ICOT Technical Report: TR-581

Th-541

Designing a Concurrent Programming Language

by
K. Uedu

.-11|gu’-1[. DL

a 1990, 1o

Mita Kokuesar Bldg. 21F (03)3456-319] ~5

I[:D I 4-2% Mita 1-Chome Telex ICOT 132964

Minato-ku Tokyo 1OS Japan

Institute for New Generation Computer Technology

[To be presented at Infolapan’db, Tokyo, October 19%0)

Designing a Concurrent Programming Language

Ivazunorn Ueda

lustizute for New Generation Computer Technology
4-28, Mita 1-chome, Minato-ku, Tokyo 108 Japau

Abstract

This paper reviews the design and the evolution of a concurrent programming language
Guarded Horn Clauses (GHO) GO was born from a study of parallelizm in logie pro-
gramming, but turned out Lo be a sgnple and Besible concorrent programming language
with o pummber of nice properties. We give hoth an abstract view of GHO computation
based the notion of transactions and a concrete view, namely an operstional sepanlics,
based on reductions. Alse, we discoss in detad Lthe properties of GHC such as its atomic
operat ions, which have much te do wieh the design of GIIC,

1. Imtroduction

It seeins that many people still regard concurrent pros
gramming as something special and difficult to learn.
Indeed, concustenl progranmiing sy bhave inlierent
difficulties nob in sequential prograrwuing, but the
sitation could be inproved by developing hetter for-
mialsins and programiming languages. Many coucur-
reat languages designed so far wers Luwll by adding
a muher of speeial constracts to existing sequential
Tanguages, adding cortain complexity as well. 5o it
5 worth trying to build A concurrent language in a
totully different way.

Canaradend Horn Clanses {ablhreviated e GHC Y 12T
122] was designed 1w be a siuple concarrent program-
ming language with a very small number of primitive
copslrncis. As ata name suppests, GHC horrawed a
lot of conceptz from (ordinary) fogle programming,
which, togethor with the coneept of a guard, were tai-
leed into a concurrent language. Ilence it is usually
called o concurren! logic programmng language

The simplest account of GHO = the slogan:

GHC = Horn clauses + Guarids.

Thiz ecan be correlated with another slogan by
K owalzki [3]:

Algorithm = Logie 4+ Conteol.

Actually, the logieal reading of a program expresses
15 statie aspects, namely the relationship between in
prul sl trik ik wiloema i, aml the I‘J’IIHH‘IS are used

-1 -

for expressing dynamic aspects or control, namely the
causality between pieces of input and output wfor-
mation. Ul coveelation thus sngrests that GHO s a
language [or describing concurrent algorithms

I logee programmng, the execucion result of o
y,n:-d RS R TS [JFROE AT F lias fwo aspechs,
nanely
{1} the unsatistiability of 2 U {-0} (returned as a

ves /no answer), and
{111 substitutions that make O5 logical consequences of

H,

From a programimuing language potnl ol view, however,
e interes) s i the second aspect [9],

GHC as a concurrent langouage mlly exploits the
second aspect of eomputing substitutions, A build:
ing, block of a GHO program, called o process, Is an
entity that ohserves and generates substitavions. Tar
instance, a process Tactorial(X,¥} will generate a
substitution {¥=120] when it abserves a substitution
{X =5}, Unlike ordinary logie programs, GHC pro-
prans specily the dicection of computation, That is,
GHO programs inpose partial causal order on substi-
tutions observed and generated by processes. This is
done by restricting datallow caused by unificalion, as
will be described in Section 3.

2, Processes in GHOC

GHC is a reactive (as opposed to translormationa)
languuge. In reactive languages, we are interested
in the communication between a program and the

rest of the world performed i the course of computa-
tion, rather than the linal result of compulation that
is the primaey coneern in transformational languages
{the mest typical of which are functional languages).
Another interesting charseterication of reactive or m-
feractive programs is that the inpuf to a program can
degprend on the ourpar from the progeam. This prop-
Criy can b mimtcked 1o lunctional larlguagﬁ with
I:w_!. evaleation. bt GO allows us to descriles vari-
os [orms of comunnnteation more paturally.

CiHA 15 an asvochronous reactive language. Dach
prece of communication cogaged 0 by a process s
cither fromn the process to the rest of the world or
the other way around, and the sender of mforma-
Vo is newver Blocked by the receiver. A history of
I"li.l‘t|'||II'.JIIi.'.'FI|Iﬁll'l I)E"l WEEN I roness -il.f;ltl !hF‘ Teat l:rt- H'IE"
wirrld can be divided inte fransaciions, eacli trans-
action being an art of providing the process with a
possibly empty eput swbsfitetion and getling an ob-
servable, non-rmpty oafput swbsfifufion.
Can 513 Pllli'lnl:n' ’fl-l'l""H!]:‘H" FN AT s [Elp b f A H Y
Ul omtput shomld be ohsepy-

The input

0t Feguiire any iplet.
ale Because that s wsually what the oulside world
is waling for. A process i considersd erroneous i
it Paids to generate any cutput substitution when the
et siele world HEprerls i

Faerbi travsae baon s quite spelar Lo the whole come-
puwlation of a transformational program. The differ-
enee 15 that the input frem the solside world may
epreend v thes ol puts of provioos Leansactions. Thig
sugpests that the behavior of a process can he for-
mmlbnted as o sequenee of lransactions, which s an
cxternal, ahstract view of o process moour selbing,
Note that the above view of a process becomes very
siivilar b bl view of Theoretical CSP (TCSP) [7], a
synchironous model of concurreney, by regarding each
Lravsnckion rs & single event,

As we have seen, GHO uses substilufions (sets
ol bindings Beiween variables and their values) to
model eformation communicated between processes.
Subatitutions are generated by umification and ob-
served wsing matching (Section 3.1}, a restricled lorm
of unification. A mee thing s that these notions have
a logical as well as an algebraic characterization, as
peanted ot by Maher [Ii]? ol stbwelivel extensively by
Saraswar 1G] A substitution can be viewed as an
eeuialily constraint on the possible values of vanables.
A {hinding) environment, which = the praduct of all
the substitutions generated so far, can be viewsd as
the multiacl (interpreted as the conjunction) of the
constramts corresponding to the substitutions, In
the GHC context, umfication can be viewed as the
‘Jr?hh-l'.'-lf.l‘“]l Hr il I"Ull.‘_il-ll,lij:l.l. il[l.l:_l-. lhl,"' l.'._"urﬂ-_'[l.l Hn'.'irrm
ment, an! matching can be viewed as the checking
of whether the eureent envivomment imnplies a given

constrainl. under the equalty theory of GHC. GGHO
adopts Clark’s equality theory [2] that models syntac-
tic cqualily over finile dernms. We could adopl equal-
ity theories other than Clark’s without changing the
egsence of the language [168]. Morcover, we could al-
boow comstramts other than conjunctions of equalities.
However, the current choice has the advantage that
the generation and the observation of constraints can
b easily computed

3. GHC

How can we define the intended behavior of 8 process?
The basic idea s to deseribe it in terims of ather [rro-
cesses, This is attractive since the behavior can then
b realized by the reduction of processes.

There are two possible styles for the descripiion:
Chie 15 1o use process constructors [11], namely oper-
Aliers wp priocesscs, Lo COmpOosc A o {"3]’]1[111.‘}: pro-
cess cxpression from simpler ones. The other stvle s
to use rewrite rules of processes as in term rewriting
systems. GHO Dhas taken the rewrite-rule approach
following the tradition of legic programming, though
this chotee 15 for historical reasons and is not essen-
vl Soraswal [16] shows how concurrent logic pro-
gramuing can be reformlated using the construeror
approach

3.1 Syntax of GHC

Mow fet us introduce GIIC, GINC has borrowed many
moticnes from logie and logie programming, which en-
ables a terse introdoction of the language. We assume
here that the fallowing notions are defined as usual [4]:
variables, Tunelion] symbaolls, constants {re-
garded as Oary functions). predicatel sym
baaaljer . Leerrnes, otonuf e formula)s, substtutions,
renaming, unification.
We say that a term £ matches a term {3 if there is a
substilulion such that {# = {4, (‘=" denoting syntactic
equality). Matching is called wwe-woy wntfication also.
A program s a set ol guarded clauses. A guarded
rlenge 8 of the fonm

h:=0 0,

whoere & 1z an atom, and 7 and A are nultisets of
atoms. h is calied the kead of the clanss; atoms in 0
are called guard goels: and atoms in B are calted body
goeals. The part hefore thi commaluen! aperalor ']
i5 called Lthe guard, and the parr after ©| " is called the
body

A rlavuse with an eply Body ds colled a weat
The set of all clauses in a program whose
beads have the predicate symbol pis called the proce-
dure for po A goal with the predicate syinbol p s sad
to call p.

clanxe,

Informally, each guarded clause s a conditional
rewrite ritle of goals, whers
e fi 12 the template that should match a goal (say
i) L b pewrittem,
& (7 0= the asvihary condition for the rewriting {(7
minsl b execnted withoul imstantiating g), and
o [1 i the nuitisel of {sublgoals to replace g
That a program 15 a sct weans that the duplica
tion {up Ll renaning of variables) of guarded clauses
i= msigmificant, not to mention their orderiog. On the
other hand, (7 and B are muplissets becanse two syn-
tactically ideotical goals nay belave differently due
tor j:]dn—*h-l_’rulum‘}'.
T et progran. we use a goal clause of the foem

=0

which sperifies the initial multiset of body goals,

A poal s either a unification goal of the Foro gy =14
oF a non-unilieation geal A unification goal, whose
behavior ia predetined in the language, may gener-
ate a sulstitution and constrain the possible valies
il rnrj;_l,lllr'-- A |||rh-ll|'|i|"il.’&l.iﬁ1‘l ;I'l:':'ElJ i:‘.- I‘t"-'r'l‘illﬂﬂ [EE]
ather goals using guarded clanses, possibly afrer ob-
serving a substiltution. The guard ol a guarded clanse
speifivs what snhstitntion should be observed before
rewriting. and provides the language with a synchiro-
nizatiow e chanisn

3.2 Tlat GHC

J'he shiowe definition of GIIC allows any atom to oceur
as o guard goal. However, this proved Lo be upnee
essurily exprossive as o comcorrent language (Section
). which miotivated us to move Lo a subset of GHC
called Flat &HC

Sinee guard goals are used as conditions, we first
deline o class of predicates, called test predicates, that
are approprate lor the purpose, A predicate pois
calied o fest predicate o the procedure for pois de-
[]|||:'|;|_ II_'.' aset af and I.'IFI.I'I.‘\."'!‘E-. f-'a]he b a test predicatn
have a property that they do not generals abservable
substitutions: the oniy Lhing thal matiers is whethar
they sucoend or nok.

A Tlat IO program s & set of flal guarded
clanses, clauses o wiich goard goals are restricted
Lo unilication goals amd calls @0 fest predicates,

3.3 Operational Semantics of Flat GHC

Neaw we formalize the operational zemanties of Flal
GIC. We follow the stroctural approach of Plotkin
[14], which 15 now & standard way of describing opera-
tiomal semantics formally, The structural operational
semanticas of full GHC s found in [15]

o V(o0 f(X, . Km) =gl T.-;H:I, for all pairs
F. g of distinet functions {including constants).
e ¥ (=(t=X)}. for each term {1 other than and con-

batming X

e V.(X=X}.

o W (f0 . Rd = f(Y Y] D NS (K=Y,
for each tunction f.

Im}=f["fi--- 1T1‘Ji]]|
for each funetion f.

e 7 (X=Y¥ D Y=X]

® ¥ (X=YAY=Z D X=Z]

Figure 1. Clark's cquality theory £

Tet i be a multiset of goals. and ¢ a nwltiset of
equations that represents a {binding) environment of
B. The current configuration is a pair {1, ('Y, which
records the goals to be reduced and the eurrent envi
ropment. A computation stacts with the mitial con-
figuration (A, 0). where Dy is the body of the given
gral clanse.

What we are going bo define is o transition rela-
ton o cea, which veads “the configuration ¢ can
e reduced 1o the configuration ¢ When we neeid Lo
explioitly mention Lhe progeam P being used, we use
Ll Torm P F ey = e, which reads “under the pro-
gram I, ¢1 can be reduced to co.” By -« wo denote
the reflesive, Leansitive clisore of —, The natural
dledurtion farm

PiF
Pa b 1a

says that if the transition 17 can happen under Py
and the condition Cosd holds, the transition s can
happen under /. The numerator and the condition
are onutted 1f they are coaply

We liave three rales, In the following rules, F | &
means thal (7 is a logical consequence of F, and Ve
means the el of all variables ocewrring in £ ¥¥p P
aned AVE _ §7 are abbreviated to V. Fand 3. F, respec-
tively. Also, following []3], we denote (VR V)T by
SV 0 where Vs o finite set of variables. We assume
that there is an injection, denoted * =7, frown the set
of predicates to the set of functions, which is natu
rally extended 10 an injection from the set of atoms
Lo the set of terms. & denotes Clark's equalivy theory
(Figure 1].

(if Tand)

P (8,00 — (B 07
b (Hy U B, C) — (B} U Ba, C])

(1]

PE{(B=T UG, Cy =B Cuc,)
Gl BOUPE (0O — (B Cu r:',,,}
TEEY(C D8V .C)
(emd Vil paiVeo=#

|:I’!-,‘ H

) G

P fl=ta, O — (B0 U =t5) {iii)
Rule (1) expresses concurrent reduction of a mul-
tiset of goals. Hule (i) says that a genl b can be
redueed us-_:in;‘."I n J:rLu.'Lr_ﬂH] clause ;o= | B;7 il Lhe
beadd wnification b=fi; and the gnard goals (3 can be
reduced ot without affecting the variables in & This
means that the head onificalion is restricted w mateh-
ing effectively. The condition Vi, g.p, 0O ¥e = @
puaraniecs that the guarded clause has been renamed
wsing fresh o variables. Ruole (30) says that o anificalion
goal publishes (or posts] a constraint 1o the current,
SUviFonment.,

3.1 ltl.t.l'.riu:l.ing wilth a Flat GHC Process

How does the above trapsition relation eelate Lo
our external view of & process stated i Section 27
Houglly speaking, & moloset of goals unplements a
proweess. andl a sequence of reductions realizes a trans-
action. Recall that a transaction s an act by an oh-
gerver process of providing an observee process with a
possibly copty mput substitution and getting an ob-
servihde (and henee nomscmpty) output substisution.
L the follosving, we consider in more detail how a
transachion s reahzed by reductions,

Consider the anital configuration I::F 1! f},li'J:I.
1-".i|l'fl:' 1|||' I.ilrl.'”.""hh O ih' i'l.?iﬁ-lll'lll"ll Lo i.lll' UI'E&"I\'IIH?.: Lhi:"
process Poand assumie the transition {700 @) —
(1MUY 07 has been made so far. Then each element
ol €7 = either the one posted by O or the one posted
bro # (oote that CF b= o mwitiser b Led f'::. e thies et
of consteaints posted by O (including the constraints
on doend variables generated during the execution of
guards) (7%, is regarded as the current knowledge of
O O B defined simularly. Henceforth, to denote
(PO O U C), we use o more modular notation
P 0 (O Ch s also, we use abbreviations such
ag oy LIfrg —— -:"_,] which means ¢) U es — 0y LJrfi.

Now assuime
(1) o poesildy crply) transibion by the observer

(PLCRY U0 Ch) = (07 Ua)
is made without reference to O (i, the transi-
tiom must be such that it can be made withooe
(P i) where £ = 3, Ua) (e, O knowl-
eelge is sl consistens), and then
a (pessibly empty) transition by the abserves

(P Cp)y —— (P CE {07 Ol g
s made (possibly with referenee to O Wea), and
then
(i) o fnon-emply | bransibicn by the observer

(P.r.l. [-ﬁF::I U :’{{jnl (...E'.I U{!‘} .
(O ChUaud) —
(O ColdawU g U,

(i}

)

!

is made, where 3 e Sy -4, 1= such that

ia) for each 3 posted from a clause body, £
ViCHUaUd U-—-Ud 1 DV (ChUal
gy - U) (e,
not posted from clanse hodies) and

kY £ L:ﬁ "i".{{wa ey O &V .{r‘;;,, Llew L) .'J”]}I {1, @
new constraint ig ohserved).

rHJIJ-lI.'Il'El.l conslramis are

Ther, we say thal € has engaged in a {normal) trans
action (i, 3 with P, The above transitions need not
happen strictly i that order; the point a3 1hat o 8
j'in-ii He:-]ulnﬂud with l'r"'ﬁ-n"nl"l' try -Ir-"'.':J I.'ll1|_‘n'. -'mrl |.|'|1"'r| N
15 generated without constrawming non-loeal variables,
The reductions of P ocan be interleaved with these
vwar phinses. Note that foblowing this transaction,
may engage in the next transaction with P,

As well as normal transacrions, we mnst be able to
model varions abnormal phenomena, Tlos 1= hecanse
we want Lo distinguish belween a process thal always
bHI'lEl.\-'E'h IlUlrIlHlI_}' HIHI ol IM’H"!‘-!:‘L ||l-ﬂ[r.|!|]:.' ﬁl.lllll‘.-'[ill]l'-."l-i
hehaves normally. First, the chservee may post a con-
sirmint inconsistom with the existing ones: or i alge-
braie terms, a unification body goal neay farl, In that
event, any constraint and 1t: pegation becoanes ohb-
Ei-l;:‘["-"{l.l'l-lr_‘l EHHJ. I‘I'UIII ll:]l']l i 1‘:'1"|I EUFI.' ii] l-illi_‘ uh.\;r'r»‘r::
can and cannot be reduced using any o i a
word, the observee has fallen mto chaos, s totally un-
pr\r'dlic'r.slhh' condition. Tnterestingly, cliaos i GHO s
very similar to chaes in TOSE introdiead in order 1o
madel a totally undefined indeterminate process,

Secomd, the observes may fail 1o gencrate an ob-
gorvable ontput constraint b response Loa given mput
constraint for various reasons. which is called fac i
iy, The reason will be one of the following:

(1] the observee has been redurced out {Le., succeeds)
with no observabic outpog,

the observes has been reduced, with no observalle
output, to a maltiset of goals that docs nov allow
further reduction in the current environment,

ALEE

(2)

i(3) the observee has Tallen inte infinite computation.
We call the first suecess, the second deadlock. and
the third divergence [23] O these, divergence con-
sumes unhounded somputation resource beyvond the
abzerver’s control, while suceess and deadlock do not
Unless the scheduling of goals s Tair, a divergent
process may monopolize the computational resoures,
blocking the execution of other processes ronning con-
currently. Hence divergence 15 warse than, and should
be distingwshed [rony, non-divergent inactivity, Tt
i omatbematically aftraclive to regard divergence as
chaos, as in TSI, This treatiment equates the two
apparently different but most undesirable plenomnena
in Flaw GHC, divergence and the failure of unification.

Surceess and deadloek cannot he distingnished by
chservable output constraints, However, sometines

il 15 useful to treat them separately. The observer
of a process usually gives an inputl constraint to ohs-
aerve an outpnt constraint. but may sometimes do so
to terninate the observer. Then, =uccess s pob an
al:ormal phencmenon any more, and should be dis-
tinguished from deadlock. Thus the abstract view of
a process depends on what phenomess: the observer
15 interested in,

Mote that a pormal traggaction is of a finite na-
ture: it records the observation of finite outpul in-
farmation made in fioile time. A meaningful Flat
(G proeess can be non-terminating and can engage
in an intinite number of transactions, bat it should
b mon-divergent and controllable in the sense that it
shonld nat ron indefinitely without observing an infi-
pite nibeer of pon-empty inpul conslraints.

W i_ul[.”’.)f:ﬂ-'{i the resteictiom that inpot constrainis
shoneld he comsistent with the abserver’'s knowledge,
hecatse otherwise the abzerver ilsell would go chaotie,
Or assumption = that the observer msst be well
Behave], while 10 i unreasonable to assume anvihing
about the abserver, An observer 1= said to be faofhful
if i1 eventually obaerves some of the ohservable output
constraints generated by the observee,

Sowowe claim that o Flat GHO process as ad-
||,'|I,|;1_:|4_'|_n. chin |'.j.1'11-_-|‘iz1"1| |.|:.. the g6t of all PﬂSSiblE‘ se-
gquetiees of transactions made by all possible [aithn!
abaervers. This view of processes gives a sufficient]y
wel, bt stidl reasonable, equivalence relation for
processes, whicl abstracts away the notion of reduc-
Pions, Whelbier ilinite sequences shonld be incladed
ot are approximaled by sets of finite sequences de-
pends o whether fatrness s considersd or not. (hur
cursenl pusition is to say nothing about fairness in the
defintion of the language, However, the notion of the
knowledge of a process we have given ahove can be
used Lo chisenss whether information sent by a sender
process js eventualiy delivered to a receiver or not

4. Some Mroperties of Flat GHC

4.1 Atoanie Clperations

Ome of the motivations Whal lead ns to design
GHO was the examination of atomic operations in
Concurrent Profog [19]. Conenrrent Prolog (including
its affzprings) and the loguage cof |, —) [16] have the
netiom of afemee publicefion, in which the publication
of a constraint by a process s done upon reduction
and only when it does nob cause inconaistency, Atoric
publication may have o “test-and-set’ a pumber of
variables at the same time, whicl can be eostly inoa
digheibuled fmplementation. In GIIC and PARLOG
[4]. e the other hand, the publication of a constraint
iz separated from the reduction of o aon wnification

=1

goal and is done by an independent wnification goal.
‘Ihis alternative, called eventual publication, 15 advan-
tageous for implementation, though some program-
ming techniques can be used only in atomic publica-
tion languages, luterestingly, our cholee of evenlual
publication recently lead to the idea of the message-
arenied schedulng of goals [25], a scheduling that
conteasts sharply with the ordinary one.

Muoreover, GHC enjovs anti-substitutivity [21], a
property which allows the delay of interprocess come
munication hetween bwo occnrrences of a shared vari-
alile. Anti-snbstitutivity allows bwo oceurrences of the
samie variable o have oven inconsistenl. values, (Such
a varialle i referred Lo as a non-atomic vanable in
[20].) Fortunately, Maher's logieal characterization of
the communication mechanism of GHC-ike languages
[10] later assured that anti-substibutivity is quite a
natural notion.

1.2 Binding Eovironments

In GIHC' . constraints obtained by executing Lhe guards
Tlis roeats
Lhat a single inding envirenment 1 suthicient for man-
aging the values of variables. while in OR parallel
P'rolog and full Concurrent Prolog, multiple environ-
menls necid e be osintained.

The binding eovironment of GHC s ot onde,
the pulilicanion of a new consteaint does not invalidate
any provious observations done by clause guards, In
otdier words, 1 a clause € can reduce a goal g in sone:
envirenment, it can reduce g inoan emviromment with
more constraints. Thanks Lo this property, GHE can
allow eventual publication aid woli substibutivity.

of elanacs cannol allect the calier side,

4.3 Treatment of Failure

The original defimition af GHC did not state much
about Tailure. In Prolog, a goal is considered to
Liave Tailed if no clause can resolve it and many
other coneurrent logic languages [ullowed this tradi-
tion. However, we lid felt that this was inappropriate
for GIIC, GO separated unification from redwetion,
201t iz quite reasonable to distingnish between the fail-
ure of reduction and the failure of unification which
have guite different behavioral conscyguences.

It i& worlh noling that the transition relation of
Flat GH does not rely on any notion of failure, Many
other concurrent logle languages and Prolog allow us
1o write a clavse that is tried only when all the pre-
ceding clauses (assuming a progeam is a scquence of
clauses) turn out to be inapplicalile forever. However,
it is nol so easy bo eoreectly check if a clanse cannot
reduce a given goal {orever, First, the check requires
that guard goals and hewd wnification be executed

concurrently in general. Second. kewd unification be-
comnes more difficult because we must detect that the
head pla,b) cannot umify with the goal p(X,2) or
pl{%.X) forover. Flal GHO on the other hand. al-
lows a cluuse guard o he executed sequentially in a
pre-determined order; the malching of pla,b) with
plA,e) can be left suspemded at the ficst arpgument,
Altheugh a Flat GHO progratn represents mamnmm
sequentiality, the only places that require concurrent
execution are bebween hody goals reduced from the
top-level goals and hetween guarded clauses trying to
peduee o goal.

Failure of a nnification hody goal in GHC is an
exceptional situation which is essentially the same
as division-hy-gero in any programming language,
Comsider the constraint X = B/0 over real numbers,
This is equivalent to E*0 = &, namely 0 = &, whose
publication would cause inconsistency. How to hano
dle such an exeepiion s discnszed tn Section 6.

S, Advantages of Flat GHC as o Coneurrent
Languape

Now let us surnarize advantages of Flar GHO as a
cogenrrent langunge
(11 A process s defined using other processes, unlike
niEny conenrrent langoages in which processes are
aelined using ieration. This s consistent with Lhe
uge of streams, which are a recursive data strue-
ture. for interproccss communicsation,
(4 A we have sven, Che mooolone prosperty of hind-
g environments realizes a natural synchroniza-
tion meshanism of waiting until suffielent infor-
mation i ahserved.
{31 The mechanism for interprocess communication
ioeapressive cnough o naturally desecibe data-
driven and demand driven computation and dy-
namically evolving process structares. TCS[* and
S (L] allowed recursive definitions ol processes,
hat could not deal with dynamically evalving pro-
ress structiores hecause they lacked the ability 1o
create pnd poss new cotnmunication chanoels. Tt
i5 only recently that (05 was extended to deal
with rvalving praress structures [12]
A sequence of messages {16, & stream) is repre
sented using an explicit data structure, namely a
st P'his 13 unlike most languages, in which mes-
-'iiIE‘f" SRETTI LIS et ;IIIlI.PIJI Ei.L |"1n.|'ll| A sl '.TF dl"'-dil‘atl:"‘i
operations 15 provided for them. GHOC uses op-
erations ke Lisp's ear and cons for inlecprocess
comnnnenicataon. Nee specific commimication pros
toenls {eg., FIFO communication using streams)
are butl-in because they are programmalile,
GIIC allows various views. It can be viewed as
a process description language, a datallow lan-
gnage, aml @ comenrrent assembly language. It

(R

ean he viewed also as a logic programming lan-
guage in the sense that the result of a compu-
tation allows declarative interpretation. A GHO
program is hetter amenahle to declarative read-
g than Prolog programs with extralogical oper-
ations such as [/

fi. FEvolution of GITC

GHC was born st the very end of 1054 [rom elose
e atnination ol para.”wii.‘-‘.ln 11 |ng'1|r prugramming, the
direct trigger being the study of the atomic opera-
Liesns oo Lhe binding environment mechanism of (full)
Ceomevrrent Prolag, No oessential change has been
made sinee then, bl the proposed language has heen
studied Trom various aspecis

e good resull of the study is that now we un-
derstand the languags much betler than when it was
Lsrry, wlhich mesns that the langunge is mwee rolost
thian before, The study of atomic operations, of un-
usual heliavior such as faillure, and of relationship with
|.||.ill."r J.I'IEJ.I']JIJIHUHE_'.F""". corneurrenl I:'II!.I:'.LJ ilEL‘EF a.nd]Ill',ld-
el of convurrency helped explain the language hetter,
The stady of formal semantics of concurrent logie lan-
gnages by wany people (eg |3, 110, [13], {16]) alsn
biebpeed e understanding,

6.1 Subscliing

Anather importane result is the identfication of sub-
sels which can be more olliciently implemented but
are still nscfal,

Full GHC allewsd any atom to occwr &5 & guard
gnal, trving to retam the expressive power of full
Concurrent. Prolog as much as possible. However,
Lhen, o unification body goal may have Lo be suos-
pended when it iz execnted as asnlgoal of some goard
gorl. More importantly, our programming expert-
enee showed that guord goals are wsed only [or the
simple testing of conditions. Sinee guard goals are
given himited commumention capability, they are not
very powerlul anyway. We bnd beeo anwilling to -
plement the guard mechanism of full GIC for these
reascns, and linally decided o allow only predefined
predicates to be called from a guard. This was our
first approximation to Flat GHO, which was clearly
mflucneed by ihe subsciling of Concurrent Prolog o
Flat Concurrent Prolog [14].

Howsver, the above-mentioned way of subsetting
wis ot qpnite satisfactory for a rather idealized pro
rramnting language like GIIC, because i depends on
Lhee arbatrary choice of predefined predicates, We feli
that it would be mmch hetter to state what properties
are sufficient for a predicate to be ealled a test predi-
cate. The defintion of Flat GHC w Section 3.2 s one
salution.

Fiatness as defined in Section 3.2 puarantess Lhat
ni body goals are spawned by the execution of a
suarnd. All the synchronization conditions of unifi-
caticn can then be arabyeed statically and withouot
global gnalysis. Flat GHC does, however, allow nested
guard goals, Calls 1o test predicates in Flat GHC
have o desirable property that they are determimstic,
he corrent environment uniguely determines
whether the calls 2ucceed ol or nat.

Onee we have defined within the framework of
GRS whal are test predicales. an actual implemen-
tation of Flar GHC could reasonably resirel goard
aoals 1o ealls Lo predefined predicates. A wonderful
discewery of the langnage O [was that guard goals
an [Fhar) GHEO are not essential and can be disallowed
1]||'11I'|\-'il“:'1||_'.

A prablem with Flat GLHC is that s left to pro-
gramiiners 1o gaarantes that the binding environment
Fiewi'r I'H'L'i'l“ll!'H er'I.WI‘-U":'i'”l.] |'il"'l.'}g|'ﬂ|'ll gl'H'H |‘i1r"u'rli:‘
anee e hiding environment. becomes incongistent.,
O romirse. 11 st desicable thiol such insceurity be
detertad al compile time.

ihal is,

b meain reascm for the isecnrity s that two or
Hiore procesics sharing o variable may by o instan-
Prake it non-conperativiey, Do l]] and lanus [ITJ mn-
trocliesd annotations [attached ta accurrences of vaei-
abli) o syitaetically guarantee Lhat anby one process
can imstantiate a variable, On the other hand, Veda
and Morita [23] showed that simple mode anajyvsis can
b wsend Lo guarantee the same property. The mode
avatem provides a unified framework for mode decla-
ration {of which annotation 15 one possible way), mmode
inference and nuale checking, Restriction bo one pro-
ducer per varinble disallows a vanable 1o be used as
a shared resoueer wilh meltiple-writers”
such a shared resouece does ot have to be imple-
nented nsing & vapable, becanse it can be imple-

Hiowwever,

mented using o process. The mode svatem has been
dhemipied o dhal b can be tncorporated into Flat GHO
as o new language construct; i effect, we have pro-
posed o further subset chiat coald e called Moded Flat
GrHI

L nfortunately, the above restriction is still insul-
fiecrent [or guaranteemny the consistency of the binding
envicomnent hecavse of the occur-check preblem. One
soluiion s 1o adopt retonal terms instead of faite
terms, a5 i some Prolog svstems and Janus, This
makes 1t possible Lo create nfinite terms in a finke
time, while in GHEL infinite terms can be created only
kl'ﬁ]llH I[][\ir.'i.Ll'." e s .I ||."." ':."ﬂ.“]?‘".".!ll.r.'l“-t"-"“' '”I thiﬁ iF\.
yel o boe studieel.

6.2 Flat GHC and KL1

Althongh Flar GHE has a momber of good properties,

-7

it is not quite appropriate for programming paralle]
COMpPULers.

First, GHC is a reaclive language in which pro-
cesses are assumed Lo be cooperative rather than com-
petitive. In actual applications, however, not all pro-
cosses mny be conperative with others. An example is
a user process running concurrently with an operating
system.

Second, although o GHC program fully expresses
Lhe possibility of parallel execution, it does Rot spec-
ifv at all how 1t should be cxcouted. TL may be a
good platforo for parallel processing hecanse no un-
necessary sequentiality is imposed, However, it 15 &
concurrent language, not a parallel language in which
one can specify how processes should be executed on
a paralle] computer

The separation of concurrency wid parallelism is
not a deaign flaw but a deliberate decision. Stnee lan-
guage constructs for specifving parallel execution may
depend on the compulation modeks that reflect ander-
lving implementations, Lhey should be defined sepa-
rateiy,

The languags called KL1 [1] takes these lwo is-
sucs inlo account . [6 s based on Flat GHC, bul has
cluded the “shden” (manor) construcl o thal a pro-
cags may have [l eonteol over ancthier process G
may nol. he cooperative, The shaen construct cnables
a process Lo control the execution of anolher process
execiled within o shocn and the resouree 1L consuines
The shioen construct also handles exceptional situa-
ticns of a provess such as failuee and deadlock. For
parallel execution. kL1 prowules a comstruct for sper
fving which goal should be executed on which pre-
cessor and with whar |1riorir.:..'.

7. Conclusion

We have reviewed the design aod the evolution of
GHC. Macrescopicolly, GHC should be regarded as a
comcurrent programming language rather than a logie
programming language. However, when we look o
the iﬁllgll.‘i}_‘_"ﬁ ITHIre ||Jirruhr.ul|-irnl|_1.ﬁ. we find that each
transaction is siolar to partial refutation in lngie pro-
grarmrming and that the comemuneation mechanism al
lows an elegant logical characterization.

It seerns Lhal concurrent logic programming is of-
ten imisanderstom] because it stemmed from logic pro-
gramiming. However, 1t is not just an incomplete vari-
ant of logie programming. We believe that concurrent
fogic programoing s wileresting o s own gt and
deserves much more attention and study.

The ressarch on GHC has heen focused on the
sermanlical aspects of the langwage. The current syn-
tax of GHC s nol essential at all; software engineer-
ing aspects such ns the modularization of large pro-

grams are important bud separate issoes Lo be consid-
cred. lowever, soine software engineering issues are
already addressed in GHOD it provides an abstraction
and encapsulation mechansm based on processes. and
we can put abject-hased coneurrent programming into
pEactiee

Finally. we note that the correnl stalus of GHC
has Been mflucnced by omany works in the fields
of logic programming and concurrent programming
and also by many discussions with a number of re

Arprcliers.

Acknowledgments

Wi are amdebied Lo]'{,1"!1_ii aorieeht, Masahiro Hirata
and Keijr Hirata for valuable conunents on earlier ver-
=ion= of Llus paper.

Refarvnees

1. Chikavama, T.. Sate, Ho and Mivazaki, T.,
Crverview of the Parallel [nference Machine Operating
Svstemn (PIMOS)E o feaes Tt Conf on FOOCSES,
10T Fokwe, 82 pp, 280251

2. Clark. k. L. Segatien as Failuee. In Logic
andd Data Bases, Gallnire. Hoaml Moker, b, {eds),
Plenuem Press. New York, 1975, . 203322,

3. Gaeeth. H. M., Lichtenstein, Y. and
Shinpire, Eo. Fully Alstract Denotaticnal Semantics
for Flat Caoncueeemt Pralog, In Pree. Third Annual
(ol on Loge o Cpmputer Scicnce, 1EEE, 88,
3l J- 345

4. Giregory, 5. Parallel Logic Frogramming m
PARLOG: The Language and fis Implementation.
Aclilison-Wesley . Wekingham, England, 15887,

5. Ilirata. M., Programming Language Doc and Lis
Self-Deseription or, X = X is Considered Harmful. 1o
Froc, drd Conf of Japan Society of Sofltware Science
and Technology, 1986, pp. 69-72

i, Hirata, M., Parallel List Proressing Language Oc
and Its Seli-Description, Computer Software, Vol. 4,
Noo A (1987 pp. 41-64 (in Japanese).

7. Toare, O AL R, Commmunicating Sequential Pro-
cesses. [rentice-Hall [oternational, UK, London,
1485,

B, howalski, R.. Algorithm Logie + Control.
Clomm. ACM. Vol 22, oo T (19T4), pp. 424436,

9, Llovd, 1. W, Foundations of Logie Programming
(Second ed) Springer-Veelag, Berlin, L1987,

10, Matier, M. J.. Logie Semanties for o Class of
Committed-Choice Programs. In Proe, Fourth Int.
tonl. nn Logic Programming, MUT Press, 1987,
pp. BAE-BT0

11. Milusr. K., Process Constructors and [nterpreta-
tions. In Information Processing 86, Kugler, H. -1,
{ed.], North-Holland, 1986, pp. S07-514

sl

12. Milner, R., Parrow, J. and Walker, D, A Calew-
tus of Mobile Processes, Parts 1 and 11 ECS-LECS-84-
g6, Dept. of Computer Science, Univ. of Edinburgh,
1988,

13. Murakami, M., A Declarative Semantics of Paral-
lel Logic Programs with Perpetual Processes. In Proe.
Tt Conf. on PGOSSSE, LCOT, Tokyo, 1988, pp. 374-
JH1.

14. Ploikin, & A Structural Approach to Oper-
ational Semanties. DAIMI FX-19. Computer Scienee
Dept.. Aarhus Univ., Theomark. 1981

15, Saraswat, ¥, A GHC: Operational Semantics,
Mroblems and Helationzhip with CF(]]). In Pror.
1487 Svmp. on Logic Programmung, TEEE. 18987,
FII'I 31?' 3-'-}q

16, Saraswat, V. A, Concurremt Constraid Pro
gramming Laoguages. Phe T Thesis, MU, 1959,
17. Saraswat, V.. Kahn K. and Levy J., Janus: A
Step Towards Distributed Constrainl Frogramuing.
S81, ®O- 108, Swstem Sceiences Lab, Xerox PARC
1980

18, Saraswat. V. A and Rinaed, M Concorrent
Constramt. Programming {Extended Abstract), In
{(“enf. Record of the Seveniventh Annual ACM Svmp,
on Principles of Programiing Languages. ACM,
1990, pp. 232245,

19, Shapiro, B Y. Coneoreent Prolog: A Frogross
Heporl. Clomputer, Vol 19, Noo 8 (1986). pp. 44-58,
20. Shapiro, B, The Family of Concarrent Logic Pro
gramming Languages. Computing Surveys. Vol 20
Noo 3 L9s9), pp 413 310

21, Veda, k. Guarded Horn Clagses, Doctoral the-
s13, Information Engmt‘:rrmg Clourse, Faculty of E—I]gi-
neecing, Univ. of Tokyo, 1986

22, lleda, K., Guarded Horn Clauses: A Parallel
Logic Programming Language with the Coneept of a
Goard, 1C0OT Tech. Report TR-205. 1COT, Tokyo.
1986, Also in Programming of Future Generation
Computers, Nivat, M. and Puchi, K (eds), North-
Huolband, 1988, pp. 441-456.

23, Ueda, K. and Furukawa. k.. Transformation
Rules for GHO Programs. In Proe. Inl. Confl on
FGOSE8, 100T, Tokyo, 1988, pp. 582 401

24. Ueds, K., Parallelsm i Logie Programming. In
Information Processing 89, Ritter, G, X, [ed], North-
Halland, 1989, pp. 857-4964,

25, Ueda, b oand Morita, M., A New Implomentation
Lechnigue for Flat GHC. In Proe. Seventh Int. Conf
on L{-gu_' Prﬁsﬂtmmurg, MIT Press, 1990, pp. 3=17

