ICOT Technical Report: TR-592

TR-592
The Hierarchical Constraint
Logic Language CHAL

by
K. Satoh & A. Aiba

September, 1991

© 1991, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191 ~5

| C D T 4-28 Mita 1-Chome Telex ICOT J32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

The Hierarchical Constraint Logic Language:
CHAL

Iven Satoh and Akira Aiba
Iustitute for New Generation Computer Technology
4-28 Mita 1-Chome Minato-ku, Tokyo 108 Japan
phone: +81-3-456-2514
email: ksatoh@icot.or.jp

Abstract

This paper presents the hierarchical constraint logic programming langnage
C'HAL{ Contrainte Hierarchigque aver Logique) which can handle non-required
constrants,

(onstraint logic programming{ CLP) is a paradigm which extends logic pro-
gramming by introducing constraint solving mechanisin Lo iucrease expres-
siveness, We so [ar developed a CLP language called CAL{Contrainte avec
Logique} [11]. .

However, as many CLP language, CAL only comsiders required constraints
whirh every solution must satisfy. However, in the area of scheduling and
planning. there are nom-required constraints{soft constraints) which provide
preference of possible solntions. We have proposed a logical foundalion of soft
constraints [14] by using a model-theoretical meta-langnage.

[u this paper, we extend CAL to handle a restricted class of solt constraints
defined in [E3] and propose CHAL.

1 Introduction

Recently, a paradigm called Counstraint Logic Programming {CLP) has been studied
by many researchers [4, 9, 5. This paradigm extends logic programming by including
constraint solving mechanisin Lo increase expressiveness.

Whereas ordinary logic programming languages such as Prolog are executed by
unification, CLP is based on constraint solving mechanism. In this sense, constraint
solving can be viewed as a generalization of unification.

The idea of programming with constraints has been proposed in the literature [7.
153]. However, a combination of logic programming and constraints gives fully declar-
ative scuantics of constraint programming because logic programming has not only
operational semantics but also declarative sernantics and it can preserve a declarative
nature of constraint programming. T'his declaralive semantics helps to understand
prograin easilv.

We so far developed a constraint logic programming language (CLP language)
called CAL{Contrainte avec Logigue) [L1]. CAL is based on constraint solvers which
can handle algebraic constraints represented in multi-variate polynomial equations
and Boolean constraints expressed in Boolean equations using Grobner bases [2].
Unlike other constraint solvers, we have a canonical form of constraints which givies
a simplified form of constramis.

However, as many CLP languages, CAL only considers hard constraints which
every solution must satisfy. However, in the area of synthesis problem such as job
shop scheduling, circuit design and planning, there is another kind of constraints,
that is, seft construints which provides preferences over solutions [6, 8, 14].

We have proposed a logical foundation of soft constraints [13] by using a meta-
language [12] which expresses an interpretation ordering. The idea of formalizing
soft constraints is as follows. Let hard constraints be represented in the first-order
formulas. Then an interpretation which satisfies all of those first-order formulas can
be regarded as a solution. Then soft constraints can be regarded as an order aver those
mterpretations because solt constraints represent criteria over solutions to choose the
most preferable ones. We use a meta-language which presents a preference order
directly. This meta-language can be translated into the second-order formula to
provide a syntactical definition of the most preferred solutions.

Although this framework is rigorous and declarative. it is not computable in gen-
eral because it is detined by second-order formula. Therefore, we have to restriet a
class of constraints so that these constrainis are computable.

In this paper, we propose an extension of (AL which handles a restricted class of
soft constraints. We call this language CHAL{Contrainte Hierarchique avec Logigue).

I section 2. we introduce CAL and its basic mechanism, Buchberger Algorithin.
In section 3, we discuss soft constraints, In section 4, we show CHAL and gives
relationship between a solution in C"HAL and the most preferable solution defined in
soft constraints defined in second order language. In section 5, we show examples of
CHAL. In section 6, we give a conclusion.

12

2 CAL(Contrainte avec Logique)

T'his section briefly reviews the constraint logic programming language CAL |11]
developed 1 ICOT. Unlike alinost all the other CLP la.ngua.gﬁs prc}pﬂsed so far, CAL
has a constraint solver which handles multi-variate polynomial equations and boolean
equations based on Grobner bases [2] and computes a canonical form of constraints.

2.1 Language and domain

CAL program consists of rules of Lhe [rom:
AE): ~by(ty). . ba(t,).

where A, by, .., b, are predicate symbols or constraint symbols and t, ¢, ... t, are lists
of terms. If ¢ i 2 constraint symbol and t 1= a hst of terms, c(t) is called an (atomic)
constraint. Constraint symbols and terms used in constraints vary with respect to
constraint solvers.

In algebraic CAL which handles algebraic constraints represented in multi-variate
polynomial equations, the following constraint symbols and terms can be used.

L. A set of constraint symbols = {=}

2. A set of terms = a set of composite terins composed by function symbols «, 4,
variable symbols, constant symbols and fractions.

The meaning of those svmbols s as follows.
L. X =¥ means that X is equal to Y,
2. X + Vs the rational number of the result of multiplication of X and Y.
3. X + Y is the rational number of the resull. of addition of X and Y.
1. fraction is the rational number it denotes.

For example, the program which computes the area S of a triangle from its height H
and baseline length A is expressed as the following program.

sur{H,4,5) - A*H=2=5.

In Baolean CAL which handles Boolean constraints expressed in Doolean equa-
tions, the following constraint symbols and terms can be used.

l. A set of constraint symbols = {=}

2. A set of terms = a set of composite terms composed by function symbels A, &,
variable symbols, constant symbols and 1 and 0.

The meaning of those symbols is as follows.

I. X =Y means that X is equal to Y,

o

X AY is the result of conjunction of X and Y.
S0 X Y s the result of exclusive disjunction of X and Y.
4. 1 is true and 0 is false.

In the actnal systemn, other logical connectives such as V{disj unction), D(implication),
=(equivalence} and —(negation} arc also included as function symbols. However, since
it is well known that they can be defined from the above symbols, we have omitted
them for simplicity.

For example. the program which computes disjunction (' of A and B8 is expressed
as the tollowing program.

or(A,B,C) :- A4NA=0, BE:NB=0, CE(NAANB)=0.

2.2 Buchberger Algorithm and Grobner Bases

CAL is based on Buchberger Algorithm [2] to solve constraints. This algorithm
has been widely used in the ficld of computer algebra over the past few vears. In
Lhis subsection. we describe the theoretical background of Grobuner bases and the
Buchberger algorithm for algebraic (‘AL. Boolean ('Al uses a modified version of
Huchberger algorithim for Boolean equations.

Without loss of generality, we can assume that all polynomial cquations are in the
formofp =0 Let £ = {p, =0,.... P = 0} be a system of polynomial equations, and
I the ideal in the ring of all the polynomials generated by {py,. .. p.}. The following
close relation between the elements of 1 and the solutions of £ is well known as the
thlbert zero point theorem.

Theorem 1 Lef p be a polynomial. Every solution of F is also a solution of p =10,
of nnd only of there erists a natural number n such that P ois an elemend of 1

Moreover. the following corollary is important to determine the satisfiability of con-
straints.

Corollary 1 £ has wo solution if and only if | € T.

Thus, the problem of checking satisfiability of constraints is reduced to the prob
lewn of determining whether | belongs to the generated ideal. Buchberger gave an
algorithim to determine whether a polynomial belongs Lo the ideal. A rough sketch of
the algorithin is as follows (see [2] for a precise definition).

Let there be a certain ordering among monomials and let a systemn of polynomial
equations he given. An equation can be considersd a rewrite rule which rewrites
the greatest inonomial in the equation to the polynomial consisting of the remaining
monomials. For example, if the ordering is lexicographic. a polynormial equation,
Z- XN+ B = A can be considered as a rewrite rule, 7 — X — B4+ A. Two rewrite
rules whose left hand sides are not mutually prime are said to overlap. In this case,

the least common multiple (LOM) of their left hand sides can be rewritten in two ways
by these two rules, which may produce different results. The resulting pair is called
a critical pair. 1f further rewriting does not succeed in converging a critical pair, the
pair is said to be divergent and is added to the systemn of equations. Hy repealing
this procedure, we can eventually obtain a confluent rewriting system. The confinent
rewriting system thus obtained is called a Grébaer base of the original svstem of
equations. The following theorem establishes the relationship between ideals and
Giribner bases.

Theorem 2 Let B be a Grobuer base of a system of equations {py = 0,..., p, = 0},
and let I be an ideal generated by {pi.....pn}. A polynemial, p. belongs lo [if and
only if p is rewritten to 0 by K.

From the above corallary and the above theorem, if R contains rewrite rule I — 0,
then E has no solution, that is. constraints are nol satisfiable.

Moreover, the following theorem guarantees the validity of considering the reduced
Grobner bases as the canonical forms of constraints. A Gedbner base is said to be
reduced if it has no two rules, one of which rewrites the other.

Theorem 3 Suppose that the ordering among monomiuls is fired. Let £ and F be
systems of equations. Then if the deal gonerated from F s the same as that Srom F
then the reduced Grabuer base of £ s same as that of F.

3 Soft Constraints

Although (AL extends logic programming to include constraints, i only includes
required constraints. lowever, in the domain of scheduling or planning, there s
another kind of constraints which we call soft constraints and expresses preference
over possible solutions which are confined by required constraints.

For example, consider the following meeting scheduling problem for the president.
the vice president and Lhe manager in the company.

1. The president must attend the meeting.

2, The vice president should prefrrably attend the meeting.

3. ‘The manager also shonld preferably attend the weeting, However, the schedule
of the vice president is priovitized to the schedule of Lhe inanager.

The first condition is a required constraint and a solution mnst satisfy the condition.
However. the second and the third conditions are soft constraints and are regarded as
crileria to choose the most preferable models among the solutions of hard constraints.
In this case. if there are solutions both of which satisfy the hard constraint, we choose
solutions which also satisfy the soft constraints. However, if there s no solution
which satisfies soft constraints, we just ignore those soft constrainis. Soft constraints,
therefore, may not always be satisfied.

Looking into the third conditions, there is a note that the second condition is
prioritized to the third condition. If there are two solutious in one of which the
second condition is salisfied and the third 15 not satisfied. and in the other of which

=

the third condition is satisfied and the second is not, then we choose the former
because of the priority.

Consider another situation where a value in a part of a solution should be as large
as possible. In this case, we can regard those conditions as a criterion which chooses
a solution which has a larger value for that part.

To summarize, there are three kinds of soft constraints stated below. Let o, § he
possible solutions which satisfy hard constraints and (. (7; be a set of sofl constraints
which are satishied by o and @ respectively.

1. Soft constraints without priorities:

In this case, it €', C (5 (s is a strict super set of (7,), then # is belter than o.
However, if ', ¢ (7, we cannot say which selution i better.

2. Soft constraints with priorities:

[n this case, we may be able to distinguish solutions in the case of (", ¢ (7. Let
the most preferable constraints which are satisfied by o. # be ("1, ("} respectively,
and the second most preferable constraints which are satisfied by .8 be (2, (2
respectively...., and the k-th most preferable constraints which are satisficd by
7,8 be C;,§ respectively, Then, # is better than o if one of the following
conditions is satistied.

(a) Cf C O}

(b) There exists j such that for all i = L,....j = 1, (* = (% and (% ¢ (7).

1. General soft constraints:

Any order over solutions can be regarded as a general case of soft constraints, 1/
we can define au order of solntions, we choose the most preferable solutions in
the order. For example, if we wonld like to choose the solution a part of which
is higger, then we can express the order as follows. Let values of the part of o, 8
be Vo, Ve, If V, < Vi, # is better than o,
Let Sg be a set of the solutions salisfying hard constraints and < be an order over
solutions. Then. the set of most preferable solutions can be defined as follows:

{ole € Sy and there exists no # € S, such that § <).

where simaller solutions are preferable solutions.

We can paraphrase the above definition into first-order logic as follows. Hard
constraints can be regarded as the first-order axiom set which solutions must satisfy.
Then a solution to those hard constraiuts becomes an interpretation which satisfies
the axiom set, and soft constraints can be regarded as providing an order over those
interpretations, and the most preferred solutions are the most preferred interpreta-
tions in that order. Then, we can define a sct of the most preferable solutions as
follows. Let (" be a formula which represents a conjunetion of hard constraints. and
M, M" be logical interpretations, and < he an order aver interpretations.
{M|M=C and M is comparable with M’ and

there exists no M’ such that M'f=C and M'< M }.
where sinaller interpretations are preferable.

Then. we can see that the logical interpretation in the above set is minimal model
with respect to the order .

In [13], we use a meta-language [12] which presents a preference order directly.
This meta-language can be translated into the second-order formula to provide a
svitactical definition of the most preferred solutions.

4 CHAL(Contrainte Hierarchique avec Logique)

Although the logical definition of the sofi constraiuts proposed in [13] is very rigorons,
it is not computable in general because the definition is based on the second-order
logic.

We restrict Lhe domain so that constraint solver in (AL can be used to caleulate
the most preferable solutions. And also we restrict forms of constraints to only atomic
constraints.

CHAL program consists of rules of the form:

by =My, b,
where h.by. ... b, are predicates or constraints or labeled constraints. Labeled con-
straints is of the form:
label
where (" is a complex constraint in which only domain-dependent functional symbols
can be allowed as functional syibols and label is a label which expresses strength of
the complex constramt (.

A complex constraint is a disjunction of conjunctions of domain-dependent con-

strainis of the form:
ey e e e Cony L0 Oty o Oy 1 L1 e s oy 1
where 1 <0 m and 00 < 0, and 2 expresses a disjunclion and ') expresses a conjunction
and ¢;; is an atomic constraint whose constraint symbol is domain-dependent.

The operational semantics for CHAL is similar to CAL excepl manipulating con-
straint hierarchy, In CHAL, we accumulate non-required constraints to form con-
straint hierarchy while executing CAL unlil CAL gives an answer with substitution
of variables and the canomical formo of required constraints, Then, we solve constraint
hierarchy with required constramis,

At the point of obtaining constraint hierarchy, there 1s a relationship hetween
constraint hicrarchy and the most preferabie solutions in the previous section.

We regard constraint hierarchy as soft constraints with priority. Let constraints
which should he satislied in the first place he

] 0
(o

iy "
and constraints which should be satisfied in the second place be
2 2
(7. (

Fap®

and constraints which should be satistied in the k-th place be

(e OF

m*' e

Let M" and M be an interpretation with considered domain. Then. order over inter-
pretations defined hy the above constraint hierarchy is defined by the meta-langnage
as follows:

(M < MYy< (M < M)A -(M < M)
where M' < M is an abbreviation of (M' <' M)A .. A (M < M)and M' <' M

(1 = 2} is an abbreviation of the following expression:

=11y M
(IANAM ECH = (M ECHYIAIM EC) D (M ECH),
i=1i=1 =1

and M" <! M is an abbreviation of the following expression:

my
(AM = CH oM = Ch,
i=1

This relation means that interpretations which satisfy €}, ...,C} as much as pos-
sible is preferable and if there are interpretations which satisly the same formulas in
the first place, then interpretations which satisfy (72, ('}, as much as possible are
preferable and, .. if there are interpretations which satisfy the same formulas in the
(k-1)-th place, then interpretations which satisfy (7, 0% as much as possible are
preferable.

Then most preferable solutions with respect tu the above ordering is a model M
with considered domain which satisfies required constraints and there is no model M’
such that M’ satisfies the required constraints aud M’ is preferred to M in the above
relation, that s, M* < M,

We can give a syntactic definition of the most preferable solutions from the result
in [I3]. Let A be the axioms of the considered domain and x be a tuple of all free
variables contained in required constraints and soft constraints and K¢ (%) be a con
Junction of required constraints and (7 (x). (“m (x)ir=1,.... k) be soft constraints.
Then, the following s a svntactic definition of the most preferable solutions.

AN ROX) A=y (ROY)A (Y < x) A -(x < y)) (F)

where ¥ < x is an abbreviation of (y <' x) A ... A (¥ < %) and y <" x is an
abbreviation of the following formuda:

=1 My iy
(A A= Clyn) 2 (A CHR) D Cly .
=1 =1 =1

Adapted from the result in [13]. we can show the following theorem.

Theorem 4 M s a most preferable solution w.rt ROC(X) and the order < iof and
only if M s a model of the fornula (P).

We show an algorithm for solving coustraint hierarchy in Appendix. Inputs of
the algorithin are required constraints and constraint hierarchy and its output is
all maximal consistent set of coustraints simplified by the constraint solver which
correspond with all the wost preferable solutions.

The algorithm has already been implemented on PSI{Personal Sequential Infer-
ence} Machine developed by [COT. CHAL program is complied into ESP language
which is a dialect of PROLOG augmented by ohject-oriented feature and run based
on Buchberger algorithm of calenlating Grébner hases.

8

5 Examples

In this section. we show how the meeting scheduling problem in Section 3 can be
solved by using Doolean CHAL.

In a Boolean CIHAL program, we cxpress constraints as Boolean equations and in
Boolean equations, we can use the only constraint symbol, = and the function symbols
such as /\ (conjunction), \/ (disjunction). -> {implication), <=> (cquivalence), ~
(negation) and the constants such as | as truth and 0 as falsity and propositional
variahles.

Firstlv. we regard the following terms as propositional variables. c(z) represents
that the meeting will be held on day & and p(a), v{z). mir) represent that the presi-
dent. the vice president and the manager attend the meeting on day r.

Suppose that we consider a meeting schedule for day 1, 2 and 3 and the following
hard constraints represented in Boolean equations exist.

1. The meeting must be held:

(el DN/l 2N el3) = 1
2. The president must atlend the meeting:

(elar)=>plr)) =1 forall e =123
3. Since p{r) expresses that the president attends the meeting ou day =, if it is true,
e} (the meeting is held on day r) is also true:

(plat=2clr)) — 1 for all » =123,

4. The same thing holds if the vice president or the manager attends the meeting.
We can cxpaud these constraints as follows:

{e{r)=>elr)i — | for allr = 12,3 and {mir)=>c{r)) = | forall r =1.2.3.

5. The president cannot attend the meeting on day 1 and the manager cannot attend
the meeting on dav 2:

pllh=0and m(2) =1

And we consider the following soft constraints.

|. The vice president should preferably atiend the weeting, This soft constraint
means that (elrl=>e(r)) = 1 should be satislied as much as possible for all
o= 134,

2. The manager also should preferably attend the meeting. This soft constraint
means that (el i=>m{r)) = 1 should be satisfied as much as possible for all
o= 1,23

3. The schedule of the vice president is prioritized to the schedule of the manager.
This priorily weans that (e(r)->v(r)) = 1 is stronger than (ely)->miy)) =1
for every . = 1.2, 0 and y = 1,2.3. To do so, we attach the stronger label to
(e{r)=>vir}) = | thau to (e{y}->m{y)) =1 for every x = 1,2,%3and y = 1,2, 3.

Then. s Boolean CHAL program which builds constraint hierarchy of the above ex-
ample is shown as follows.

meatingl :-
bool : (c{1)\/c(2)\/c(3))=1,hard([1,2,3]),s0ft([1,2,3]),

ki

boel :p(1)=0,bool:m{2)=0,
meeting? - meetingl,bool:v(3}=0.
hard([]}.
hard{[(X1Y]):-
bool: (c(X)<->p(X))=1,boal: (v(X)=>c(X))=1,bool: (m(X)->c(X))=1,
hard (Y).
seft([1).
soft{[X|¥]):-
chal :soft(bool: (c(X)->v(X))=1,0),chal:soft(bool: (c(X)->m(X))=1,1),
soft{Y).

lu the above program,

chal:soft(bool: (c(X)->v(X))=1,0) and chal:soft(beol: (c(X}->m(X))=1,1)
express soft constraints. The first argument is a constraint and the second argument
vapresses the strength of the constraint. In CHAL, we use a natural number to express
the strength. A soft constraint with the number 0 is the strongest and a constraint
beconies weaker as the associated number becomes bigger.

If we ask 7-meetingl, then Boolean ('HAL firstly calculates a set of reduced
constraints from required constraints and then computes all simplified maximal cou-
sistent sets of constraints by solving constraint hierarchy. In this case, Boolean CHAL
returns only one maximal consistent set which includes ¢{1) = 0,¢(2) = 0,¢(3) = 1.
Since on day 3, all of three can attend the meeting, day 3 is selected for the most
preferable date for the meeting.

The conclusion may be withdrawn by adding another constraint. For example,
suppose a new coustraint that the vice president cannot attend the meeting on day
3 i added. That is, the following constraint is added:

rid) o= (0.

This is done by asking 7-meeting2, and Boolean CHAL returns only one maximal
consistent st which includes e(1) = 0,¢(2) = 1,¢(3) = 0. This means that day 2
is the most preferable meeting date in this new situalion because the schedule of
the vice president has the priority to the schedule of the manager. This expresses
nonmonotonic character of soft constraints,

6 Conclusion
Firstly, we discuss the related work,

I. Borning et al. [3] were the first to propose the HCLP scheme. However, in [3],
there is no logical formalization of the most preferable solutions. In this paper,
we provide a logical [ormalization by a variant of prioritized circumscription.

In [3], they discuss a relation of HOLP to nenmonotonic reasoning and claim
that HULE can handle the multiple extension problems of nonmonotonic logic.
However. our result shows that a constraint hierarchy defined by HCLP is no
more than a variant of prioritized circumscription. This means that HOLP

1o

can handle only multiple extension problems that can be solved by prioritized

circumnscription.

Baker et al. [1] give a theorem prover of prioritized circumscription. Since they
use the finite domain closure axioms, they impose that their considered domain
be Hinite,

On the other hand. if we use algebraic CHAL, our domain is a complex number.
So, semantic restriction does not always impose that the considered domain be

finite,

We think that the following future work will be needed.

L.

[

Iu this paper, we only considered a disjunction of atomic nen-required con-
straints. However, to capture wider class of soft constraints, we must go further
s that any form of non-required constraints can be expressed.

The operational semantics of CHAL considered in this paper cau be regarded
as batch-type solving of constraint hierarchy. However, in some cases, it is
better 1o evaluate constraint hierarchy incrementallv. For example, if non-
required constraint r = 5 is found during the execution, then il we can apply
this constraint in the earlier time of the execution. constraint solving might
become much more easy.

However. incremental evaluation of constraint hierarchy must support back-
tracking mechanisim so that preferred constraint can be deleted.

11

Appendix A: An algorithm for solving constraint
hierarchy

solve_constraint_hierarchy({C'H, RRC)
% Solve constraint hierarchy ("H with a set of reduced required constraints REC.
begin

PA:={{(B, RRC)}
% PAis a set of pairs of {Combined ('onstraints, Reduced Constraints).
for every level L in C'lf from the strongest to the weakest do
begin
if L # 0 then
begin
for every pair (('s, RC') in PA do
New P’ 4 :=maximal_constraints(L, (s, R(", P A)
FPA:= NewFA
end
end
Take every RC of (Cs. RCY in PA to form a set, SO
return 5C

end (solve_constraint hierarchy)

maximal_constraints(L. ('s, B, PA)
% Find all maximal subsets in L which is consistent with B(".
begin
QL= {{Cs, 0, RC, L)}, NG&s := .
do
Q1. NGs, PA :=maximal_constraints! QL NCGs, PA)
until QL =@
return F4
end [maximal.constraints)

maximal constraints1{Q L, N(/s, PA)
7 Produce all extended cousistent sets of constraints from QL.
% QL: a list of quadruple of the following sets of constraints:
Y {Combined Constraints, Used Constraints, Reduced Constraints, Rest)
% N(is: a set of contradictory combinations of constrainls with B¢
begin
NewQL =0
for every element {("s, 1/(", R, Rest) in Q1 do
begin
while (fest #) do
begin
Take one constraint ' from Rest and delete (7 from Best.
7 Note that Rest is decreased by one element for each while loop
"% so that every combination of constraints is checked only once,

12

Add C to Cs to get New(s
% We extend (s by adding €.
if " s a dizjunction then
for every disjunct [in (7 do
NewldL N(is, PA =
maximal_constraints2{ D, New(Cs, UC, RO, Rest, New@Q L, N(vs, PA]
else
New@QL, N(is, PA =
maximal_constraints2(¢", Newl"s 17, RO, Rest, NewQ L, NGs, PA)
end
end
return NVewQL and N(/s and FA
end (maximal_constraintsl)

maximal.constraints2(¢7, ¥ew s, UC, RO, Rest QL N Gs, PA)
% ‘T'his is the main procednre of caleulating maximal consistent sets of constraints,
begin
Add C to U to get Newl (7
if there exists N € NG such that N7 € Newl'(" then
return QL and Nois and /74
Y If we see that a subset of New! (7 is contradictory then
% we do not invoke solee and no longer extend Newl (.
New RO =solvel (7 fiC)
% I (7 and RO s consistent then
% solve((’, RC") relurns a new set of reduced constraints
Y% otherwise il returns incousistent intormation.
if New RO = inconsisient then
begin
Add Newl'0 1o Ni7s.
return Q1 and NO/s and A
WA we see that NVew RO i contradictory then we register it as nogoods
% and nse it for further contradiction detecting and no longer extend Newl ',
end
if fiest & 0 then
Add {New (s Newl O New RO Rest) o QL
if there exists (("<, Ry € PA sueh that New('s C (4 then
return (JL and V{/s amd /4
9 1 New('s is a strict snbset of another combined constraints in A
% then it 1z nol a maximal consistent sel,
Delete any (<", R(") & PA st & C Neaw(s,
% We delete every non-rmaximal consistent set from PA.
Add {New (s, New HO') to AL
return 2L and N5 and P4
end (maximal_constramis2}

13

References

[1] Baker. A. B, and Ginsberg. M. L.: A Thearem Prover for Frioritized Circum-
seriplion, Proc, of LJOCATI'SS, pp. 463 - 467 {1989).

(2] Buchberger, B.: (/rébuer bases: An Algorithmic Method in Polynomsial Ideal The-
ory, In N. Bose, ed., Multidimentional Systems Theory, pp.181 232, D. Reidel,
Dordecht {1935).

(3] Borning, A.. Maher, M.. Martindale, A. and Wilson, M.: Constraint Hicrarchies
and Logic Programming, Proc, of ICLPE9, pp.149 - 164 {1989).

[4] Colmerauer, A Opening the Prolog Il Universe: A New Generation af Prolog
promises some powerful capabilitics, BYTE, pp.177 - 182 [1987).

[5] Dinchas, M.. Van Hentenryek, P.. Simonis, H., Aggoun. A., Graf, T. and Berthier,
F.. The Constramt Logic Programuming Language CHIP, Proc. of the International
Conference on Fifth Generation Computer Systems 1988, pp.693 - T02 (1988).

6] Descotle, ¥, and Latombe, J.: Making Compromises among Antagonst Con-
stragnds i a Planner, Artif. Intell, Vol. 27, pp. 183 217 {1985).

[7] Fikes, B E.. REF-ARF: A System for Selving Problens Stated as Procedures,
Artif dntell Vol L, pp.27 - 120 (1970).

8] Fox, M. S. Allen, B. P., Smith, 8 F. and Strolun, (. Ao ISIS: A4
Constraint-Derected Keasening Approach ta Job Shop Schedufing, CMU-RI-TR-
53-8, Carnegie Mellon University (19583).

9] Jaffar,). and Lasses, J L. Constraint Logic Programming, Proc. of the 1§th ACM
Principles of Programming Languages Conference, pp.LLL 119 {1987).

(0] MeCarthy, o Applications of Circumseription to Formalizing Commonsense
hunowledge, Artef. Intell., Vol 28, pp.39 LL6 [19%6).

[11] Sakai, K. and Aiba, A CAL: A Theorelical Background of Constraint Logic
Frogramming and its Applications, J. Symbolic Computation, Vol. R, pp.589 603
(1959).

[12] Satoh, k.0 Formalizing Nonmonotonic Reasoning by re fevenee Order, 1COT
TR M0, ICOT. Japan (1988], also to be presented at Infodapan’90 (1990).

(13] Satoh, K. Fermalizing Soft Constrainls by Interpretation Ordering, Proc. of
ECAT90, pp. 585 590 (1990),

[L4] Smith, §. F.. Fox. M. §. and Ow. P. §.: Constirueling and Maintatning Detailed
Froduction Plans: Investigations info the Do lopment of Knowledge-Based Fac-
tory Scheduling Systems, Al Magazine, Vol. 7. pp. 45 61 (Fall 1986).

[15] Sussman, G, J. and Steel, (i, L CONSTRAINTS 4 Language for Erxpressing
Almost-Hicrarchical Deseviptions, Artif. Intell . Vol 14, pp.l 39 (1980).

14

