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Alsteack

The Multi-PSI is a locsely coupled multiprocessor, which s been developed in the
FGOS project for the purpose of providing a praciieal ool for research and develop-
et of parallel non-iemeric software. Tt alse served as a testhed for implenentation
ol romenrrent lopic langnage KLL ow a loosely coupled muliiprocessor,

This paper teports the eost weasurement of mbra- and biter-processor primitive
aperations i the ssstems. They shew the basic performance of our distributively
inplemenied concment language. Comments for the relattonship to other Tunguage
S¥sLems are included. Utibzation of measurement results in parallel programming are
diseuszed fron the viewpoint of reducing the inter-processor comunenication overlead
Measurements of performance and communication overhicad i benchipark programs
are also shown.

1 Introduction

The Japanese fifth generation computer project has the target of building a highly parallel
inference machine (PIM) on which we construct large scale knowledge information pro-
cessing systems. We have developed a prototype machine, the Multi-PST system [Taki g,
that provides a practical tool fur the rescarch and development of parallel non-numerie
sollwire, It also serves as a testhed for an implementation of coneurrent logic languapge
KLi [Chikayama 88] for a distributed memory architecture,

The Multi-PSI is a non shared-memory multiprocessor, whose processing elemnents
(PEs) are the same CPU hardware of Lhe personal sequential inference (1'51) machine [Nakashima 87]
{the microprogram is different ). Up to 64 PEs are connected in an 8 x § two-dimensional
mesh network with dynamic routing capabilily,

A distributed KL1 svstem was developed on the machine [Nakajima 89]. It is writ-
ten in microprogram for execution efficiency. The design goal was to obfain averall high
performance, taking into account garbage collection averhead, and to realize a distributed
language system with a decentralized resource management mechanism for good scala-
hility, The language system is easily expanded for a larger hardware than the current
Mulii-PST with its 64 PEs,

This paper gives the cost measurement results of intra- and inter-PE primitive opera
tivas in the system, which decide the basic performance of & distributively implemented
comenrrent langnage system. Correspondence of those primitive operations to other lun-
guage systems is commented on. The cost of inter-PE primitive operations gives a guide-
line for a programmer to control the grain size for better performance. Measurements of
performance and communication overhead on benchmark programs are also shown with
a disenssion referring to the guideline mentioned above, Section 2 and 3 outline the



Multi-PST hardware and the concnrrent logic language KLL, Section 4 shows the mea-
suremnent resulis of intra-FE primitive operations and comments for the correspondence
of these primitives to other language systems. Section 5 overviews the implementation
of the inter-PI” operations and reports their cost, then disensses contrel of grain size tn
reduce the inter-P'E communmeation overhead. Performance and communication overhead

tn execuling ]’J.'Il.-i“&‘; bosshuseek IR R TERHT YR al=ir showwen iy section 4,

2  Overview of the Multi-PSI system

2.1 lHardware

The PIis a 40-hit {5-Dit for tag. 32-bit for daza) C15C processor contealled by horigontal
micro-instroction (33 bits). The cyole time s 200 nsec. Fach ') has 16 M waords of local
memory via a Jh-word directanap cache memory. Address space of each PE is separated.

Upto 64 PEs are conunected v an 8 » ¥ two dimensional mesh network. Inter PE
communication is done through message passing. The network lias wormhole routing
functionality. Each edge of the mesh includes two 5-bit chanuels of opposite directions.
The transter rate of cach channel is 5 Mbyles/sec.

2.2 KL1 Language

KL1 (kernel language version 1}is a concnrrent lngic langnage based on Flat GHC[Ueda 86).
A WLL program is made up of & collection of guarded horn clavses, whose form is:

o= 0 o G | By, ., B, (o= 0. = 0)

where fl is called the head, (7, the guard poals. and B; the Ludy guais. The vertical
bar (|} is called the commitment operator. The guard part unification is to wait for
value instantiztions to vanables (synchronization) and to test them. When the guard
unification succeeds, the control proceeds beyond the commitment bar and the body goals
are executed concurrently. Those body goals may communicate with each other through
iheir common variables.

KLl body goals can have pragmas as the meta-control functions.

(1) Priority pragma (..., B@priority{Prio),...} : To specify execution priority.

{2) Throw goal pragma (..., B&processor(I’E),...) : To mave a goal to another
PE for load distribution.

A KL1 program is compiled into KLI-B code[Kimura 87, which corresponds to WAM
for Prolog, and is interpreted by a microprogram. KL1 language assumes a system-wide
{global) name space. Since the Multi-PSI is a distributed memory multiprocessor, KL1
language svstem on the Multi-1'SI requires a translation mechanism between local address
space and global name (address) space, which is supported in the language implementation
by microprogram.

3 Execution Mechanism of the KL1 language

Here is an overview of the execution mechanism of KL1 program in our implementation.
Goals are represented by goal records whose lields are argument slots, pointer to code,
and so on. Bach processor has a goal stack table which is the root of all runnable goals.



The table has pointers to goal stacks corresponding to physical priorities. The processor
picks up the topmost goal of the highest non-emply goal stack and executes.
When a goal is excented, the guards of its defining clauses are tested. There are three

Casen:
(10 I one of them suceeeds, the Bowde pat of the clause is executed;
(21 all ef tdtem fall a failare exception is raisold;

(4] Otherwize. if none of them swcceod and some of thewn block - that is, some of the
input arguments are wol sufliciently instantiated for guard test — the goal suspends
on the variablels) to be instantialed,

Tn case {3). a pointer to the suspewded goal i5 weitlen on the variable cells {the goal is
sald to be hooked onto the varabies). When one of 1he vaciables becomes instantiated,
the soal can be put hack Lo the goal stack for scliednling,

The body part of o elavse can contain body unification goals, body built-in predicate
goals. and wser-delined predicate goals, In the execution of the hody part. a body uni-
fication is done in-line. The hody built in predicate goul s also executed in-line, except
when one of its input argnments is aninstantiated. In this case. a goal which execute the
buili-in goal is created and is hooked onto the wninstantiated argnment. Goal records
are allocated for the wser-defined body goals and pushed onto the top of the current goal
stack {(thus the scheduling i= deptl-first], except Jor the last one goal whick is executed
tail recursively.

If the goal suspends, or suceceds but has no user-defined body goals, Lhe next goal is
],,lit',kf':t] np [rom the highest priority ooal stack lor execntion.

The programmer can attach pragias Lo nser-defined body goals to specily execution
priorities and wlere to meve processor numbers. When a @priority pragma is attached
o & goal, the goal is pushed onto the goal stack corresponding to the specified priority,
not the previous one. When a @processor praguia is present, a Ythrow message is sont
to the specified processor with goal information (code, arguments, priority, and so on).
Only the surface level of the argnments are encoded lulo Lhe message. Nested elements of
lists and vectors are represented by external pointers. An external pointer is made np af
a processor number and an index into the indirection table in that processor (called the
export table). This indirection scheme was adopted, so that lecal garbage collection can
be dene an one processor without affecting external pointers in other processors pointing
into that processor.

The value of an external pointer can be read by the Yread/%answer_value protocol.
A write to an external pointer is handled by the Junify protocol.

4 Intra-processor Operation Evaluation

4.1  Append Speed

An append {list concatenation} program is often used as a benchmark program for logic
programming languages. An append program written in KL1 follows:

append([X1X1],Y,Z) :- true | Z=[X|Z1], append(X1,Y,Z1).
appand([1,Y,2) :- true | 2=Y.

The cost of one reduction (iteration) of the first clause is 39 steps of the wicro Instructions
in the best case {no suspension, and so on), and the speed turns out 1268 KRI'S (Kilo
Reduction Per Second) assuming ne cache miss.



In this paper, we define the cost of the above {about 8gsec) as one append-LI{ Logical
Inference) or one LI to normalize our measurement results in the following sections for
comparing cach items.

4.2 Basic Operation Costs

Figure 1 shows the costs of typical primitive operations in KL programs,

The cost ol enguewing o goal to 1he goal stack and dequening it is abont 0.7 append- L1
As the append loop is performed Tn tail recarsion oplimization (TRO, the gain of TRO
inappend & (L7171 % 100 = 40 %

Tlhere are three typical cases in a guatd nnification: success Lo test an atomic data
[g-1) o o stpuctare data such as a list (g 20, suspension for non-instantiated variables
{51 10 s-4). and value mismaich, that is unification failure (rhis cost is Lhe sane as the
matching case).

Non-busgy wait mechanism is nsed for goal snzpension. The goal is hooked to the cansal
variable and waits for its Iustantiotion. Sospensien in Figure 1 includes the sum of the
costs for hooking. resuming (re-enquening} and dequening the goal (s-1). If there are two
unbound variables which may allow to commit a clause, the goal is hooked to both to
construct an Ol-wait suspenzion (&2}, (5-3) is the case of an OR-wait suspeusion of four
vanables, WL body baili-in predicates also suspend if one of their input arguments is
uminstantialed (s,

MMost body wnifications in KL1 are: binding a value to an onbound variable (h-1) ar
making a reference pointer from an unbound variable 1o another (h-2). Pattern matching
betwsen alome (b-3) or structures (b-4) are rare cases; the latter is not optimized in the
current implementaticn.

4.3 Comments for Primitive Operation Costs

The typical intra- PE operations shown in Figure 1 can be commented as below, considering
relations to other languages or systems.

Engueue and dequeue cost (e-1) corresponds to process fork and scheduling cost in
other languages or systems. In a KL1 program, body goals, which appear in a clanse
definition, specity process fork, Each body goal becomes a process when the clanse com-
mitted. A process can have wide range of grain size. When the grain size is very smail,
like append of one element lists, the enguene and degueue cost cannot be ignored. But
when the grain size is larger than seven append-LI, enqueue and dequeue cost affect the
performance mnch less. We call this grain size “fork grain size” here.

Single suspension cost (s-1) corresponds to a synchronization cost. Assuming twe
processes, one of which is a producer of a value for a shared variable and another is a
consumer, e consnmer has to be suspended when it touches the shared variable until the
vartable has a value. When the producer passes a value sequence to the consumer through
a stream, like a pipelining, svnchronization has to ocenr repeatedly. The interval of Lhe
synchronization decides how much the sespension cost afects total performance. That
is, when suspension occurs every 1.8 append-LI in a process execution, the suspension
cost (1.8 append-1.1) reduces the process execution performance to 50 %. We consider the
other graim size here. We call the interval of synchronization “synchronization grain size”.

A programmer has to control grain size in the program to get good performance.
Measurements like (#-1) and (&1) give puidelines for a programmer to control the lower
bhound of the fork grain size and synchronization grain size in the program.
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Figure 1: Cost of Typical Intra-PE Operation



5 Inter-processor Operation Evaluation

The KLt distributed implementation was designed for distributed memory paralle] ma-
chines, and there are many mechanisms to minimize the number of inter PE messages.
However, Lhis policy often increases e message handling cost. This section overviews
the inter I'E mechanisms of goals. data, and pointers passing or mavagement {more de-
tails are in [Nakajiua 89]), and shows the costs for handling tvpical mcssages, Inter-PT
communication overhead and relations to the grain size are also discussed, referning the
message handling cost,

5.1 TInter-processor Operation ITn KL1

A KLU goal with a throw goal pragma is shipped oul to another PE by the Ythrow!
message.  As the singie assignment semantics of hLT allows data copying, the atomic
arguitents of the goal are copied into Lhe message, However, if the argument is a structure.
it is encoded as an external reference painter instead of copving it, becanse thie goal might
ot weed 1he data in thal PE. The siructure elements are travsferred lazily on reguest by
hread messages. Lo generate an external pointer is called erporting, and io receive the
external pointer is called smpoerting. Unbound variables are always exported as external
pointers to retain their identity of the variables in Lthe svstem.

To perform local GU, we separated address space into twa lavers: lutra PE addros,
space and inter-I'E{global) address space (name space). Al the vxported data must be
inown by the PE so that they are not reclaimed as garbage. For this purpose, the export
table keeps the internal addresses of all e exported data in a PE. All the external
pointers point 1o the entries of the table from outside the PE. They are represented in
the form < n,e >, where n s the exporling PE number and ¢ is the entry position in the
export table. This address is not affected (changed ) by Tocal GCs.

The entries of the export table are managed and incrementally reclaimed by a weighted
reference counting scheme called WEC [Iehiyoshi 88]. In this scheme, a weighted count of
w pusitive integer, called WEC, 15 kept on both the export and import sides. A cerrain
amount of weight is attached to every exportation of pointers. The exported weight is
accumulated al the exportation side as a negative value, and the imported weight is accu-
mulated at the importation side as a positive value, corresponding Lo each variable. When
a pointer iz consumed, the accumulated imported weight is returned to the exportation
I'K. This scheme reduces number of messages much better than the full reference counting.
To keep WEC on the importing side, we have the import table.

On exporting and lmporting puinters, it 1s necessary io translate its address from/to
the inter-I’l ane and to handle WEC. As the Multi- PSI has no special hardware for these
operations, they are perlormed by the microprogram.

5.2 Message Handling Costs

Figure 2 shows the costs for handling tyvpical messages. ''he measurement condition fol
levw s

o The costs of sending and receiving a 65-hyte Ythrow message whose three arguments
are an alom and Lwo external pointers as in a typical situation.

¢ The costs of sending and receiving a 14-byte Yread message which request the con-
tentz of an external pointer, and a 24-byte fanswer_value message which answer

nter-PE messages, Bthrow, Yread, and so on, are generated by KL1 language aystem, not handled by
PrOgrammers.
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Figure 20 Cost of Typical Iuter-I'E Operation

the request. The retorned data is a list whose CAR 12 an atomic data and the CDR
is an external pointer.

The rouling hardware has 5M bytes/see of the bandwidih for transmitting the mes
sage, ('.'nmpm'erl with the network cost {hardware {'i|]'|"1E}i.|i1_‘.': I_[S.'l."f]_:}{j_."'ulﬁ.'_ﬂ ,ﬂpi_pf_:n_d-]_.]
for 65/14/24-byte), the sending and receiving cost of the microprogram execntion is quite
large. 1t inchides the cost of address translation, encoding and decoding messages, and
distributed goal management and other resources manasement,

5.3 Discussion

Let's see the typical inter-P'E operation in Figure 2, making an analogy 1o the discussion
in section 3.3.

hthrow operation corresponds to a process fork to o different processor, The cost of
the ¥throw operation gives a guideline for a programmer to coutral the lower bound of
the fork grain size thrown to a different processor.

dread and Yanswer_value operation correspond to a synchronization with a variable
placed in a different processor. The cost of these operations gives a guideline to contral
lower bound of the synchronization grain size across a processor boundary.

Generally speaking, as the number of grains becomes larger, the load balancing be-
comes easier. In this case, the grain size tends to become smaller. A programmer divides
his problem into smaller grains and distributes them among processors to get better load
balance. But when the grain size becomes too small, the cost of Ythrow, or Yread and
hanswer value affect overall performance significantly. It means that a programmer has
to keep the grain size larger than a certain size, which can be calcuiated based on the
hthrow cost or Yread and Yanswer value cost,

Let’s see an example of deciding a lower bound of grain size. We assume a program in
which only the synchronization grain size affects performance. Inter-I'F synchronization
cost, a summation of ¥read and Yanswer_value cost, 15 23 append LI When a program-
mer accepls 50% performance down caused by those costs, the lower bound of the syn-
chronization grain size becomes 23 append- LI This means that interval of the inter-PE
synchronization should be larger than 23 append-LT to keep the performance degradation
below 50%;.

There is an open problem whether the inter-P'E operation cost shown in figure 2 is
too large or not, compared with the intra-PE performance. We expect that the cost



is reasonable. That is, the same order of implementation cost is always required when
a language svstem with a global name space is implemented on a distributed memory
machine,

6 Measurements on Benchmark Programs
We took measurernents for two different tvpes of berchmark prograns,

¢ Pentomino: A program to find oni all solutions of a § & packing piece puzzle.
That s, it fnds all the ways of packing 1on variounsly ahaped pleces into a 5 % ¥
rectangular box {to be precise, it is the tetrominn, & smaller version of pentominoj.

o Bestpatbe A LG0 = 160 giid geaph s given together with randomly generatod non-
I'iE‘F__f,-'IIi"-'i':‘ N|{:’P COETA A PrOgraTn determines the lowest rost r:||'¢|Li:j from one verley Lo
all other vertices of the graph {single-souree shoriest path problem)

The Pentomino prosram does an exhanstive search of an OR-tree of possible piece
placements. It runs at 39.3KRPS on IPE. The cost of one reduction is 3.3 append-LL.
It run= 834 Mega reductions in 4.3 sec on 64 PLEs. and totally it rons 1.9 MRPS (this iz
the top speed in the world). The dynamic load balancing scheme in [Furaichi 90] works
well, and as shown in Figure 3, 50-fold speed-up on 64 PEs is attained, which 15 almost
linear speed up. The inter-PE fork grain size of this program s #% pentomine LT and
Figure 2 shows that the grain size is wuch bigger than $throw cost. There is almost no
commanication between sub-trees of the OR-search, which means that ouly the fork grain
size affects 1otal perfonuance in Uhis program. Since the fork grain size is big enougl, as
mentioned, the communication overhead is small as measured in Figure 3.

The Bestparh program generates 160 = 160 processes corresponding to every grid, then
performs a fully distributed shortest path algorithm. In the alworithm, adjacent processes
exchange messages to search shortest paths, [t runs at 23AKRPS on 1PE. The cost of
one reduction is 5.5 append-LI. Grids are separaled inte many groups® and statically
assigned to PEs. This program runs 1.5Mega reductions in 1.7 sec on 64 PPs, and its
performance is 0.89 MRI'S. Inter-PE synchronization grain size is about 12 bestpath-LI,
and rate between grain size and message handling cost in Figure 2 is not larger than rate
of pentomine's, so Figure 3 shows that communication overhead is large, Figure 3 shows
that the communication overhead and the cache miss penalty degrades the performance
by 40 % on 64 PEs, though the idle rate is smaller than that of Pentomino.

Both fork grain size on pentomine and synchronization grain size on bestpath in a PE
are very small, they are 1 to 2 reductions. The problem of the load mapping in KL1 is
how to make large inter-I'F grains from many small grains and how to map to each PE.
It is different from dividing a big problem into saller pieces.

T Conclusion

The Multi- P51 is a prototype parallel inference machine used as a testhed for researching
on parallel language implementation. KLI was implemented on it with much effort given
to (1) minimizing the overhead of garbage collection, (2) reducing the number of inter-
I'E messages, and (3) distributing information, so that the system might be efficient and
sralahle.

This paper gave the measurements of intra- and inter-PE operations in the svstem.

“16 times as many as the number of PEe
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The peak performance on 1 PE s 128 WRPS and is at the highest level among the
current distributed machines. Typical guard and body unifications are performed very
quickly by utilizing the tag architecture. The suspension costs aze not small becausze the
FPL doe: not have any special hardware for manipulating goal records, Inter-PL message
hanrdling rasts are 3 to 16 append-LI. Most of the time for them is spent on micro code
ecyccution and the network specd does not linade the inter-T'F comnmuication performance.

We also discussed the fork and svochronization vrain size and consideration of their
lower bound iu KLI programming. Programmers can expect that inter-I'E communication
overheads are small enoueh when these grain sizes are higrer than the lowar bound decided
bv Lhe inter-PE prisnitive operation costs

The dyvnamic characteristics of two paraliel benchmark programs show that the inter-
PE communication overhead can be mited and a good workrate can be attained by
investigating well-organized dynamic or static load balancing and appropriate grain size
control.

Our insight into looselv-coupled wmnltiprocessors and parallel programming on them
15 still very limited. We will continue to experiment with more programs with different
runtime characteristics, and conduct more detailed measurements and analves,
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