ICOT Technical He_port: TR-589

TR-38Y

Design of the Kernel Language for the Parallel

Inference Machine

by
K. Ueda & T. Chikayama

September, 199()

© a0, 1COT

Mita Kokusai Bldg. 21F (03)3456-3191 -5

IG OT 4.28 Mita 1-Chome Telex ICOT 132964

Minato-ke Tokyo 108 Fapan

Institute for New Generation Computer Technology




(To appear in The Computer Journal, December 1990}

Design of the Kernel Language
for the Parallel Inference Machine

Kazunori Ueda and Takashi Chikayama

Institute for New Generation Computer Technology
Mita Kokusai Bldg, 21F
4-28. Mita 1 chome, Minato-ku, Tokvo 108, Japan

Abstract

We review the design of the concurrent logic language GHC, the basis of the kernel lan-
guage for the Parallel Inference Machine being developed in the Japanese Fifth Generation
Computer Systems project, and the design of the parallel langnage K11, the artual kernel
language being implemented and used. The key idea in the design of these languages is the
separation of concurrency and parallelism. Clarification of concepts of this kind seems Lo
play an important role in bridging the gap between parallel inference svstems and knowl-
edge information processing in a coherent manner. In particular, design of o new kernel
language has always encouraged us to reexamine and reorganize various existing notions
related Lo programming and to invent new ones.

1 Introduction

The Japanese FGCS (Fifth Generation Computer Systems) Project [Kurozumi 19%5], which
is A ten-year project started in 1982, aims at developing methodologies and technologies for
supporting knowledge information processing with highly parallel inference machines.

The outstanding feature of the FGCS project is that it takes the middle-ont approach,
which means to design a novel kernel language that bridges parallel hardware and applica-
tion software. There exists an enormous semantic gap between parallel hardware and ap-
plication software. Years ago, many people hoped that the semantic gap between hardware
and software would be narrowed gradually. However, the gap seems to be widening, be
canse applications are going to be more and more sophisticated, while recent development
of computer architecture (such as RISC and parallel architectures) requires us to better
exploit physical characteristics of programs such as communication locality, This is not
necessarily an undesirable phenomenon for very efficient processing and the understanding
of computation, though it incurs more difficulty in bridging the gap.

The approach adopied by the FGCS project is to use the logic programming paradigm
as the bridge. Of conrse, merely proposing a single paradigm does not suffice; that was
simply a starting point and we had to materialize the paradigm in the form of a kernel
language. One reason why logic programming scemed appropriate as a starting point is
that it has no sequentiality concept. Prolog, the most successful outcome from the logic
programming paradigm so far, relies more or less on sequentiality, but the basic framework
of logic programming seemed to provide us with a good basis for research on parallelisim.



Indeed, much work has been done on parallelism in logic programming. This can be
classified into two major directions: parallel execution of logic programs without explicit
specification of concurrency (which we call ordinary logic programs henceforth), and the
design of concurrent logic programming languages. L'he former direction is concerned with
exploiting the power of parallel computers in a way transparent to programmers (the most
notable example of which is the OR-parallel execution of P'rolog), while the latter direction
is concerned with parallelism at the logical level which we usuallv refer to as concurrency.
We will henceforth use the term parallelism only to mean parallelism at the physical level.

The FGCS project decided to follow the latter direction in principle. We felt that
parallel execution of ordinary logic programs was not sufficient to cover all the levels of ab-
straction between the applications layer and hardware layer. A good concurrency formalism
is needed to write reactive systems [Harel and Pooeli 1985 elegantly, and we decided Lo de-
sign a kernel language hased on the concurrent logic programming paradigm. We know that
not all applications reguire the copcurrency formalism, bul we were guite confident that
different programming paradigms can be implemented on top of the concurrency frame-
work., Also, concurrent languages provide us with a natural construct through which to
comsider parallel execntion and to design parallel algorithms, namely concurrent processes,

One way to design a concurrent language would be to augment a sequential language
with the primitives for communication and concurrency. However, we chose to design our
kernel language independently of existing sequential languages. We had long felt that
conentrent programming conld be made much easier and thus be promoted by finding
a simple formalism of concurrency and a good concurrent language. Finding a simple
formalism seemed to be wseful also for clarifying various concepts related to concurrency
and parallelism. The concurrent language we designed is called Guarded Horn Clanses
(GHC) [Uede 1986] [Uedw 1988], which is described in Section 2.

In designing GHC, we completely separated the notion of cononrrancy and the notion
of parallelism, and included only the former in the language constructs. This is because
the specification of how a conenrrent program shemld run on a parallel computer tends to
be implementation-dependent. To make effective use of parallel computers, however, we
should be able to specify how a program should most desirably be executed on them at
least when we wish, Oue may claim that automatic parallelization is clearly more desirable
than explicit contral of parallelism from programmers’ point of view. However, in order
to develop good automatic parallelization schemes, we should carry out our research using
languages with explicit control of parallelism. Our kernel language, called KL]1 [Chikayama
et al. 1988], is based on GHC, but takes the above issue of parallel execution into account
among other things. 5o KL1 can be called a parallel language, while GIIC is 2 concurrent
language. The design of KL1 will be described in Section 3.

2 Concurrent Logic Language GHC

The design of the kernel language for the Parallel Inference Machine [Goto et al. 1988],
the machine we are now building, was slarted in 1982, The concurrent logic languages
we considered as the possible basizs of the kernel language incinde Helational Language



[Clark and Gregory 19811, Concurrent Prolog [Shapire 1983] and PARLOG [Clark and
Gregory 1983, 1986]. In particular, we studied Concurrent P'rolog in detail, the most
expressive of these languages, and implemented it fully on a general-purpose sequential
computer [Miyazaki et al. 1985]. We had known through our experiences that one of the
most useful ways to understand and review a programming language is to try to implement
it. Implementation compels us Lo clarify the details of a language, and if successful, gives
us & constructive evidence {though not a complete proof) that the language constructs are
well and reasonably defined.

Guarded Horn Clauses (GIIC) was horn at the very end of 1984 through these studies,
the most direct clue being the attemmpt to clarify the atomic operations of Concurrent

Prolog.

GHC shares its basic framework with other concurrent logic languages. Firstly, a GHC
program is a set of guarded clanses. Secondly, GHC features no don’t-know nondeterminism
{built-in search capability) but fealures don't-care nondeterminism, which allows us to pro-
gram Ieactive systems that interact with the outside world. Reactive systems in concurrent
logic langnages are based on the process interpretation of logic [van Emden and de Lucena
Filho 1982], in which & goal (or a multiset of subgoals derived from it) is regarded as a
process and processes communicate by generating and observing bindings (between shared
logical variables and their values). Like most concurrent logic languages, all bindings com-
municated between GHC processes are defermunate, that 1s, they are never revoked once
published to other processes. The determinacy of bindings is essential in reactive systems,
because the bindings may be used for interacting with the real outside world.

2.1 The Key Idea of GHC

What then is the key idea of GHC? As explained above, one important aspect of concurrent
logic languages is the determinacy of bindings. In general, the execution of a concurrent
logic program proceeds using parallel input resclution [Ueda 1988] that allows parallel
execution of different goals, but under the following rules to guarantee the determinacy of
bindings:

1. The gnards (inclnding the heads) of different {guarded) clauses called by a goal g can
be execuled concurrently, but they cannot instantiate g.
2. The goal g commits to one of the clauses whose guards have succeeded (see (4) below).

3. The body of a clause to which g has committed can instantiate g. The bodies of clauses
to which ¢ has not committed cannot instantiate g or the guards of the clauses {this
can be achieved simply by not executing them at all).

4, A poal is said to suceeed if it commits to some clause and all its body goals succeed.
{Note that the latter half vacuously holds if the body is empty).

That is, before commitment, a goal can pursue two or more clauses but without gen-
erating bindings. After commitment, it can generate bindings hut only one clanse is left.

3



Another important aspect of concurrent logic languages is how synchronizalion is
achieved. In general, synchronization is achieved by restricting information flow caused
by unification. Concurrent Prolog uses read-only annotations, and PARLOG uses mode
declarations which are used for compiling the unification of input arguments into a se-
quence of one-way unification and test unification primitives. However, in these langnages,
additional mechanisms are necessaty to guarantee the restriction (1) above. In Concurrent
Prolog, bindings which are generated during the execution of 2 guard and which would
instantiate the caller side are recorded locally, and are published upon commitment. In
PARLOG. the guard of a clanse (' containing a (guard) goal that can instantiate the caller
of (' is called wnsafe, and an additional restriction is imposed that every guard must be
safe [Gregory 1987,

The key idea of GHC is quite simple. It uses the restriction (1) itselfl as a synchroniza-
lion construct. That is, any piece of unification which iz invoked directly or indirectly from
the guard of a clanse 7 and which would instantiate the caller of C is suspended until it
can be execuled without instantiating the caller. Thus the safety condition in the sense of
PARLOG is automatically satisfied. Moreover, unlike Concurrent Prolog, no bindings need
be recorded for later publication. In other words, GHC has integrated two notions: the
determinacy of bindings and synchronization. This conceptual simplification Jed to GIC
being adopted finally as the basis of our kernel langnage.

Interestingly, the same synchronization mechanism had been invented independently
in the functional langnage Qute for different purposes [Sato and Sakurai 1084).

2.2 Trom GHC to Flat GHC

A kernel language must provide a common framework for people working on various aspects
of the project including applications, implementation, and theory. Before accepting GHC as
the hasiz of our kernel language, we had to convince ourselves that it satisfies the following
conditions:

1. It is expressive enough.
2. It can eventually be implemented efficiently, possibly by appropriate subsetting.

3. Tt is simple enough to be understood and used by programmers incinding novices,
Also, it 1s simple enough for theoretical treatment.

It is a social process that a programming language is accepted by a community. It took
considerable time and effort until GHC was accepted even within ICOT. The primary reason
is that many of us considered GHC as an unduly restrictive logic language rather than a
flexible comenrrent language. We soon made sure that GHC was expressive enough to write
most concurrent algorithms that had been written in other concurrent logic languages, but
that was not enough. How to program search problems was also important, because search
problems are a specialty of ordinary logic languages with which our project was started.
So we have developed a couple of methods for programming search problems [Ueda 1887]
[Tamaki 1987] [Okumura and Matsumoto 1987].



For implementahility, we quickly ascertained by rapid prototyping that GHC can be
implemented fairly efficiently at least on sequential computers [Ueda and Chikayama 1985].

For simplicity, we continued to study the properties of GHC and looked for a simpler
explanation of the language better suited to process interpretation. Now, our interpretation
is that a GHC process is an abstract entity which observes and generates information
(represented in the form of bindings) and which is implemented by a multiset of body
goals. The hehavior of each body goal is defined by guarded clanses that can be regarded
as rewrite rules.

A problem with the original definition of GHC is that guard goals do net fit well into
the process interpretation. They are most naturally regarded as auxiliary conditions to
be satisfied for the rewrite rule containing them to be applied. From a practical point of
view, we felt that the expressive power of guard goals did not pay the implementation effort
even if it could be implemented efficiently. In short, the generality of guard goals seemed
UnnCcCezsary.

These considerations led us to reduce GHC to a subset, Flat GHC, a movement inspired
by the reduction of Concurrent Prolog to Flat Concurrent Prolog [Shapiro 1986]. Since Flat
GHC arose from rather practical requirements, it did not have a rigorous definition for a
long time. The vague idea was that only certain predefined predicates could be called from
clause guards, but it was not defined what properties should be satisfied by those predefined
predicates. Later on, we became convinced that the sufficient conditions to be satisfied by a
guard goal as an awdliary condition are that it is deterministic (that is, whether it succeeds
or not depends only on its arguments) and that it does not produce any hindings. These
conditions can be obeyed by restricting predicates called directly or indirectly from a guard
to those defined by unit clauses {possibly virtnally in the case of predefined predicates),
namely clauses with empty bodies. This restriction simplified the theoretical treatment
of GUC such as the operational semantics [Ueda 1990] and program transformation rules
[Ueda and Furukawa 1988].

To summarize, the hasic idea of Flat GHC is as follows: A program is a set of guarded
clanses that can be regarded as rewrite rules of goals. The guard of a clause specifies what
information should be observed before applying the rewrite rule, and the body specifies the
multiset of goals replacing the original one. A body goal is either a unification goal of the
form 3 = t7, whose behavior is language-defined, or a non-unification goal, whose behavior
is user-defined. A unification body goal generates information by unifying #; and tg, and a
non-unification body goal represents the rest of the work and will be reduced further.

2.3 Understanding GHC Better

When GHC was first proposed, we were not fully aware of many goud properties of the
language; they were clarified by later work inside and ontside LCOT. One example is the
process interpretation of Flat GIIC programs. Another example is a logical characterization
of communication and synchronization due to Maher [1987]. He showed

1. that information communicated by processes can be viewed as equality constraints
over terms,



2. thal the generation of information can be viewed as the publication of a constraint,
and

3. that the observation of information can he modeled as the implication of a constraint
by the set of constraints published so far.

Thus we have acquired both algebraic and logical characterizations of the eommunica-
tion mechanizm used in GHC, which indicates Lhe robustness of the language construct.

Also, we tried to characterize the atomic operations of GIIC, Unlike Concurrent Prolog
but like PARLOG, the publication of bindings are not dene atomically upon commitment of
a non-unification goal but eventually after commitment using a unification body goal that
can run in parallel with other goals. This means that commitment in GHC is a smaller
and simpler eperation than commitment in Concurrent Prolog. Moreover, in GHC, the
information generated by a wnification body geal is not an atomic entity in general. It can
be iransmitted in smaller pieces, possibly with communication delay.

We have found that this liberal compulational model of (Flat) GHC is expressive enough
Lo program cooperating concurrent processes and leaves more [reedom to implementation.
{Fiat) GHC is unfortunately not expressive enough to program processes that may not be
cooperative. However, the shoen construct of KL1 (Section 3.1) takes care of such processes.

Another point to note is that GHC has included rontrol for the correct behuvior of
processes but excluded any control for efficient execution. GHC has left the latter to KI.1
in arder to clearly distinguish belween the two notions. This contrasts with PARLOG,
which features sequential AN that can be used for suppressing parallel execution of hody
goals. We believe that it is impertant to learn that synchronization based on information
flow is sufficient for writing correct concurrent programs.

Important topics on Lheoretical aspects of Flat GHC include the relationship with other
theoretical models of conenrrency such as CCS [Miluer 1989] and theoretical CSP [Hoare
1083]. Although concurrent logic languages differ from CCS and CSP in that they are based
on asynchronous communication and can be used to program dynamically reconfigurahle
processes, similar mathematical techniques can be used to formalize them [Gerth et al.
1988] [Saraswat and Rinard 1990). In Flat GHC, the notion of a transaction [Ueda and
Furukawa 1988] captures the externally meaningful unit of communication that corresponds
well to an event in synchronous communication. We have not yet obtained a completely
salisfactory formal semantics, but we are fairly confident that Flat GHC is theoretically
simple enough, while it can be used for practical programming without any medification.

Since various concurrent logic langnages were proposed, an issue that has always been
of great interest is how to relate them to ordinary logic languages with don’t-know nonde-
terminism. Our consistent position has been to clarify the difference of these two families
of langnages and to integrate them with a carefully designed interface [Ueda 1989]. In
developing a compilation method from ordinary to concurrent logic languages [Ueda 1987),
we tried to clarify what it means to ‘collect” all solutions of a search program, which is
relaled to the semantics of all-solutions predicates in Prolog such as bagof.



3 Parallel Language KL1

As described above, we have designed a concurrent logic language Flat GHC as the basis of
the kernel langnage for parallel inference systems. The descriptive power of the language,
hawever, is not sufficient when efficient program execution is our concern. As Flat GHC
programs do not say anything about where (i.e., on which processor) the atomic opera-
tions making up a compulation should be performed, there are many ways to distribute
the operations over available processars. As Flat GHC programs only specify the partial
ordering of atomic operations, there are many possible total orderings conforming to it.
Some distribution and ordering may be more efficient than others. To make sure in all
cases that the distribution and tle ordering employed are not far from optimal, we must
be able to specify physical details of execution to some extent.

We thus designed a parallel programming language based on the concurrent program-
ming language Flat GHC, in which we can specify in certain detail how a program should
be executed. This section describes the outline of this language, named KLI.

3.1 Mapping of Computation

Flat GHC programs implicitly express any potential parallelism in the sense that no or-
dering between atomic operations exisls except for the ordering essential for correctness.
To faithfully exploil this parallelism might be meaningful on an ideal parallel computer
which has an unlimited number of processors and in which interprocessor communication
has unlimited throughput and no latency. However, any real hardware has a limited nuin-
ber of processors and the cost of interprocessor communication canaot be neglected. “Io
achieve efficiency, control is required on when and where each atamic operation should be
pecformed. We call this control mapping in what follows.

One way to solve the problem is to make a language implementation fully responsible
for mapping. The current technology of parallel software, however, does not provide an
efficient mapping strategy applicable to all application areas; establishing such technology
through experiences with diverse applications is one of the principal goals of the research
on parallel inference systems in the FGCS project.

Mapping is often implicit in sequential systems. Suppose there are two methods to solve
a problem: method A may fail Lo find a solution in rare cases, but always lerminates in a
short period of time either with a solution or with a failure signal; method B is less efficient
but always finds a solution. In such a case, the most efficient sequential strategy is to try
A first and to try B only when A was unsuccessful. In sequential systems, such strategic
decisions for efficiency are usually not clearly separated from the mandatory ordering for
the correctness of programs,

Trying B only after 4 may not be the best strategy, however, for parallel systems.
Method A may not require all the computational resvurce (such as processors) for its
execution. In such a case, method # should be tried in parallel with A, as long as it does
not interfere with the execution of methad A. This can be realized by providing an elastic
guideline of mapping: giving A a higher priority than B.



Sometimes more sophisticated mapping is desirable. Suppose that there are two meth-
ods to sulve a problem and that, although at least one is known to find a solution efficiently,
we cannot tell which beforehand. In such a case, the best scheduling strategy may be to
give both methods approximately the same amount of computational resource. Resource
management is thus an important part of an algorithm in parallel computation.

In sequential computer systems and in parallel computer systems as extensions of con-
ventiomal sequential systems, operating systems are primarily responsible for mapping. This
is acceptable as far as application programs are mostly sequential and the mapping strat-
egy is implicitly specified and executed using sequencing. In parallel systems where explicit
mapping operations are much more frequently required, invoking the operating system for
each mapping operation will incur intolerable overhead.

To solve this problem, we have introduced into KL1 the following features, which are
intended to be efficiently implemented:

Shoen: Shoen! represents a group of goals. This group is used as the unit of execution
control, namely the initiation, the interruption, the resumption and the abortion of
execution. Exception handling and resource consumption control mechanism are also
provided through this shoen mechanism. The shoen construct is an extension of the
metacall construct proposed by Clark and Gregory [Clark and Gregory 1984].

Priority: A (body) goal of a KL1 program is the unit of prierity control. Each goal has an
integer priority associated with it. Each shoen keeps the maximum and the minimum
priorities allowed for goals belonging to it, and the priority of each goal 15 specified
relative to these. T'he language provides a large number of logical priority levels, which
are translated to physically available priority levels provided by each implementation.
If no priority is specified, the priority of the parent goal is inherited,

The priority mechanism can be used for programming speculative computation [Burton
1985] [Osborne 1990].

Processor specification: Each (body) goal may have a processor specification, which
designates Lhe number of the processor on which Lo execule the goal. Without this,
the goal is executed on the same processor as its parent goal.

This straightforward mechanism provides the basis of research in more sophisticated
load distribution strategies. Actually, several automatic load distribution strategies
have been developed [or diverse problems. As the optimal load distribution depends
heavily on each problem, no single scheme works universally. Instead, typical schemes
arc planned to be provided as libraries, from which users can select most appropriate
ones for their problems.

One of the most notable characteristics of the KL1 language is that these priority and
processor specifications are separated from concurrency control. We call these specifications
pragmas. Pragmas are merely guidelines for language implementations and may not be
precisely obeyed. The same is true of the controlling mechanism of shoen; abortion of
computation, for example, may not happen immediately. This relaxation makes distributed
implementation much easier.

JThe word “shoen™ 15 a Japanese word J_‘l:l'l'If!;pﬂ]‘lrI"llLE o “mancr” in EIIHI.iHII.



Pragmas are specified within the program but are clearly distingnished syntactically
from other language constructs. Pragmas will never change the correctness of the programs,”
though the performance may change drastically. As it is not uncommon that more than
halfl of the program development effort is devoted to the design of appropriate mapping, it
is most advantageous that the specification of mapping is syntactically isolated from the
rest of the program. In many parallel programming langnages, the specification of paral-
lel execution is often mixed up with other language constructs, especially with constructs
for concurrency control. A major revision is often required for improving efficiency or for
running the program on a different implementation, which is liable to introduce new bugs,

3.2 Keeping up with Sequential Languages

What criterion is appropriate for comparing parallel algorithms? Assume that a parallel
algorithm has sequential execution time ¢{n) (n being the size of the problem) and average
potential parallelism p{n). Then the total execution time by this algorithm on an ideal
parallel computer is given by ¢(n)/p(n). This means that an algorithm with more sequential
execution time but with still more parallelism is considered to be a better algorithm on an
ideal parallel computer,

This, however, does not hold when the potential parallelism, which may vary over time,
can exceed the physically available parallelism. With limited physical parallelism, which is
always the case in the real world, a parallel algorithm whose sequential time complexity is
worse than that of a known sequential algorithm will be beaten by that sequential algorithm
running on a sequential computer for sufficiently large n, no matter what p(n) is.

Thus, when designing a parallel algorithm, we must uften consider a hybrid strategy
that the algorithm swilches to a sequential algorithm when the physically available paral-
lelism is used up.

Pure languages such as pure Lisp and pure Prolog cannot straightforwardly express
certain kinds of efficient algorithm due to the lack of the notion of destructive assignment.
‘To overcome this requires oplimization techniques that enable an implementation to make
use of the destructive assignment of hardware memory. GHC also is a pure language with
the same inherent problem. To write efficient algorithms in these pure languages, we must
be able to somehow mimic the efficiency of array operations in conventional langnages.

For this reason, KL1 introduced a primitive for updating an array element in constant
tite without disturhing the single-assignment property of logical variables. The primitive
can be used as follows:

set_vector element(Vect, Index, Elem, NewElem, NewVect)

When an array Vect, an index value Index and a new element value NewElem are given, the
predicate binds Elem to the value of the Index'th element of Vect, and NewVect to a new
array which is the same as Vect except that the Index’th element is replaced by NevwElem.

Ty be precise, the priority specification may be used for guarantesing certain properties of diverging
{i.e., autonomously non-terminating) programs.



Because some other goals may still have references to the old array Vect, a naive im-
plementation might allocate a completely new array for NewVect and copy all but one ele-
ments. However, when it is known that no goals other than the above set_vector_element
goal have references to Vect, there will be no problem in destructively updating it. In
the actual implementation of KL1, a simplified, efficient version of the reference counting
scheme [Chikayama and Kimura 1987] detects such a sitnation, in which event the new
array NewVect is obtained in constant lime,

This means that any imperative algorithm can be rewritten in KLI retaining the same
computational complexity, as random access memory can always be emulated using a single-
reference array. Of course, allowing only one reference to a data structure can decrease the
possibility of parallel execution considerably. However, as stated ahove, the requirement of
the computational complexity must be considered only for the sequential parts of parallel
algorithms which are invoked after physically available parallelism is used up.

3.3 Implementation

The most advanced implementation of KL1 currently in use is the Multi-PSI [Takeda et al.
1988 system. This experimental parallel inference machine has up to 64 processors of PSI-
II [Nakashima and Nakajima 1987] connected in grid, attaining the peak performance of
around 10 MRPS? for list concatenation. Several Multi-PSIs and the KL1 implementation
on them are nsed in the rescarch and development of parallel application software.

A new implementation under development is for a higher performance inference machine
PIM [Goto et al. 1988], which is expected to have up Lo 512 processing elements and attain
more than 100 MRPS of peak performance.

4 Conclusions

We have reviewed the design of the concurrent language GHC, the basis of the kernel lan-
guage for the FGCS project, and the design of the parallel language KL1, the actual kernel
language we are implementing and using. We have explained why we expose both concur-
rency and parallelism. Both need to be accessible for some programmers, though they may
not have to be exposed to all programmers. When a good amount of parallel application
software in KL1 has been accumulated, we should try to find appropriate higher-level lan-
guage constructs supporting application programmers, together with their implementation
technigues on KL1.

We have been careful in separating concurrency and parallelism because they are sep-
arate, though closely related, concepts. Concurrency has to do with correctness, while
parallelism has to do with efficiency. This means that the semantics of GHC ig independent
of the underlying model of implementation, while the semantics of KL1 assumes a particular

TMRDS is for mega reductions per second. This roughly corresponds to MLIPE [{mege logical inferences
per second ) of Prolog,

10



model of implementation. The formal semantics of KL1 is therefore difficult to describe,
but this separation has made GHC simpler from a theoretical point of view.

To mention this separation from the programming point of view, our experience shows
that writing correct concurrent programs is not difficult. What is still difficult is to write
efficient parallel programs. The operating system PIMOS [Chikayama et al. 1988] for Multi-
PSI and PIM was first developed using a KL1 implementation on a general-purpose se-
quential machine, but almost no synchronization bugs bothered us when it was installed on

Multi- PSI.

‘The purpose of our research on the kernel language is not only fo design a usable
programming language, but also to better understand various concepts related to concur-
rent, parallel, and logic programming. We starled our project with the key idea of logic
programming and then introduced concurrent logic programming, but we must continue
to find many good concepts that systematically bridge the semantic gap between parallel
computers and knowledge information processing.

Both GHC and KL1 have room for refinement. For instance, recently we found that a
simple mode system based on the notion of constraints can be used for simplifying Flat GHC
further [Ueda and Morita 1990] both in terms of programming and of implementation. As
this example indicates, inplementation, applications and theory interact with one another
in designing a programming language. It is very importanl [or Lhe healthy development
of the kernel language that the language is used and reviewed by people working on these
diverse areas.

Acknowledgments

We are indebted to all our colleagues, too many to be listed here, who have worked and/or
are working with us in desipuing, implementing, and using the kernel langnage. Special
thanks are due to Koichi Furnkawa and Akikazu Takeuchi for initiating the research om
concurrent logic programming in ICOT.

References

F. W, Burten, Speculative Computation, Parallelism and Functional Programming. IEEE
Trans. Computers, Vol. C 34, No. 12 (1985), pp. 1190-1193.

T. Chikayama and Y. Kimura, Multiple Reference Management in Flat GHC. In Proc. 4th
Int, Conf on Logic Programming, MI'I' Press, 1987, pp. 276-293.

T, Chikayama, H. Sato and T. Miyazaki, Overview of the Parallel Inference Machine Oper-
ating System (PIMOS). In Proc. Int. Conf. on Fifth Generation Computer Systems 19885,

ICOT, Tokyo, 1985, pp. 230-251.

K. L. Clark and 8. Gregory, A Relational Language for Parallel Programming. In Proc.
AUM Conf. on Functional Programming Languages and Computer Architecture, ACM,
1981, pp. 1TL-178.

Il



K. L. Clark and 5. Gregory, PARLOG: A Parallel Logic Programming Language. Research
Report DOC 83/5, Dept. of Computing, Imperial College of Science and Technology, Lon-
don, 1953,

E. L. Clark and 5. Gregory, Notes on Systems Programming in PARLOG. In Proe. Int.
Conf. on Fifth Generation Computer Svstemns 1984, ICOT, Tokyo, 1984, pp. 299-306.

K. L. Clark and §. Gregory, PARL.OG: l'arallel Programming in Logic. ACM. Trans. Prog.
Lang. Syst., Vol. 8, No. 1 (1986), pp. 1 49.

M. H. van Fmden and G. J. de Lucena Filho, Predicate Logic as a Langnage for Parallel
Programming. In Logic Programming, K. L. Clark and S. -A. Tarnlund (eds.), Academic
I'rees, London, 1982, pp. 189-198.

R. Gerth, M. Codish, Y. Lichtenstein and E. Shapiro, Fully Abstract Denotational Se-
miantics for Flat Concurrent 'rolog. In Proc. Third Annual Conf. on Logic in Computer
Science, ILEE, 1988, pp. 320-335.

A. Goto, M. Sato, K. Nakajima, K. Taki, and A. Matsumoto, Overview of the Parallel
Inference Machine Architecture (PIM). In Proc. Int. Conf. on Fifth Generation Computer
Systems 1988, ICOT, Tokyvo, 1958, pp. 208-2240.

5. Gregory, Parallel Logic Programming in PARLOG: The Language and its Implementa
tion, Addizon-Wesley, 1087,

D. Harel and A. Pnueli, On the Devclopment of Reactive Systems. In Logics and Models
of Concurrent Systems, K. R. Apt (ed.), Springer-Verlag, 1985, pp. 477-498,

C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.

T. Kurozumi, Present Status and Plans for Research and Development. In Proc. Int. Conf,
on Fifth Generation Computer Systems 1988, ICOT, Tokyo, 1988, pp. 3-15.

M. J. Maher, Logic Semantics for a Class of Committed-Choice Programs. In Proc. Fourth
Int. Conf. on Logic Programming, MIT Press, 1987, pp. 858-876.

R. Milner, Communication and Concurrency. Prentice-Hall, 1689

T. Miyazaki, A. Takeuchi and T. Chikayama, A Sequential Implementation of Concurrent
Prolog Based on the Shallow Binding Scheme. In Proc, 1985 Symp on Lagic Programming,
IEEE, 1985, pp. 110-118,

. Nakashima and K. Nakajima, Hardware Architecture of the Sequential Inference Machine
PSLIL In Proc. 1987 Symp. on Logic Programming, IEEE, 1987, pp. 104-113.

A. Okumura and Y. Matsumoto, Parallel Programming with Layered Streams, in Proc.
1987 Symp. on Logic Programming, ILEE, 1987, pp. 224-231.

R. Osborne, Speculative Computation in Multilisp. In Parallel Lisp: Languages and Sys-
tems, T. Ito and R. Halstead (eds.), Lecture Notes in Computer Science 441, Springer-
Verlag, 1990, pp. 103-137.

V. A. Saraswat and M. Rinard, Concurrent Constraint Programming (Extended Abstract).
In Conf. Record of the Seventeenth Annual ACM Symp. on Principles of Programming
Languages, ACM, 1990, pp. 232-245.

12



M. Sato and 1. Sakurai, Qute: A Functional Language Based on Unification. In Proc. Int.
Conf. on Fifth Generation Computer Systems 1984, 1COT, Tokyo, 1984, pp. 157-165.

E. Y. Shapito, A Subset of Concurrent Prolog and Its Interpreter. Tech. Report TR-003,
ICOT, Tokyo, 1983,

E. Y. Shapira, Concurrent Prolog: A Progress Report. Computer, Vol. 19, No. 8 (1936),
pp. dd-5H8.

Y. Takeda, 1. Nakashima, K. Masuda, T. Chikayama, and K. Taki, A load balancing
mechanism for large scale multiprocessor systems and its implemeniation. In Proc. Inf.
Couf. on Fifth Generation Computer Systems 1988, ICOT, Tokyo, 1988, pp. 978-986.

H. Tamaki, Stream-Based Compilation of Ground 1/0 Prolog into Committed choice Lan-
guages. In Proc. 4th Int. Conf. on Logic Programming, MIT Press, 1987, pp. 376 393,

K. Ueda, Guarded Horn Clauses. In Logic Programming ‘85, E. Wada (cd.), Lecture Notes

in Computer Science 221, Springer-Verlag, 1986, pp. 168-170.

K. Ueda, Making Exhaustive Search Programs [eterministic. New Generation Computing,
‘ol. 5, No. 1 (1987, pp. 29-44.

K. Ueda, Guarded Harn Clanses: A 'aralle] Togic Programming Language with the Con-
cept of a Guard. In Programming of Future Generation Computers, M. Nivat. and K. Fuchi
{eds.), North-Holland, 1988, pp. 441-4356.

K. Ueda, Parallelism in Logic Programming. In Information Processing 88, G, X. Ritler
{ed.), North-Holland, 1989, pp. 957-064.

K. Ueda, Designing a Concurrent Programming Language. To be presented at Infolapan 80,
Information Processing Society of Japan, Tokyo, 1990,

K. Ueda and T. Chikayama, Concurrent Prolog Compiler on ‘lop of Prolog. In Froc. 1985
Symp. on Logic Programming, [EEE, 1445, pp. 118-126.

K. Ueda and K. Furukawa, Transformation Rules for GHC Programs. In Proe. Int. Conf
an Fifth Generation Computer Systems 1988, 1COT, Tokye, 1988, pp. 582-591.

K. Ueda and M. Morita, A New Implementation Technigue for Flat GHC. In Proc. Seventh
Int. Conf. on Logic Programming, MIT Press, 1990, pp. 3-17.

13



