~ ICOT Technical Report: TR-583

TR-583

An Abductive Procedure for the CMS/ATMS

by

K. Inoue

August, 1990

1990, 10T

Mita Kokusai Bldg. 21F (03)3456-3191 5

ICOT 4.28 Mita 1-Chome Telex [COT 132064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

An Abductive Procedure for the CMS/ATMS

Katsumi Inoue

ICOT Hesearch Center
[nstitute for New Generation Computer Technology
Mita Kokusai Bldg. 21T
1-1-28 Mita, Minato-ku. Tokyvo 108, Japan
inoucilicol .or g

Abstract

This paper concerns procedural semantics for a variety of ATMSs. Reiter & de Kleer
view an ATMS a5 a kind of abduction in which the hest explanation of a formula is defined
as a minimal conjunction of hypotheses that explain the formula. However, they do not
give any algorithm to compute such minimal explanations of & formula in their CMS Lhat is
a generalization of de Kleer's basic ATMS. In this paper, we use the notion of characteristic
clauses to make precise definitions of the CMS and the ATMS and to produce 4 sound and
complete abductive procedure based on an extension of linear resolution. By means of this
abductive procedure, we give the CMS algorithms for computing minimal explanations i
the interpreted approach and for updating them in the compiled approach. We then present
algorithms for gencrating and updating labels of nodes in an extended ATMS that accepts
non-Horn justifications and literal assumptions. Finally, how a variation of the abductive
procedure can be used to answer queries for circumseription of ground theories is presented.

Keywords: ATMS, CMS, abduction, circumseription, linear resolulion

1 Introduction

An assumption-based truth maintenance system {ATMS) [4] has been widely used when problems
require Teasoning in multiple contexts. However, this basic ATMS can only handle the restricted form
of formulas, and is described algorithmically rather than declaratively or model-theoretically, and no
proof of its correctness is given, so it is not chvions how to generalize or refine it. The motivation for
this research was the desire to formalize generalizations of the ATMS within simple model and proof
thearies,

Recent investigations such as those of Reiter & de Kleer [22] and Levesque [16] show that there
are strong connections between an ATMS and a logical account of abduction or hypolhesis generation
[20, 3. 9. 19]. An ATMS can be characterized by the following type of abduction:

Definition 1.1 Let W be a set of formulas, 4 a set of ground literals (called the assumptions), and
G a closed formula. A conjunction # of elements of A is an erplanalion of G from (W, A) if (i)
WU} | G and (i) WU {H} is satisfiable.

An explanation T of & from (W, A) is wmindinal il no proper sub-conjunct of I is an explanation
of G from (W, A), that is, if no sub-conjnnet ' of I satisfies WU {H'} | G.

The ATMS is precisely intended to generate all and only minimal explanations [11]. In the ATMS
terminology. the set of inimal explanations of a node (7 from the justificaiions W and the assumptions
Als called the label of G, which is consistent, sound, complete and minimal. The basic ATMS [4] is
restricted to accepting ouly Horn clause justifications and atlomic assumptions. In the above declarative
conditions for an ATMS, justifications can contain non-Horn clauses, and assumptions are allowed 1o
be literals, so that this generalization covers de Kleer’s various extended versions of the ATMS [5, 6, 7],
Dressler’s extended basic ATMS [8], and Reiter & de Kleer's clause management svstem (CMS) [23}.

In spite of its usefulness in a wide range of applications. the algorithms for the ATMS in [4. 5,]
have not yet been proved to be correct with respect to the declarative semanties. Although the CMS is
well defined and the basic connertion hetween resolution and the CMS processing is given in [22], there
has not yet been any complete algorithm for compnting lahels of a formula lor non-Horn theories in
lerms of popular and useful resolution methods. Oue of the problems is that although linear resolution
is widely used and contains several restriction strategies, it is incomplete for consequence-finding [18]
so that it cannot be directly used as an ATMS procedure.

The goal of this paper is to provide a sonnd and complete abductive procedure which solves the
above problems for the CMS and ATMSs. In the remaining sections, we describe abduction as the
problem of finding the characteristic clauses [1, 24] that are theorems of a given set of clanses and
that belong to a distinguished sub-vocabulary of the language. We will give an extension of proposi-
tional linear resolution procedures which is complete for characteristic-clause-linding, then show ways
im which to implement the CMS and the extended ATMS described above for both label generating
{the interpreted approach) and label updating {(the compiled approach). Since this extended ATMS
can accept literal assumptions and non-Horn clauses, the methods described in this paper can also be
applied to better implementations of theorem provess for closed world assumptions [1] and circumscrip
tion [21, 10] of ground theories, based on ahductive procedures [13]. Unless otherwise specified, proofs
for theorems and propositions are shown in Appendix.

2 Characteristic Clauses

We hegin with some definitions and notations that will be used throughout this paper. We shall assume
a propositional language with finitely many propositional symbols 4 and with logical connectives. The
set of ltemls is defined as: AT = AU =. 4, where =+ 5 means the set formed by taking the negation
of each element in 5. A clause is a finite set of literals, understood disjunctively; the empty clause is
denoted by O. A conjunctive normal form (CNE) formula is a conjunction of clauses. Let C and C"
he two clauses. € = (" denotes a clause whose literals are those in the difference of ' and . €' is
gaid to subsume O if every literal in €' oceurs in € (€ C C'). In logical notation, €' subsumes € if
Lo €7 3 (", Vor a set of clauses X, by p¥ or u[E] we mean the set of clanses of X not subsumed by any

other clause of £,

Definition 2.1 Let T be a sct of clauses.
{1) A clanse (" is an implicate of & if £ = €. The set of implicates of ¥ is denoted by 7A{X).
(2} The prime umpheates of £ are: PIE) = pTh{E}.

We use the notion of characterisite clauses, which helps to analyze the computational aspect of
ATMSs. While the idea of characteristic clauses was introduced by Tiossn & Siegel [1] to evaluate a
form of closed-world reasoning and was later generalized by Siegel [24], neither research focnsed on
abductive reasoning or the ATMS. Informally speaking, characteristic clauses are intended to represent
“interesting” clauses to solve a certain problem, and are constructed over a sub-vocabulary of the
representation language called a production field.

Definition 2.2 {1} A production field P is a pair, { Lp,Cond), where Lp (called the characterisiic
literuls) is a subset of A%, and Cond is a condition to bhe satisfied. When Cend is not specilied, P is
just denoted as { Lp). A production field (A%) is denoted P

(21 A clause ' belongs to a production field P = { Ly, Cond } if every literal in ' belongs to Ly
and (7 satisfies Cond. The set of implicates of £ belonging to P is denoted by Thp(Z).

(4) A production field P is stable if P satisfies the condition: for two clauses C° and " where
subsumes 7, if ("' belongs to P, then ¢ also belongs to 7.

Example 2.3 The following are examples of implicates belonging to stable production fields.

(1) P =P.: TheiX)is equivalent to Th{X).

()P ={.4): The(L)is the set of positive clauses implied by X,

(3) P = (—-A, below size k) where 4 € A: Thp(Z) is the set of negative clauses implied hy ¥
rontaining less than & literals all of which belong to —- 4.

Definition 2.4 Let X be a sel of clauses,
(1) The eharacteristic clouses of & with respect to 7 are:

Care(E,Py=uThp(Z).

In other words, a characteristic clause of T is a prime implicate of ¥ belonging to P.
(2) Let F be a formula. The new characteristic clauses of F' with respect te T and P are:

Newearel S, F,P) = Care(T U {F}, P) — Care(E, P},

that is, those characteristic clauses of £ U {F} that are not characteristic clauses of L.

.3_

Care(Y, P) represents saturation: all the unsubsumed hnplicates of £ that belong to a production
field 7 must be contained in it. For example, Care(¥,Pr) = PI(¥). Note that the empty clause O
belongs to cvery stable production field, and that if © is unsatisfiable, then Care(X, P) contains only
0. On the contrary, the next theorem shows that Neweare{ %, F,) represents abduetion, that is, the
get of minimal explanations of = F from {Z, -7},

Theorem 2.5 Let £ be a set of clanses, A C A%, & a formula. The set of all minimal explanations
of (7 from (E.A) is = Neweare(E. -G, P}, where P = {=- A},

3 Linear Abductive Procedure

In this section, given a set of clanses ¥, a stable production field P and a formula £, we show how the
characteristic clauses Care(¥, P} and the new characteristic clanses Newcaro[E, £, Py can be computed
by extending linear resolution. Before describing this matter in detail. it is worth noting that, the proof
procedure has the following difficulties for dealing with abduction:

L. It should be complete for consequence-finding, that is, every relevant theorem can be produced,
instead of just refufation-complete (producing O if the theory is unsatisfiable).

2.1t shonld focus on producing only those theorems that belong to P.

3. It should be able to check produced clauses from SU{F} and P with the condition “not belonging
to The(Z)". which corresponds to consistency checking in abduction.

The completeness for consequence-finding was investigated by Slagle, Chang & Lee [23] and Minicozzi
& Reiter [18]. The second property requires that such consequences belong to P. Bossu & Siegel [1]
give an incremental resolution procedure Lo overcome the above three difficulties, which should first
deduce all the Care(Z, P} prior to giving Care(S U {F},P).

A better approach to compute Neweare(E,C, P) does not construet the whole of each saturated
sel. [t s possible by using an extension of linear resolution, given £, P, and a newly added single
clanse " as the top clause of a deduction. Siegel [24] proposes such a resolution method by extending
SL-resolution [15]. In this paper, we use the basic idea of [24] but introduce a more simplified procedure
which is enongh to explain our goals. The resolution method, which we call m.c.ls. resolution, is based
on r.e.l. (merge, C-ordered, linear) resolution [18] !, and is augmented by the skipping operation. The
tollowing procedure is based on the description of OL-deduction in 2], but the result is not restricted
to it. An ordered clanse is a sequence of literals possibly containing framed literals which represents
literals that have been resolved upon: from a clause € an ordered clause € is obtained just by ordering
the elements of '; conversely, from an ordered clause C' a clause € is obtained hy removing the framed
literals and converting the remainder to the sel. A structured clause (P, ¢} is a pair of a clanse I’
and an ordered clause ¢J, whose clausal meaning is P U Q.

Definition 3.1 Given a sel of clavses E, a clause <, and a production field 7 = {Lp.Cond},
an m.c.l.s. deduction of a clause § from T + € and P consists of a sequence of structured clauses
Dy, Dy, ..., Dy, such that:

'By the term m.c.l. resolution, we mean the family of lincar resalution using ordered clauses and the informativu
of litezels resolved upon. Examples of m.cl. resolution are OL-resclution [2], SL-resolution [15], the model elimination
procedure [17], and the graph construction procedure [23]. This family is recognized to be one of the most familiar and
efficient classes of resolution because of containing several restriction strategies.

1. Dy = {0, C).
2. D, =(5 3}
3. For each D; = { I, Q-, b, Py UG is nol a tautology.

4. Yor each D, = (P, ;). P, U@, is not subsumed by any P;u Q;, where Dj = (P}, Q;)is a
previous structured clause, j < &

5. Diyr = { Pigy. Qv) is generated from Dy = { Y, Q, } according to the following steps:

{a) Let { Le the first literal of (J,. P.yq and Eiy; arc obtained by applying either of the rules:

i. (Skip) If { € Lp and Py U {I} satisfies Cond, then Fiyqy = F U {1} and R,y is the
ordered clause obtained by removing | from ;.
ii. (Resolve) Fioy = 1Y and Ry is an ordered resolvent of ¢, with a clause B; in ¥,
where the literal resolved upon in ¢y is [
(b) Q21 is the reduced ordered clause of the ordered factor of Ritq.

Remarks. (1) Rules 1, 3. 5(alii and 5b form an OL-deduction for the non-produetion part (the
right side] of structured clanses. By the erdered factor of E;. it implies the ordered clause oblained by
merging right for any identical literals in R; and by deleting every framed literal not followed by an
unframed literal in the remainder {truncation). ‘Uhe reduction (or ancestry) of H; deletes any unframed
literal & in .J'-FF- for which there exists w framed literal |-k | in ..

(2] Rule 4 is inclnded for efficiency. It dves not aflect the completeness described helow 2.

(3} Rules 5{a)i and 5(x)ii arc not exclusive; for [€ Lp either rule may be applied.

The Skip rule (5{a)i} reflects the following operational interpretation of a stable praduction field
P: by Definition 2.2 (3), if a clause ¢’ does not belong to 7 and a clause ("' is suhsumed by ¢, then ("
does not belong to P either. That is why we can prune a deduction sequence il no rule can be applied
for a structured clause I if Skip was applied nevertheless, any resultant sequence would not succeed,
thus making unneressary computation.

Vor m.e.ls. resolution. the following theorem can be shown to hold.

Theorem 3.2 (1) Soundness: If a clause § is derived using an m.chs. deduction from L + " and P,
then & belongs to The(Z U {C}).

{2) Completencss: 1f a clanse T does not belong to Thp(), but belongs to Thp(L U {C'}), then there
is an m.c.Ls. deduction of a clause § from & + € and P such that § subsumes T'.

Note thal uncl resolution is refutation-complete [L7, 15, 2], but is incomplete for consequence-
finding [18]. The procedure of m.cls. resolution is complete for characterislic-clause-finding (Theo-
rem 4.2 (2)), and thus complete for consequence-finding if P = P, because it includes the additional
skipping aperation.

Definition 3.3 Given a set of clauses £, a clause ', and a stable production ficld 7, the production
from £+ C and T is defined as:
Prod(E,C, P} = p{5| 5 is a clause derived using an m.c.ls. deduction from ¥ + C and P}.

Iy fact, in Chang & Lec’s version of OL-deduction [2] this rule is overlooked. The deletion rule is clearly present in
the mudel climination procedure [17]. ‘I'hese two observations were pointed out by Mark Stickel.

In [24], there is no precise statement about computing Neweare(Y, ¢, P) and Care(Z,P) by using
Prod(E,C,P). Here we show the connections between them. Firstly, the next theorem shows that
we can compute Neweare(X.C,P) for a single clause (7, without a naive implementation of Defini-
tion 2.4 {2) that computes the saturated sets, Care(Z,#) and Care(% U 10}, 7)), and that we need
check for cach clanse § € Prod(Z,,P), only whether T = § or n.

Theorem 3.4 Let ¢ be a clanse. Newrare(S.C, P} = Frod(S,C,P) = The(%),
Fur a CNF formula 7. Neweare(E, G, P) can be computed incrementally as follows:

Theorem 3.5 Let (7 = ('y A .o 0 (', be a CNF formula. Then

m U Neweare(£,.C, P)]

Neweare(Y.,)

fil

ul U Prod(,, ..P)) = Tha(s).
i=1

where &) =X, and Y =%, 0{C), flori=1,...,m—1.

It

Finally, the characteristic clauses Care(X, P} can be gencrated by the following incremental method.
This will be used for the compiled approaches to the CMS and an ATMS. Notice that for some
propositional symbol p, if £ p, L § -p, and p v =p belongs to some stable production field P, then
pV =p belongs to Care(T,).

Theorem 3.6 The characteristic clauses with respect to P can be generated incrementally *:

Care(¢,P) = {pv-p|pec.Aand pv-p belongs to P}, and
Care(X U {7} P} p[Care(E, PyU Neweare(E,C,)]
p{Care(Z, PYU Prod(%,0,P)] .

4 The CMS

Reiter & de Kleer [22] propose a generalization of the basic ATMS [1] called the clause menagement
system (CMS) and show its applications to abductive reasoning. A CMS is intended to work togetlier
with a reasoner, which issnes queries that take the form of clanses. The CMS is then responsible for
tinding minimal supparts for the queries:

Definition 4.1 [22] Let T be a set of clauses and ' a clause. A clause § is a support for O with
respect to Lif L E SUC, and E §E 5.

A support for C with respect to ¥ is minimal if there is no other support §' for € which subsumes §.
The set of minimal supports for ' with respect to ¥ is written MS(E, (7).

Comparing minimal supports with minimal explanations described in Definition 1.1, & minimal
support § for €' with respect to ¥ is exactly a minimal explanation =8 of 7 from (X, A%). Therefore,
the above definition can be easily extended to handle any formula instead of & clause as a query. Setting
the production field to P, = (A*), we see that:

*In practice, no tautology will take part in any deduction; tautologies decrease menatonically.

Proposition 4.2 Let F be any formula. MS(X, F) = Neweare{X, ~F, P).

This formulation can solve one of the limitations of the CMS. In [22], the CMS is defined to handle
only the queries of the clause form, so that it cannot compute minimal explanations of a conjunctive
query. For example, u{=¢ | 5 ¢ O g1 A gy and £ ¢ —e} can be computed straightforwardly in
our formulation as Neweare(E, »gy V =ga, Pr). And for a disjunctive normal form query F, we can
compute M5(E,=F) by using Theorem 3.5.

We thus see that enr algorithm can compute minimal supports. However, Reiter & de Kleer [22]
comsider the two ways the CMS manages the knowledge base: keeping the set of clauses I transmitted
by the reasoner as it is (the interpreted approach), or computing PI{Z) (the compiled approach).
Theorem 3.4 shows that we can generate the new characteristic clanses Newcare(E,C,Pr) without
knowing the saturated sets, PI(Z) and PI{¥ U {C'}). Therefore, computation using Theorem 3.4 and
Proposition 4.2 represents the interpreted approach *.

When we are faced with a situation where we want to know explanations for many different queries,
we must run the algorithm each time a query is issued. Instead of keeping the initial theory T as it is
and doing the same deductions over and over for different top clauses, some of these inferences can be
made vnce and for all, That is the mativation for the compiled approach: the set ¥ is compiled into
the saturated set, PI{E) = Care(Z,P;).

Given PI{T). to find M S(¥.) far each query G in the compiled approach, again we do not need
ta compute the saturated set PI{Z U {=(]), as Reiter & de Kleer show some relationships between
prime implicates and minimal supports,

Proposition 4.3 [22] Let ' be a clanse. MS(E,C)=p{ P —C | P e PI(Y)and I'N (" # o},
Corollary 4.4 [22] Let n € A* be a literal. MS(E {n})={ P~ {n) | P CPI{¥)and n & P}.

One of the disadvantages of the compiled approach is the high cost of updating the knowledge base,
When the reasoner adds a clause 7 to I, we must compute all the PI{¥ 0 {C}). However, for both
purposes, that is, constructing the prime implicates and updating them, Theorem 4.6 can be used by
selting the production field to Pr.

Proposition 4.5 Given PI{E) and a clause ', PI{Z U {C'}) can be found incrementally:

Pla) {pv-plped], and
PIMU{CY) = w[PHE)U Prodi PI(Z).C,P,)].

Hy P’roposition 4.5, the prime implicates can be incrementally constructed using every clause as a
top clanse. Thus the transmitted clauses ¥ can be substituted for PI{Z). When a clause (' is newly
added, we just need to add the theorems deduced from PI(T) with top clanse ' and to remove the
subsumed clauses. The computation of all prime implicates of T by Proposition 4.5 is much more
efficient than the brute-foree way of resolution proposed bricfly by Reiter & de Kleer [22], which makes
every possible resolution until no mere unsnbsumed clauses are produced.

Note that either computing supports with an uncompiled theory or compiling a theory is an enu-
meration problem of prime implicates and each computational complexity is exponential *. The com-
putational superiority of the proposed technique as compared with a brute-force algorithm comes [roi
the restriction of resolution, as the key problem here is to generate as few as possible subswmed clauses
together with making as fow as possible subsumption tesis.

¥Note that in [22) there is no description of an algorithm for the interpreted approach.
*In [12}, another interesting and empirically cfficient way to manage the knowledge base that offers an intermediate
allernalive to the compiled and interpreted disjunctive is shown.

~3

5 An ATMS

In de Kleer's versions of ATMSs [4, 5, 6, 7). there is a distinguished set of assumptions 4 € A%, One of
the most generalized versions of the ATMS can be considered as a CMS with assumptions as described
in Definition 1.1. Therefore, hased on Theorem 2.5, an ATMS can be defined as a system responsible
for finding all the minimal explanations (called the labels) for the queries:

Definition 5.1 An ATMS is a triple (N, 4, ©), where N C A% is a set of literals, nodes: A C N
is a set of literals, assumptions; and T is a set of clauses all of whose literals belong to N U - N,
Justifications. The lnbel of n € N with respect to { N, A, ¥} is defined as:

Lin,A,E) = ~- Newcarc{X, -n,P), where P = (—-4).

The following propertics [4, 6] hold for the label of cach node n € N with respeet to an ATMS
{N, A, E) given by Definition 5.1:

Proposition 5.2 Let (N, A, E) be an ATMS, n € N a [teral, and P = {~+A).
{1} Label consistency: for each E; € L(n,A,X), LU {E,)} is satisfiable.
(2) Label sounduess: for each E, € Lin,A, %), SU{E) |- n.
(3) Label completeness: for every conjunct E of assumptions in A, if T 1 {E} F n, then there
exists ki & Lin, A, E) such that E, is a sub-conjunct of E.
(4) Label minimality: every E; € L{n, A,X) is nat a super-conjunct of any other element,

In the same way as the CMS, we will consider the following twe problems, that is, abduction and
saluration, concerning the computation of the labels of the nodes with respect to an ATMS:

1. Generating labels. Given an ATMS (N, A, ¥), compute L{n, A,X) for some node n € N from
the original set . This corresponds to the interpreted approach of the CMS,

2. Updating labels, Given an ATMS (N, A, £}, the current label Linm,A,T)of cach n € N, and a
newly added clause ', compute the new label Lin, A, % U {C}) of every n € N with respect to
(N, A, Eu{C}). This corresponds to the compiled approach of the CMS.

Generating the label L(n, 4, %) of a node n is straightforward by Theorem 3.4 and Definition 5.1,
Moreover, a query is not restricted to being a literal of NV in this case: [or a general formula, Theorem 3.5
can be applied by converting it to CNF.

Example 5.3 Let an ATMS be { {a, b,e,x, =y}, {z.=y}, {=aV-bve, ~rv=bva, yvbve}). Then
the following deduction finds c's label {z A —y):

(0, 2c), (O, 2av=bv[e]), (O, 2z v Ap v[=a]v ~bV[3e)), (-z, [Fg] v =bv[=c]},

(mz, yvif V5V 5D, (me v, [v).

The question is how effectively consistency can be checked by testing whether a clause §, produced
from £+ -nand P = (=-A), belongs to Thp(L) or not. A direct implementation is to use a
theorem prover, as we already know that § belongs to P, but theorem proving is also possible in
m.c.l.s. resolution: ¥ | 5 iff Prod(X,-5,P) = {O0}. In this case, since we are not interested in any
produced clause from ¥+ -5 other than O, the production field P can be replaced with (¢) and Skip
(Rule 5{a)i) will never be applied. Thus, there is an m.c.l. refutation fram % U {=5} iff there is an
m.c.ls. deduction from ¥ + <5 and (é).

However, there is another way for consistency checking that offers an intermediate approach between
the interpreted and compiled approaches. Unlike with the CMS, the computation of Care(Z, P) can
be performed better as the search focuses on the restricted vocabulary P if it is small compared with
the whole literals 4% Having Care(%, P), consistency checking is much easier; § € Thp(X) iff there
is a clanse 7' & Carc{¥,P) such that T subsumes §. The characteristic clauses Clare(Z, (- - AY})
are called unsubsumed nogoods in the ATMS terminology. This checking can be embedded into an
mi.c.ls. deduction: Skip (Rule 5{a)i) of Definition 3.1 can be replaced with the following rule:

5(a)i. (Skip & Check) If P, U {I} belongs to 7 and is not snhsumed by any clause of
Carel ¥,), then the same as Skip.

Proposition 5.4 If Skip & Check is used as Rule 5{a)i of an m.c.ls. deduction instead of the original
Skip rule, then Prod(E.C.P) = Neweare(Z, 0.).

In the compiled approach to an ATMS, the following result corresponding to Corollary 4.4 for the
CMS and to a generalization of [22, Theorem 7] holds:

Theorem 5.5 Let { N, A, T} be an ATMS, n € N aliteral, and P = (- A}.
Neweare(S,—-n,P)—{ P—{a)} | Pc PI{E), n € P and P—{n} belongs to P }.

Theorem 5.5 shows that we can compute the label of a node from the prime implicates of .
Therefore an approach may keep PI{T) and when a new clanse (7 is added we compute PI{Z U {C'})
by Proposition 4.5 for npdating labels of nodes. However, compared with the CMS, many of the prime
implicates are not significant for the task of an ATMS when the assumptions 4 are relatively stnall,
although their computation is extremely high. In such a case, we do nol want to compute all the prime
implicates. Fortunately, we can compute a subset of PI{E) enough to give lahels by using the following
stable production field:

Definition 5.6 Given an ATMS (N, A, X)) and a production field P = {~- A}, a production field 7*
15 defined as:

P = { = AUN, the number of literals in N —=-A s al most one).
Since P* is stuble, Care(Z. P} can be constructed incrementally by using Theorem 3.6:
Care(CUCHLP") = p[Care(Z,P7) U Prod(E,C,P7}].

Here we enly need to keep Y and Care(Z,P"). Looking further at Definition 5.6, the relationship
between Care(Z, 77) and Care{Z,) can be shown exactly in the next lemma:

Lemma 5.7 Care(,P*) = Curc(E,PIU{SU{n} [nE N~ + A and §€ Neweare(Z,-n,P) }.

Therefore, the knowledge base can consist of the justifications %, unsubsumed nogoods Care(Z, 'p),
and prime implicates mentioning one node with the negation of an element of its label. No other prime
implicates are necessary. Having Care{ S, P*), we can find the label of each node easily as follows:

Theorem 5.8 Let (N, A, £) be an ATMS, nc N, P={~A), and P" be the sane as in Definition 5.6.

{§~{n}|SecCuarc(E,P"),andne &} if neN~---4

Newcare(Z, ~n, P} = { {S={n}|5eCarce(E,P)yandne)] il ncNn--A

For updating the knowledge base when a new clause (' is added, again we just compute Care(X U
{C'},P*) from the previous Care(E, P*) incrementally by using Theorem 3.6. Since this computation
guarantees the completeness of characteristic-clause-finding. the four properties of the ATMS labels in
Proposition 5.2 are also satisfied in this case. Note that the g operation removes all the previous prime
implicates that are subsumed by some newly added prime implicates. This operation is also crucial to
guarantee the label consistency because implicates subsumed by some nogood must be removed.

Example 5.9 Suppose that an ATMS is { {a,b,z,y}, {z.u}, L) where & = {avh, -yval) Inthis
case Clare(E,P") = SU{ zVax, ~yVy} Now suppose that a new clause ~r V ~a is added to Y.
Then the updating algorithm will find b's new label . as well as 4 new unsubsumed nogood = W =y:

~a), {0z, bvoal), (-zvh [F7]).
= {ox, oy V[=al), {(~rvo-y, [F4]).

We thus see that Care{E.P") can be used for giving labels for nodes. To maximize efficiency,
however, it can also be used for caching the result of the production as lemmas; it can be utilized later
as the bypass of steps of resolution in the previous computation. In [12], we describe how the updating
algorithm can be modified for this purpose and still establish the label completeness for varions ATMSs
(4, 5, 6i, 8], and the correspondence of the modified algorithm with de Kleer's label updating algorithms
[4. 6],

{0, zzV-a), {-z,

6 Related Works

In this section, we compare our characteristic-clause-finding procedure to prool procedures of various
abductive and nonmonotonic reasoning systems. The notions of production fields and (new) charaec-
teristic clauses are very helpful in understanding the relationships between them and in reconstructing
them in our simple and general formalism.

6.1 Saturation and Abduction

Hossu & Siegel [1] define a closed-world reasoning called sub-implication, in which all ground atoms
are to be minimized. Their saturation procedure finds Care(¥,P) where Lhe characteristic literals
Lp are lixed to positive ground literals (see Example 2.3 (2)). However, it does not use C-ordering,
and their method to compute Neweare(Z,,P) is a naive implementation of Definition 2.4. Thaose
versions of closed-world assumptions can be generalized to allow for variable and fixed predicates as
well as minimized predicates, that is, circumscription of ground theories (see Section 6.2).

Kean & Tsiknis {14] extend Tison's [26] consensus method of producing prime im plicates to generate
them incrementally. In our framework, the corresponding result is illustrated in Proposition 4.5. The
difference is that their method is based on a set-of-support strategy, where subsumption checking
is performed at each resolution step, while onrs nses linear resolution and thus naturally has more
restriction stralegies.

De Kleer [7] introduces lyperresolution rules to pre compile a set of clauses ¥, all of which are
either positive or negative. This technique is also given in [5] in more general form. An interesting
approach in [7] is to use a rule limiting the inference only to negative clauses below a size k. The
uegative clauses of the resulting set closed under these rules and subsumption are the characteristic
clanses Clare(E,P) where P = (~-A, below size k) (see Example 2.3 {3)). In our forwulation, instead
of using hyperresolution, linear resolution can be used to produce such characteristic clauses for ALy

—1f -

clause sel ¥ and any characteristic literals Lp € AT, In practice, this size-restriction is very useful for
minimizing the computational effort, because il causes earlier pruning in m.cls. deduction sequences.

There are many systems for logic-based abductive reasoning. However, many systems [19, 9, 21]
other than [20] do not require minimality of explanation. Pople [20] proposed the mechanization of
abduction via deduction based un SL-resolution [15], with “synthesis” operation which corresponds to
our skipping operation. However, his system does not distinguish literals, that is, the production field
is fixed to P, and “hvpothesizes whatever cannot be proven”. This criterion is also nsed by Cox &
Pietrzvkowski [3]. It can be implemented if Skip (Rule 3{a)i} is preceded by Resolve {Rule 5{alii)
and is applied only if Resolve cannot be applied in Step 5a of an ni.c.ls. deduction (Definition 3.1).

Finger [9] gives residue procedures for abductive reasoning where assumptions are restricted to only
atoms, but his “resolution residne” nzes set-of-support resolution.

6.2 Query Answering for Circumscription

Let { N, 4y u—+Ay, ¥) be an ATMS such that A7 € A and A; € A We wish to know whether or not
a formula is satisfied by every preferred model of £, This problem is equivalent to circumscriplion of
propusitional theories: Az is to be minimized and Ay is to be maximized {that s, for each a € Ay, =o
is to be minimized); 4; 7 Ay represents the fired propositional symbols and N — (4, U 43} represents
vartables. In 1his case, the production field 35 { —- 43 U Az)

Przymusinski [21] defines MILO-resclution, a variant of OL-resolution [2], which is used in his
circumseriptive theorem prover. Inoue & Hellt [13) characterize MILO-resolution as m.c.lLs. resolution
where the characteristic literals Lp are set to the positive ocourrence of minimized predicates and any
preurcence of fixed predicates in the circumscription policy.

Proposition 6.1 [21, 10, 13] Suppose that Ly is the same as in the above description and thai
P ={Lp). Every circumscriptive minimal madel satisfies a formula P if and only if there iz a conjunct
(of clauses of [Thp(E U {-F}) = Thp(E) | such that [The(EU {=C)) - The(X)] = ¢

There is a big difference between MILO-resolution and the ATMS [13]. In Proposition 6.1, to get
theorems in [The(SU{("})) Thp(¥)}] for some clause {7, MILO-resolution does not actually compute
Neweare{ S, ', P), while the ATMS does. Let us divide the produced clauses from X4 and P possibly
containing subsumed clanses into two sets, say S1 and 52, such that T U 51 = 52, Then adding 52
to 1 does not change the models of the production. Thus only S1 needs to be computed model-
theoretically . We call a set 51 verifying this condition a precursor of the production. Note that a
clause in a precursor is not always a prime implicate of L. MILO-resolution computes such a precursor,
hecanse when the first literal belongs to Ly in Step 5a of an m.c.ls. deduction (Definition 3.1}, only
Skip (Rule 5{a)i) is applicd. On the contrary, since the CM5 and the ATMS are used for computing
all and only minimal supports for a query, if the literal resolved upon belongs to Ly, they apply cither
Skip or Resolve. Thus a precursor-finding algorithm [13] can be written by ordering two rules as:

5(a)i’. (Skip & Cut) If /U {/} belongs to P, then the same as Skip (Rule 5{a)i).
Sla)ii’. (Resolve') Otherwise, the same as Resalve (Rule A{a)ii).

Theorem 6.2 If a clanse T is derived by an w.c.ls. deduction from £ 4 € and P, then there is a
deduction with the Skip & Cut rule of a clause § from X 4+ € and P such that TU{S} = T.

¥ Note t.hat.; clause in 51 is the weakest in the sense that for any clause Az © 53 there exists a clause Ay € 51 such
thal ¥ U {=Az} | A holds (recall that for 4 € 5, U 5z, A is an explanation of =C' from (Z, = P) if T j& A).

1]

T Conclusion

We have shown a procedural interpretation of the CMS and the ATMS based on an extension of linear
resolution. The Skip rule can be safely embedded in linear resolution strategies making characieristic-
clause-finding complete, due to the stability of production fields. While we used the description of Ol.-
resolution as the definition of vur linear resolution procedure, Skip can be applied to other, superior
versions of propositional linear resolution, such as Shostak’s graph construction procedure [23), and
[urther improvements on these methods can he used to improve efficiency still more. We should also
note that the control of inference can be made to the production in varions ways as breadth first or
best-first search [2], integration of top-down and hottom-up strategies (9], reordering subgoal trees [24],
and others.

Using the methods described in this paper, many Al techniques such as preferential-models ap.
proaches to nonmonotonic reasoning and constraint satisfaction problems, as well as direct applications
of abduction or the ATMS, may he helped on the way o belter implementation.

Acknowledgment

I would like to thank Koichi Furukawa, Nicolas Hellt, Ken Satoh, Yoshihiko Ohta, David Poole and Wolfgang
Bibrel for helpful discussions on this work.

References

[1] Bossu, G. and Siegel, P., “Saturation, Nonmonotonic Reasoning, and the Closed-World Assump-
tiou™, Arlificial Intelligence 25 (1985), pp.23-67.

[2] Chang, C. L., and Lee, R. C, T., Symbolic logic and Mechanical Theorem Proving { Academic
I*ress, 10730,

(3] Cox, P. T. and Pictrzykowski, T., “Causes for Events: Their Computation and Applications™,
Proc. 8th Conf. on Automated Deduction, Lecture Notes in Computer Science 230, Springer- Verlag
(1986). pp.60S-621,

(4] de Kleer, J., “An Assumption based TMS", Artificial Intelligence 28 (1986), pp.127 162.
[5] de Kleer, J., “Extending the ATMS”, Artifieial Intelligence 28 (1986), pp.163-196.

[6] de Kleer, J., “A General Labeling Algorithm for Assumption-based Truth Maintenance”, Proc.
AAAL-58 (1988), pp.188-192.

[7] de Kleer, J., Propositional Inference in CSP and ATMS Technigues, SSL Paper P89-00023, Xerox
Palo Alto Research Center, 1989,

[8] Dressler, O, “An Extended Basic ATMS”, Proc. 2nd Int’ Workshop on Non-Monotonic Reason-
g, Lecture Notes in Artificial Intelligence 346, Springer-Verlag (1989), pp.143-163.

[9] Finger, I. J., Ezploiting Constraints in Design Synthesis, Department of Computer Science, STAN-
(CS-88-1204, Stanford University, 1987,

[10] Ginsberg, M. L., “A Circumscriptive Theorem Prover”, Artificial Intelligence 39 {1989), pp.209-
2030,

..-.--12_

(11] Inoue, K., “Generalizing the ATMS: A Model-based Approach (Preliminary Report)”, IPST 516G
Reports, SIG Al 63-3, pp.21-28, Information Processing Society of Japan, March 1989.

[12] Inoue, K., Procedural Inierpretation for an Ertended ATMS, 1001 Technical Report TR-347,
ICOT, March 1980,

[13] Inoue, K. and Helft, N., “On Theorem Provers for Circumseription”, Proc. CSCSI-90, Ottawa
{May 1990), pp.212-219.

[14] Kean, A. and Tsiknis, G., An Incremental Method for Generating Prime Implicants/Implicates,
Technical Report 88-16, Department of Computer Secience. The University of British Columbia,
1083,

[15] Kowalski, R. A. and Kuhner, D. G., “Linear Resolution with Selection Function”, Artificial Intel-
ligenee 2 (1971}, pp.227-260.

[16] Levesque, H. I., “A Knowledge-level Account of Abduction (preliminary version)”, Proc. INCAI-89
(1989), pp.1061-1067.

[17] Loveland, D., Automated Theorem Proving: A Logical Busis, (North-Holland, 1978).

|18] Minicozzi, E. and Reiter, R., “A Note on Linear Resolution Strategies in Consequence-Finding”,
Artificial Intelligence 3 (1972), pp. 175 130,

[19] Poole, D., “A Logical Framework for Default Reasoning”. Artificial Intelligence 36 (1988), pp.27-
17,

[20] Pople, H. E.. “On the Mechanization of Abductive Logic”, Proc. WICAT- TV (1973), pp 147-152.

|21] Przymusinski, T. ., “An Algorithm to Compute Circumscriplion”, Artificial Intelligenec 38
(1989), pp.49 73.

|22| Reiter, R. and de Kleer, J., “Foundations of Assumption-based Truth Maintenance Systems: Pre-
liminary Repaort”, Proc. AAALST (1987), pp.183 188,

[23] Shostak, R., “Refutation Graphs”, Artificial Intelligence 7 (1476). pp.51-64.

[24] Siegel, .. Représentation et Utilisation de da Connaissance en Culeul Propositionnel, PhDD thesis,
University of Aix-Marseille T1, 1987,

[25] Slagle, J. R, Chang, C. L., and Lee, R. C. T., “Compleleness Theorems [or Semantic Resolution
in Consequence Finding”, Proc. LJCAI-69 (19G9), pp.281-285.

[26] Tison, P., “Generalized Consensus Theory and Application to the Minimization of Boulean Func-
tions”, JEEE transactions on clectronic computers 16 (1967), pp.446-456.

13

A Appendix: Proofs of Theorems
The next proposition is used to prove Theorem 2.5.

Proposition A.1 Newcare(S, F.P) = pu[Thp(YCU{F}) -~ The(E)].

Proof: Let 4 = Thp(Y¥ U {F}) and B = Thp(EZ). Notice that B C A. We will prove that
A - Bl = pA - pul.

Let ¢ € p[A — B]. Then obviously ¢ € A — B and thus ¢ € 4. Now assume that ¢ & 1A, Then
3d € pA such that d C c. By the minimality of ¢ € A~ B, d € B. Since d C ¢, ¢ € I, contradiction.
Therefore ¢ € pA. Clearly, by ¢ & B, ¢ € uB. Hence, ¢ € pA — uB.

Conversely, assume that ¢ € pA — pB. Firstly we must prove that ¢ € 4 — B. Suppose to the
contrary that ¢ € B, Since e @ p#, dd € p 1 such that d C c. However,as B C A4, d & 4, eontradicting
the minimality of ¢ € A. Therefore, ¢ € A — B. Now assume that ¢ is not minimal in A — B, Then,
3¢ € A — B such that e C ¢, again contradicting the minimality of ¢ € 4. Hence, ¢ € plA—B). 0O

Theorem 2.5 Let © be a set of clauses, 4 C A%, ¢ a formula. The set of all minimal explanalions
of (7 from (£, A is = Neweare{E, ~G,P), where P = {=- 4},

Proof: Suppose that H is an explanation of & from (E, 4). By Definition 1.1, it is abserved that (1)
S } | G can be written as SU{-G} |= ~H, (2) the fact that SU{H} is satisfiable means % j£ = H
and (3) ~H is a clause all of whose literals belong to ~+ A. Thus =/ € [Thp(Z U {-G}) - The(E)]
Converscly, it can be easily shown that if ' € [Thp(ZU{~G}) - The(X)]. then - F is an explanation
of 7 from (¥, A). By Proposition A.1, H is a minimal explanation of ¢ from {£,A4) if and only if
=H € Newcare(E, -, P). O

Theorem 3.2 (1} Soundness: If a clause S is derived wsing an m.c.ls. deduction from £ + € and P,
then & helongs 1o The(Z U {C}).

(2) Completeness: If a clause T does not belong lo Thp(X), but belongs ta 7 hp(X 0 {C}), then there
is an m.c.ls, deduction of a clanse § from ¥ 4 C and P such that § subsumes 7.

Proof: The proof for the completeness can be seen as an extension of the result for Linear resolution
by Minicogei & Reiter [18]. And these results follow easily using the same method as in the proofs for
Siegel's procedure described in [24]. D

The next lemma is a direct consequence of Theorem 3.2, and is used for the proof of Theorem 3.4.

Lemma A.2 Let ' be a clause. Newcare(E,C, P} C Prod(E,C.P) C The(ZU {C}).

Proof: Let T' € Newecare(I,C,P). By Proposition A.l, T € p[Thp(X U {C}) - The(E)]. By
Theorem 3.2 (2), 35 € Prod(E,C,P) such that § C T. By the minimality of T, T = §. Hence,
Neweare(X,C,P) C Prod(E,C,P). By Theorem 3.2 (1), the second set-inclusion relationship easily
follows, O

14

Theorem 3.4 Let (' be a clause. Neweare(E,0,P) = Prod(E,0,P) = The(Z).

Proof: By Lemma A2, Neweare(E,C.P) C Prod(E,C,P). It remains to show that Pred(E,C,P)~
Neweare($,C, Py € Thp(EZ). Suppose to the contrary, for § & Prod{S,C,P) — The(¥). that § ¢
Neweare{S,C,P). Since § ¢ Thp(Z), 5 ¢ Carce{ Y, P). Hecause 5 € Prod(£,0,P), § € Thp(X U
{C'}) by Lemma A2, Since § is not minimal by the suppusition, 35" € Care{E U {C},P) such that
§ = §. Then, clearly 8’ § Thp(¥)as 5" C 5. Thus, 5" € Thp(B0{C})-Thp(Z). By Theorem 3.2 (2),
35" & Prod(E,C,T) such that 57" C 8" C 5. However, by Definition 3.3, Prod(E,C,P) is g-closed,
that is. does not contain any redundant clauses, contradiction. llence, 5 € Newcare(E,C,P). O

Theorem 3.5 Let G = (7 A+ A, be a CNF formula. Then

m
Neweare(L0, P = U Newcarel Z;,C5, P)]

=1

= plJ Prod(Z, C., P} | - The(X),
i=1
where ¥, =%, and Sy =%, u{(jlfori=1,....m - 1.
Proof: Notice that in the following proof, for sets, A, B, and C, such that C C H C A, A - =
(A= H)U{B = C) holds.
Newecarc 5,6, 77)

= pu|Thp(SuU{C,-- Cn}l— The(Z)] (by Proposition A1)

= [{(The(Em U {Ch 1= Thp(Sp)) U= U{Thp(Eu {y N=Thp(¥)}]

= [Thp(Sm U {C D= Thp (Sp) |0 - U [Thp(Z2) = The(E0)]]

= pl Neweare(Ep, U, PYU --- U Neweare(Z1,Cr, P) |

= uj U Neweare(%,, 0, P .

i=1
Now, by applying Theorem 3.4, we get the following equation, which can be used successively to prove
the last equality;
Newearel Tpp1, Ciar, P10 Neweare(Ey O, P
{ Prod(Yp U {Ci} . Cry1, P) — The(Ep i {C0})) U Prod(Ee, G, P) - The(Ze))
= (Prod(ZeU{Ce},Cri1,PIU Prod(Zy, Ce. P)) = { The{Zx U {C) = Prod(Z, Cr, P)
— (Thp(Si)— Prod(¥ U {Cx), Crans P)) — (Thip(Ei U {Ce}) 0 Thy(Es))
[PTOJ[E_&{-hck{.l;p] L P?’G{l{zk :kpj})
— (Thp(Si)— Prod(Lp U{Ck), Crey 1, P}) = The(Eg)
= { Prod(Zps1,Cri1, PYU Prod(Bg, Ce.P)) — The(Z4).

Hence, Newcare(S, G, P) = p[U, Prod(Z;,C,P)] - The(X). O

Theorem 3.6 ‘I'he characteristic clauses with respect to P can be generated incrementally:
Care(¢,P) = {pv-p|peAand pV-p belongs to P}, and
CardZU{CHP) u|Care(S,P)U Newcare(E,C,P)]
p|Care(Z,P)U Prod{E,C,P)] .

Proof: The first equation follows immediately lrom Definition 2.4 (1). Now,

CarelZ0{C],P) = uTheiZu{C})
= p[Thp(ZU{CHUThp(Z}]
= p{pThe(EU{CH U pThp(X)] (*)
= p[Care(E,P)UCare(E0 {C},P)]
= p|Care(EB,P)u(Carc(ZU {C},P) = Care(Z,P))]
= plCare(E,P)U Newcare(Z, C,P))
= p[Care(L.PYU{ Prod{X.C,P) — Thp(X))] (by Theorem 3.4)
= p|Carc(Z. Py Pred(X,C,P)].

Notice that at (+), for two sets, A and B, u[AU B | = p[pAUpB]| holds. D

Proposition 4.2 Let } be any formula. M5(E, F) = Neweare(Z,=F, P,).

Proof: A clause 5 is a support for F with respect to ©
& TESUF and TS
2 ZU{-FlE S and DS
o Se[ThiZu{=F}-ThrE.
Therefore, § € MS(Y. F1 & §C Neweare(E,-F,P,) (by Proposition A.1). O

The next lemma says that the set ¥ of clauses is logically equivalent to PI{E) in the sense that hath
sels can produce the same (new) characteristic clauses with respect to a production field P.

Lemma A3 For any stable production feld 72, NewearelE, O, P) = Newcare{ PI{E), 0, 7).
Preof: Iirstly, Care{ PI{E), P) = Care(Care(Z,7P:),(Lp }) = Care(Z, (L* 1 Lp) = Care(X, P).

Now, Carc(PIIE)ACHP) = p Thp(p Lhp (N)WHC)) = pThe(THEZW{CY) = Care(E0{C}. P).
The lemma follows immediately by Definition 2.4 (1). O

Proposition 4.5 Given PI{¥) and a cause O, PIH{EZ U {C}) can be [ound incrementally:

PI¢) = {pv-p|peAd}, and
PIZUACY) = p[PIHEI)U Prod{(Pi{y),C,P.)].

Praof: The proposition follows by setting P to P, in Theorem 3.6 and by using Theorem 3.4 and
Lemma A% O

Proposition 5.2 Let { ¥, A, ¥} he an ATMS. n € N a literal, and P ={~-A).

(1) Label consistency: for each E; € L{n, A, Z), £ U{E;} is satisfiable,

(2) Label soundness: for each E, € L(n, A,%), EU{E]} | n.

(3) Label completeness: for every conjunct E of assumptions in A, if 8 U{E} | n, then there
exists Ly € Lin, A,) such that E; is a sub-conjunct of E.

(4) Label minsmality: every E; € L{n,A,Y) is not a super-conjunct of any other element.

Proof: By Definition 5.1 and Theorem 2.5, E, € L(n, A, X} iz a minimal explanation of n from (I, 4).
Therefore, these four properties obviously hold by Definition 1.1. O

16

L

Proposition 5.4 If Skip & Check is used as Rule 5(a)i of an m.cls. deduction instead of the
original Skip rule, then Prod(E, (", P) = Neweare(E,C, F).

Proof: Because every clause helonging to Thp(Z U {C'}]) that is subsumed by some clause in
Care{Y, P} must be pruned in a deduction sequence, every clause produced from L + € is not a
super-clause of any clause in Care(E, P) and thus does not belong to The(Z). Hence, by Theorem 3.4,
the proposition foliows. O

Theorem 5.5 Let { N, 4, £) be an ATMS, n € N aliteral, and P = (- 4).
Neweare(S,-n. Py ={ "= {n}| P € PI{Z), n ¢ " and P—{n} belongs to P }.

Proof: (2 Let P e PI{%)such that n &€ P and P—{n} belongs to P. Then, since P—{n}c P,Z
P—{n}. Sincen ¢ Pand £ | P, Eu{-n} k& P—{n}. Therefore, P —{n} € Thp(Eu{-n}]-Thp(¥).
As P € PI{T) and w € P, for any clanse § ¢ P — {n}, T ¥ SuU {n}, and thus S U {-n} £ §
holds. This implies that P = {n} € Care(Z U {=n},P). and thus ' — {n} € Newcarc{Z,-n, P} {by
Proposition A.1)7,

(T} Let § € Neweare[E,-n,P). As SU{-n} | 5§, £ §U{n} holds. Suppose that IT € Th(Z)
such that T C 5 U {n) and that T — {n} belongs to P. Clearly, £ = T U {n}. Now for any clanse 5’
such that 8 ¢ &, since ¥ U {-n} £ §, L 5 U {n} holds. Therefore, § €7 C S5U{n}. Asnisa
literal, T = §. However, § ¢ Care(E, P}, contradiction. Hence, § U {n} € PI{Z). Replacing §U {n}
with P, we get the theorem. O

Lemma 5.7 CarelX,P*) = Care(2. PIU{SU{n}|neN—~-A and S Neweare(¥,-n,P) }.

Proof: Care(E,7*)can be divided into two disjoint sets of clauses: (1) containing no literal in N——d,
and () containing exactly one literal in N — =+ A, The former is exactly Care(L, 7). Assume Lhat
belongs to the latter set, and that n € € is a literal in N ~ ~A. Then, ' — {n} contains only literals in
-4 and thus belongs to P. We must show that C' = {n} € Care(XU{-n},F)}. Since C € Care(5, P},
% k= " and thus ZU {-n} | € — {n}. Suppose to the contrary that 35 € Thp(Z U {-n}) such
that § C ¢ = {n}. Then, S U{n} ¢ C and SU {n} ¢ Thp.(T) by the minimality of ' € Thp-(Z).
Since & ¥ SuU {n}, Du {-n} & §, contradiction. Therefore, C' = {n} € Care(E U {-n}, P). Since
(€ Care(T, P, abviously € — {n} & Care(Z, P) holds. Hence, the lemma. O

Theorem 5.8 lLet { N, 4, X} bean ATMS. ne N, P={=4), and P* be the same as in Definition 5.6.

[§—{n}|SeCare(2,P"),andne S} f neN-=-A

Neweare(E,-n,P) = { {S—{n}|SeCare(E,P),andne S} ifneNN-A

Proof: (2) Obvious from Theorem 5.5 and Lemma 5.7.

(C) Let T € Neweare(X,-n,P). By Theorem 5.5, TU {n} € PI(Z). (1)1fn € N — ~-A, then
T {n} belongs to P* because T belongs to P. Therefore, TU{n} € Care(E,P7). (2) I n € NNi~A,
then T U {n} belongs to P. Therefore, T U {n} &€ Care(X,P). O

Theorem 6.2 is in essence the same as {13, Theorem 4.2].

TMNote that in this direction n need not e a literal in N the relation holds for a clauge C: if P € PI(Z), © € P, and
P—(belongs ta P, then ~{ P—C} is a minimal explanation of C from (I, A). This result corresponds to a generalization
of [22, Theorem 3} for a general 7.

Theorem 6.2 If a clause T is derived by an m.cls. deduction from T 4 ¢ and P, then there is a
deduction with the Skip & Cut rule of a clause § from © 4 and P such that Tu {8} &= T.

Proof: Let Dy, I4,---, 0, be an m.cl.s. deduction of T from £ 4+ ¢ and P. Let {; be the first literal
of ¢J;, where I; = (I, @i} and 0 <1 < n = 1. Firstly, if Skip is applicd for every L {(0<j < n— 1)
such that {; € Ly, then T is actually derived from £ + " and T by nsing the Skip & Cut rule, and
of course LU {T} = T holds,

Next, suppose that 403, in the m.cls. deduction such that [; £ Lp but that Resolve is applied
upon [, in ¢J; with a clanse B; € ¥, Let m (1 < m < n) be the number of such clanses, and Dy, be such
a clause where k (0 < &k < n — 1) is the largest nuwmber. In this case, Dy = (Peyg, 0;1), where
Fryr = Peoand Reyy = (B = {-L)0 (Qr — {l}). In the following proof, to simplify the discussion,
we assume Lhat there are no identical, truncated, or reduced literals in Hy, ; if they exist, then we can
modify the proof appropriately. Now, let I/ be a clause m.c.Ls. derived from E 4+ (B — {=i;}) and P,
Voa clawse mocls, derived from Z 4 (Qg — {Ig}) and P. Here, we can choose such U/ and V to satisfy
= ol UV, because T is m.c.ls. derived from £ + (Pryy U Beyy) and P

Now assume that instead of applying Resolve, Skip & Cut is applied to Dy, deducing Diyy =
(P Q::H 1y where P, = PeU{lg} and B, = Gr — {lc}. Then, Pou {lp} UV is meels. derived
from B+ (P, UR) and P, and thus from Z+C and P. Since SU{L} F By — {-L L Eu{l} = U
holds, aud thus &0 {(F U {L}uVi} T holds.

Nowlet Ty = T and Ty = (F U{l; }UV). In the similar way, we can find an m.c.ls. deduction of T;
from X+ ¢ and P such that £ 0 {T;} = Ty, by resetting k to the second largest number. By using the
hottom-up manner, we can successively find clauses T; (1 < j < m) m.c.ls. derived from ¥ 4 and P
such that LU {T;} &= T;-1. Therefore, EU {Th} = Toac1y, EU Tl E Tezy -+ EU{H} E Tp.
Hence, TU{T,} & Ty, and we get the theorem. O

