC has actually been implemented. All codes shown in this paper are
running on our Reflective GHC system.

1. GHC as a parallel object-oriented language

Hecently, with the advent of parallel/distributed hardware, parallel programming lan-
guages are atiracting wide spread attention. The language we are interested in is the
parallel logic language which parallelizes logic programming language Prolog. Though
several langnages, such as PART.OG [Clark 85] and Concurrent Prolog [Shapiro 83a], have
already been proposed and those are very similar to each other, we have chosen Guarded
Harn Clauses (GHC) [Ueda 85] as our target and implementation language since it has
the simplest syntactical structure.

1.1. Basic syntax and computation rules

Unlike conventional programming languages, problem solving in GHC consists of two
parts, l.e., a program and a goal clause.

A GHC program can be defined as a set of guarded Horn clauses of the following form:

H . = Gth,,.qu | H”Bj,“.jﬂﬁ-. [m,k = D)

The operatar | is called a commitment operator. The part of a clause before | is called a
guard, and the part after | is called a body. Note that guard goals and body goals can he
empty. In such cases, we use the special goal “true” to denole empty goals.

1

A goal clause has the following form:
-— By, ... B.. (n>10)

We can regard each guarded Horn clause as the rewriting rule and the given goal clause
as the initial guery. The GHC program execution is performed by consecutively applying
rewriting rules Lo a goal in the given inilial gquery. This can be done in a fully parallel
manner under the following rules.

1. Pick up a goal from the initial query.

2. Ilit is a system-defined goal, execute it directly. This results to instantiate variables
in the tnitial query.

3. Ifit is a user-defined goal, find the candidate guerded Horn clauses from the program.

4. Compute the guard of each candidate clause. If the head unification and guard goals
of a clause all succeeds, that clausc is “committed” exclusively and the goal of the
given goal clause is replaced to the body goals of the committed clause.

5. Computation invoked in the guard of a clause cannot instantiate the caller of that
clanse. If this happens, the computation suspends until that caller is instantiated
by some other goal. This provides the basic synchronization mechanism of GHC.

Il the goal clause becomes empty, it means that the computation is finished successfully.
Al that time, the computation result is given as the bindings of variables in the initial
query.

It must be stressed that under the rules stated above, anything can be done in parallel:
Goals in a given goal clause can be executed in parallel; candidate clauses for a goal can
be tested in parallel; head unification and the execution of guard goals can be done in
parallel. However, it is even more important to stress the fact that we can also execute
a set of tasks in an arbitrary order or in an arbitrary partial order as long as it does not
change the intended meaning of the program.

1.2. An example program
The following is an example of the GHC program.

gen(N,Max ,Ns) :- N=<Max|
Ns=[NINs1], Ni:=N+1, gen(N1,Max,Ns1).
gen(N,Max,Ns} :- N>Max|Ns=[].

square([PINs1] ,Ms) :- truel
Pl:=P+P, Ms=[P1 IHsl], squaralfﬂsllﬂsl}.
square([] ,Ms) :- truelMs=[].

sum{[PIMs1],Int,Sum) :- truel
Inti:=Int+P, sum{Ms1,Inti,Sum).
sum{[],Int,S5um) :- truelSum:=Int.

L 1 2% 37
Ns Ms

gen square sum

Figure 1: Computing sum_of square number

This program consists of siz guarded Horn clauses. It computes the sum_ofsquare
number for the given query. Assume that the initial goal clause is given as follows:

:- gen(1,100,Ns),square(Ns,Ms),sum(Ms,0,Sum).

In this case, three goals, i.e., “gen,” “square” and “sum,” are created as shown in Figure
1and 17 4+ 2% 4+ 3% 4 ... + 100? is computed as the binding of variable “sun” via stream
comununications between goals.

Looking at this cxample more carefully, we find that GHC programming is done
in somewhat object-oriented manner. We can regard tail recursive goals, i.e., “gen,”
“square” and “sum,” as objecis. An internal state of a object is expressed as the values
of the goal arguments. Goal arguments are also used to express communication between
objects. If an argument is shared between two goals, we can send messages from one goal
to the other by partially instantiating the shared variable. In this example, “Ns” and
“Ms” are used as such shared variables.

Thus, we can consider GHC to be a parallel object-oriented language thoungh it only
have very primitive framework in expressing object and communications between therm.
At the same time, we notice that GHC is much simpler comparing to other existing
object-oriented languages,

Note that Shapiro is the first to notice the similarity between parallel logic languages
and object-oriented languages [Shapiro 83b). He tried to realize other specific features
of object-oriented languages, such as “class-subclass” hierarchy and “inheritance”™ mech-
anisms, in parallel logic languages. Also note that 4°IUM is another approach to develop
Smalltalk like language in GHC [Yashida 90].

2. Implementing a meta-computation system in GHC

A meta-system can be defined as a computational system whose problem domain
is another computational system. The program and data of the meta-system model
another computation system. This another computational system is called the object-
system. Especially, the program of meta-system is called meta-program and it models
the algorithm of the problem solving at the object-level. On the other hand, the data
of meta-system models the structure of the object-system, i.e., the data of meta-system
contains the representation of the object-system.

2.1. A simple GHC meta-program

In Prolog world, a simple 4-line program is well-known as Prolog in Prolog or vanilla

3

interpreter [Bowen 83). The GHC version of this program can be described as follows:

exec(true) :-trueltrue.

exec((P,0)) :-true|exec(P},exec(qQ).
exec(P):-user_defined(P}|reduce(P,Body) ,exec(Body) .
exec(P) :-system(P) |P.

Using this meta-program, we can execute a goal as an argument of “exec.” This
program tries to exccule the given goal in an interpretive manner, We can see two levels
here, meta-level, where the top level execution is performed, and object-level, where the
goal execution is simulated inside the meta-program.

The meaning of this meta-interpreter is as follows: 1f the given goal 1s “true,” the
execution of the goal succeeds. If it is a sequence, it is decomposed and executed sepa-
rately. In the case of a user-defined goal, the predicate “reduce” finds the clause which
satisfies the guard and the goal is decomposed to the body goals of that clause, Ifit is a
system-defined goal, it is solved directly.

Though this 4-line program is very simple, it certainly works as GHC in GHC. How-
ever, this GHC in GHC is insufficient as a real meta-program because of the following
FeASONS.

» There s no distinction belween Lhe variable at the meta-level and the one at the
object-level. Therefore, we cannot manipulate or modify object-level variables at
the meta-level. For example, we cannot check whether the given variable is bound,
nor can we check whether the given variable is identical to the other one.

¢ The predicate “reduce(P,Q)" finds potentially unifiable clauses for the given argu-
ment “P." In such case, object-level program must also be defined as a program.
Therefore, we cannot manipulate the object-level program without using assert or
retract.

e This program only simulate the top level execution of the program and we can-
not obtain the more detailed executing information such as current continuation,
enmronment or erecution resulf,

Therefore, we would like to propose the real meta-computation system which does not
have the disadvantages described above.

2.2. Meta-level representation of the object-level system
First, we consider how the object-level construct of GHC system should be represented
at the meta-level. Those can be summarized as follows:

2.2.1. Constants, function symbols and predicate symbols

We assume that constants, function symbols and predicate symbols are expressed by
the same symbols. The other possibility is using quole to distinguish the level. In this
approach, '3 (quote three) corresponds to the 3 at the object-level. 3-Lisp [Smith 84] and
(Godel [Lloyd 88] adopt this approach. However, we do not adopt this appreach. Our
claim is that there is little practical merit in using quote in logic programming languages.

4

2.2.2. Variables and variable bindings

As explained previously, we cannot manipulate object-level variables well if it is ex-
pressed as variables. To manipulate object-level variables, we need the information about
the representation of vanables, l.e., we need to know where and how the given variable is
realized.

Therefore, we use a special ground term to express an object-level variable. This special
ground term has a one-to-one correspondence to the object level term and we distinguish
it from the ordinary ground term. _

Our choice is expressing variables by “@number” at the meta-level, in which its own
number is assigned for each variable at the object level. Though this representation looks
too much low level comparing to the approach using quote, we have chosen this approach
[or implementation simplicity.

We also assume that the variable is expressed as “@!number™ at the meta-meta-level,
“0! 'number” at the meta-meta-meta-level, and so on.

The variable bindings at the object-level are represented as a list of address-value pairs
at the meta-level. The followings are the examples of such pairs.

(@1, undf) ... the value of @1 is undefined

(o2, a) ... the value of @2 is the constant “'a’’

(@3, az2) ... the value of @3 is the reference pointer
to @2

(o4,f(@1,02))
the value of @4 is the structure whose
function symbol is "'f,’' the first argument
15 the reference pointer to @1, and the
second argument 1s the reference pointer to @2

We can regard these pair as expressing the memory cells of the object-level. Similar to
the ordinary Prolog implementation, reference pointers are generated when two variables
are unified. Thercfore, we need to dereference pointers when the value of a variable is
needed.

2.2.3. Terms and object-level programs

Keeping consistency with the notations explained hefore, we denote object-leve] terms
by corresponding meta-level special ground terms, where every variable is replaced by its
meta-level notation,

For example, the object-level term “p(a, [HIT],f(T,b))” is expressed as
“pla, [01]22],£(02,b))" at the meta-level. It is also expressed as
“pla,[@'1lo2] ,£(0!'2,b))" at the meta-meta-level.

On the other hand, the program of object-level, i.e., the collections of guarded Horn
clanse definitions, are expressed as a ground lerm al the meta-level, where all variables
are replaced by “var(number)” notalion. For example, the following “append” program

append ([A|B],C,D):-truel
D=[AIE), append(B,C,E).
append ([],A,B) :-true|A=B.

is expressed as

[(append{[var(i)ivar(2)],var(3),var(4)):-truel
var(4)=[var(1)} lvar(5)], append(var(2),var(3) ,var(s)),
(append([]J,var(1),var(2)):-truel|var(i)=var(2})]

at the meta-level.

2.3. An enhanced meta-program

The simple GHC meta-program in Section 2.1 can be enhanced to fit to the require-
ments of the real meta-program using the meta-level representation in Section 2.2, The
enhancement can be done by making ezplicit what is implicit in the simple GHC meta-
program.

e There was no distinction between the variable at the meta-level and the one at
the object-level. We express object-level variables as special ground ferms at the
mncta-level,

¢ We manipulate object-level program as a ground term at meta-level. “exec” keeps
it program as its argument.

* “exec” also keeps its goul quene and variable bindings for cxpressing conlinuation
and environment. in its arguments.

The top level description of GHC meta-system can be written as follows:

m_ghc(Goal,Db,0ut) :- truel
transfer(Goal ,GRep,1,Id,Env),
exec([GRep] ,Env,Id,Db,NEnv,Res),
make-result(Res,GRep,NEnv,Dut) .

For given goal “Goal” and given program “Db,” “m_ghc” puts out the computation
result to “Out.” “transfer” changes given goal “Goal” to object-level representation
“GRep.” In “GRep,” every variable in “Goal™ has been replaced to “@number” form. The
third argument of “transfer” stands for the starting identification number which is used
in this predicate. The fourth argument contains the identification number which should
be used next and the fifth contains the environment of this goal representation.

If we input “exam([HIT],T)" to “Coal,”
“transfer(exam([HIT],T),GRep,1,Id,Env)” is executed and the computation result is

GRep = exam([Q1]€2],02)
Id = 3
Env = [(Q1,undf), (©2,undf)].

The enhanced “exec” exccutes this goal representation and the computation result
will be generated by “make_result” predicate.

The enhanced “exec” has six arguments. These six arguments, in turn, denote the
goal queue, the environment, the starting identification number, the program, the new
environment and the ezecution result.

exec([],Env,Id,Db,NEnv,R)
1= truel
{(MEnv,B)=(Env,success) .
exec([true|Rest] ,Env,Id,Db,NEnv,R)
t= truel
exec(Rest ,Env,Id,Db,NEnv, R).
exec([false|Rest] ,Env,1d,Db,NEnv,R)
i- truel
{(NEnv,R)={Env,failure).
exec([GRep|Rest] ,Env,Id,Db,NEnv,R)
1= user_defined (GRep,Db) |
reduce(GRep,Rest,Env,Db,NGRep,Envi, 1d1},
exec (NGRep,Env1,Id1,Db,NEnv,R).
exec([GRep|Rest] ,Env,Id,Db,NEnv,R)
1= system(GRep) |
sys_exe({GRep,Rest ,Env ,NGRep,Envi},
exec (NGRep,Env1,Id,Db,NEnv,R).

The meaning of this program is self-explanatory. Though we omit the detailed ex-
planation, we easily note that this is the extension of the simple GIIC meta program in
Section 2.1.

3. Reflection and Reflective GHC

Reflection is the capability to feel or modify the current state of the system dynami-
cally. The form of reflection we are interested in is the computational reflection proposed
by [Smith 84] and [Maes 86]. A reflective system can be defined as a computational system
which takes its computation system as its problem domain, If a computational system has
such reflective capability, it becomes possible to catch the current state while executing
the program and takes the appropriate action according to the obtained information.

We also note that unit of reflection we describe here is not the object-level, which is
most popular in object-oriented world as seen in [Maes 86) and [Watanabe 88]. Instead,
we are interested in more global, le. system level, reflection as seen n [Smith 84).

3.1. Two approaches implementing reflection

There exist two approaches realizing such reflective system. One is utilizing a meta-
system. We modify the meta-program and add the means of communication between the
meta-level and the object-level, namely, we prepare a set of built-in predicates which can
catch or replace the current state of the object-level system. In this case, the object-system
works as a reflective system. If we adopt this approach, it becomes possible to catch or
modify the tnternal state of the executing program by using those built-in predicates. We
actually adopted this approach in implementing reflecfion in [Tanaka 88] and [Tanaka 90].
This approach has a merit that the implementation is relatively straightforward. However,
at the same time, we should note that this approach is not the accurate implementation of
reflection since the internal stale is always changing, even while processing the obtained
information at the ohject-level.

The other way 1s to create meta-system dynamically when needed. If a refleetive
predicate is called from the object system, the meta-system is dynamically created and
the control transfers to the meta-level in order to perform the necessary computation.
When the meta-level computation terminates, the control automatically returns to the
object-level. This mechanism was originally proposed by B. C. Smith in 3-Lisp [Smith 84].
Cormparing to the first approach, this method has the merit that the distinction of levels
are more clear. Also this is the more accurate implementation of reflection because the
object-level system is frozen while performing the meta-level computation. Note that we
can realize the meta-system and the object-system using the same computation system.
In such case, it becomes possible to execute reflective predicates also at the meta-level and
dynamically create a meta-meta-level. Conceptually, it is possible to imagine the infinite
tower of meta, i.e., infintle reflective fower.

We adopted the second approach in implementing Refleclive GHC. Reflective GHC
is the reflective extension of GHC and can be defined as a superset of GIIC. Language
features and the outline of the implementation are shown in the followings.

3.2. Reflective predicates

Reflective predicates are user-defined predicates which invoke reflection when called.
Similar to 3-Lisp, we can easily access to the internal state of the computation system
and oblain them to the object-level by using reflective predicates. Or we can modify the
internal state of the computation system. We can define reflective predicates and use
wherever we want, in the user program or in the initial query.

For example, reflective predicate for goal “p(4,B)" can be defined as follows:

reflect(p(X,Y),(G,Env,Db), (NG,NEnv,NDb))
:- guard | body.

We should note that extra arguments, i.e., “(G,Env,Db)” and “(NG,NEnv,NDb)” are
added to this definition. Here, “(G,Env,Db)” expresses the computation state of the
object-level, where “G” expresses the ezecution goals, “Env” expresses the variable bindings
and “Db" expresses the dafebase which contains the program. “(NG,NEnv,NDb)" denotes
the new state to which the system should return when the execution of the reflective
procedure finishes. “NG” expresscs the new erecution goals, “NEnv" expresses the new
variable bindings and “NDb" expresses the new database.

When the goal “p(A,B)}" is called al the object-level, we automatically shift one level
up and this goal is exccuted at the meta-level. At this level, we can handle “plx,Y)”
where “X” and “Y" are the meta-level representation of the arguments, and “(G,Env,Db),”
which is the representation of the object-system. When we finished executing this reflec-
tive goal, we automatically shift onc level down and “(NG,NEnv,NDb)" becomes to the
new object-level state.

For example, a reflective predicate “var(X,R),” which checks whether the given argu-
ment “X" is unbound or not, can be defined as follows:

reflect(var(X,R), (G,Env,Db), (NG,NEnv ,NDb))
:— unbound(X,Env} |
NEnv = [(R,unbound) |Env],

(NG,NDb)=(G,Db).

reflect(var(X,R), (G,Env,Db), (NG ,NEnv ,NDb))
:- bound(X,Env) |
NEnv = [(R,bound)|Env],
(NG ,NDb)={G,Db)}.

Since an object-level variable is handled as a special ground term and its value is
contained in the environment, we examine the environment to check whether the variable
is hound or not and the result is added to the environment list as a value of “R.”

The “current_load(N)” predicate, which obtains the number of goals in the goal
queue of the object-system, can be defined as follows:

reflect{current_load(N),(G,Env,Db), (NG,NEav ,NDb))
- true |
length(G,X),
NEav=[{N,X) |Env],
(NG ,NDb)=(G,Db) .

We shift up to the meta-level and computes the length “X” of “G.* This value “X* is
contained in the environmenl list as a value of “N."

3.3. Implementing Reflective GHC

In implementing Reflective GHC, there exists several possibilities. The most efficient
implementation is re-designing the abstract machine code, which corresponds to Warren
code, for Reflective GHC. In this case, the abstract machine code must have the capability
to handle system's internal state as data, or, conversely, to convert the given dale into its
internal state.

The other possibility is realizing Reflective GHC systern as an interpreter on top of
ordinary GHC systerm. Though we cannot expect too much for the execution efficiency
in this casc, this method has a merit that the implementation is relatively simple. We
actually implemented Reflective GHC using this method. In this case, the top level
description of Reflective GHC can be expressed as follows:

r_ghc(Goal ,Db,Dut) :- trual
transfer(Goal,GRep,1,Id,Env),
exec([GRep] ,Env,Id,Db,NEnv,Res),
make_result (Res,GRep ,NEnv,Dut).

Note that this code is exactly the same as that of “m_ghe” in Section 2.3. This
means that we realize a reflective system as a object-level system in the meta-computation

system,
However, “exec™ must be enhanced to realize reflection. This can simple performed
by adding one program clause to the “exec” program in Section 2.3, as shown helow.

exec{[GRep|Rest] ,Env,Id,Db,NEnv,R)

9

1= reflective(GRep,Db) |
create_meta_db(Db,Meta_Db),
shift_dewn((GRep,Rest,Env,Db),
(D_GRep,D_Rest,D_Env,D_Db)),
exec{[reflect[ﬂ_ﬂﬂup,{D_Rast.D_Env,D_Db),(ﬂl,ﬂz,ﬁa}}],
[{ﬂi,undf},(ﬂz.undf},Ema,undf}],4,
Meta Db ,New_Meta_Env,_),
deref_variable(®1,02,03),New_Meta_Env,
(D_Rest2,D_Env2,D_Db2}),
shift_up((D_Rest2,D_Env2,D_Db2),
(N_Rest,N_Env,N_Db)),
exec(N_Rest ,N_Env,1d,N_Db,NEnv,R).

This program definition clause takes care of the creation of the reflective. tower.
“create_meta_db” creates the meta-database from the objecl-system database,
“(GRep,Rest,Env,Db)" is shifted down and the meta level representation
“(D_GRep,D_Rest,D_Env,D_Db)” is generated. Then “exec™ starts the meta-level com-
pulation using these arguments.

When the meta-level execution finishes, “01,82,83" must be instantiated. We deref-
erence these variables, shift up this information and get “(N_Rest ,N_Env,N_Dt)" which
denotes the new object-level information. Then we return to the object-level execution
using this information.

Figure 6 shows how the reflective tower is constructed by calling reflective predicates
and how it is collapsed by finishing up their execution.

4. Related works and conclusion

[t seems to be that [Smith 84], [Weyhrauch 80] and [Maes 88] present us the gen-
eral background for our research. Regarding to related works, Lloyd is proposing Godel
which is a meta-extension of Prolog [Lloyd 88]. However, his interest mainly exists in the
reconstruction of Prolog which has cleaner semantics.

The features of our Reflective GHC system can be surnmarized as follows:

1. Simple formulation of reflection in GHC. Especially, we have formulated reflection
without using quefe. This is the critical difference from Lloyd's approach.

2. Ground representation of variables. In our systemn, variables are expressed as special
ground terms. This representation essentially corresponds to quoted form in other
systems.

3. Dynamic constructing and collapsing of a reflective tower. In our system, a new
level is generated when a reflective predicate is called. When finished, that level is
collapsed and the system automatically returns to its original level.

We have already finished up the prototype implementation of Reflective GHC using
PSIIT workstation. We used GHC to describe the core part of meta-program. User
interface and i/o part are written in Prolog. All codes shown in this paper are running

10

Meta-meta-gystem

Meta-system
Object- » —
system —
User goals
-
Object- -": - -
L system - Meta-system =~
A - .-'__ Rep. of n'-._
h = object-syztem S
User goals T
s
;'- Ohbject- =
= system
Tt
User goals

Figure 2: Constructing and collapsing a reflective tower

on our Reflective GHC system, though these are a little bit simplified than the actual
irnplermnenlation.

Also note that the execution speed of our meta-program was not slow than imagined.
Though the cost of variable managemnent is expensive in our implementation, this becomes
negligible by using vector, where the indez searchis possible, in implementing environment
[Fujita 90]. _

Our final goal exists in building a sophisticated distributed operating system on top
of the distributed inference machine such as PIM [Uchida 88]. Some trials for deseribing
such systems can be seen in [Tanaka 88| [Tanaka 90].

5. Acknowledgments
This research has been carried out as a part of the Fifth Generation Computer Project

of Japan. The author would like to express thanks to Fumio Matono, Yukiko Ohla,
Hiroyasu Sugano and Youji Kohda their useful discussions.

11

References

{Bowen 83]

[Clark 835]

[Fujita 90]

[Lloyd 88]

(Maes 86]

[Maes 88]
[Shapiro 83a)
[Shapiro 83b]

[Smith 84]

[T&n aka HS}

[Tanaka 90|

[Ueda 85]

[Uchida 88]

D.L. Bowen, L. Byrd, F.C.N. Pereira, L.M. Pereira and D.H.D. War-
ren: DECsystem-10 Prolog User's Manual, University of Edinburgh,
August 1983,

K. Clark and §. Gregory: PARLOG, Parallel Programming in Logie.
Research Report DOC 84 /4, Department of Computing, Imperial Cal
lege of Science and Technology, Revised 1085,

. Fujita, M. Koshimura, R. Hasegawa: Meta programming Library
on KL1, internal report, ICOT, June 1990 (in Japanese).

J. W. Lloyd: Directions for Meta-Programming, in Proceedings of of
the International Conference on Fifth Generation Computer Systems
1988, pp.609-617, ICOT, November 1988.

P. Maes: Reflection in an Object-Oriented Language, in Preprints of
the Workshop on Metalevel Architectures and Refleclion, Alghero-
Sardinia, October 1986,

P. Maes and D). Nardi eds: Meta-Level Architectures and Reflection,
Morth-Holland, 14848

E. Shapiro: A Subset of Concurrent Prolog and lts Interpreter, ICOT
Technical Report, TR-003, 1983.

E. Shapiro and A. Takeuchi: Object Oriented Programming in Con-
current Prolog, ICOT Technical Report, TR-004, 1983.

B.C. Smith: Reflection and Semantics in Lisp, in Conference Record
of the 11th Annual ACM Symposium on Principles of Programming
Languages, pp.23-35, ACM, January 1984

J. Tanaka: Meta-interpreters and Reflective Operations in GHC, in
P'roceedings of of the International Conference on Fifth Generation
Computer Systems 1988, pp.774-783, ICOT, November 1988,

J. Tanaka, Y. Ohta and F. Matono: Experimental Reflective Pro-
gramming System: FxReps, Fujitsu Scientific & Technical Journal,
Vol.26, No.1, pp. 86-97, April 1990.

K. Ueda: Guarded Horn Clauses, ICOT Technical Report, TR-103,
1985,

S. Uchida, K. Taki, K. Nakajima, A. Goto and T. Chikayama: Re-
search and development of the parallel inference system in the intérme-
diate stage of the FGCS project, in Proceedings of the International
Counlerence on Fifth Generation Computer Systems 1988, pp.16-36,
ICOT, November 1988,

12

[Watanabe 88]

[Weyhrauch 80

[Yoshida 90]

T. Watanahe and A. Yonezawa: Reflection in an Object-Oriented
Concurrent Language, in Proceedings of ACM Counference on Object-
Oriented Programming Systems, Languages and Applications, San
Diego, September 1988, pp.306-315.

R. Wevhrauch: Prolegomena to a Theory of Mechanized Formal Rea-
soning, Artificial Intelligence 13, pp.133-170, 1980.

K. Yoshida: A stream- based concurrent object-oriented programming
language, Ph.D. Thesis, Keio University, 1990.

13

