ICOT Technical Report: TR-577

TR-577
Processor Element Architecture for Parallel

[nference Machine: PIM/p

by
A. Goto. T, Shinogi. T. Chikayama, K. Kumon
& A, Hattori (Fujitsu)

Auguse, 9%

L1, OO

Mita Kokusar Bldg, 21F (0313456-3191 ~5

Ic :D'I 4 2% Mita 1-Chome Telex 1COT J32064

Mhinto-ku Tokyvo 18 Japan

Institute for New Generation Computer Technology

Processor Element Architecture for Parallel

Inference Machine : PTM/p

Atsuhiro Goto™ Tsuyoshi Shinogi™ Takashi Chikayama®*'
Kouichi Kumon*? Alkira Iattori**
*1: Institute for New Generation Computer Technology (ICOT)
4-28, Mita-1, Minato-ku, Tokyo 108, Japan

Phone: (03) 456-3193

*2: I'yjitsu Limited

1015, Kamikodanaka, Nakahara-ku, Kawasaki 211, Japan

List of Figures

4

PIM/p OVELVIEW . . . L . L . o o o e e et e e e e e e e s 1
PIM/p Processor Element Configuration - - oo oo oo v v oo 14
Macro-call Instruction Mechanism« . oo oo e 17
Pipelining Featnres of Macro-call Instruetion oo o oo oo o a 18

List of Tables

]

Form of Basic Instructions o 00t T
Tag conditions in the PIM/p processor instructions 7
Instructions for dereferencing and MREB garbage collection 10
Optimized memory access instructions 0 0o oo oL 12
Pipeline Stage and its Operation oo oo oo oo 16

Abstract

This paper describes the design of processor element architecture for the parallel inference
machine prototype, PIM/p. Several innovative features are incorporated in the processor
architecture to suit concurrent logic programming languages such as KL1. T'he processor’s
design is based on tagged architecture. Witk the variety of tag handling operations, instrue-
tiens can be executed by one cycle piteh pipeline. Macro-call instructions are introduced
to enable a lightweight subroutine call function for pul}'nmrphit operations required in ex

ccution of high level languages such as logic programming languages. 'T'his enables system
designers to easily define high level instructions without losing the benelits of the pipe]ining
mechanism. Dedicated instructions are introduced to support incremental garbage collec-
tion. Local coherent cache and optimized memory operations tailored to Lhe memory access
characteristics of KL1 can reduce comunon bus traflie in shared mwemory mmltiprocessors. In
this paper, we describe the design decisions for these architecture features. The LSIs are

now being fabricated using CMOS standard cell technology.

o o I :;\\
{ Multiple Hypercube Network
() ' [R_mtter] B

I1 ll T
Nyl Nrgl | NI (NI

1 ;- 1

: I :

pER L PRy L PE PE, |..|PE; | | ! :
| Inpu ! —(] == ! ! !
{Output | Cach Eacha. !Ejdd”] | : ' o |
f . I | L L |
: | Bus || o |

E shared Memory . E E E E

| Clusterg ; rClustery Cluster,y

Figure 1: PIM/p overview
1 Introduction

In the Japanese FGCS project, the parallel inference machine systems are being developed
based on a logic programming framework [9, 7]. Current interest in parallel logic program-
ming stems from its declarative semantics which facilitates writing and debugging programs
and removes most of the need for explicit uncovering and control of synchronization in con-
curtent programming.

KL1 [1], the kernel language of the parallel inference machine system, was designed
based on GIIC [23]. GHC has clear and simple semantics as a concurrent logic programming
language, by which programmers can express important concepls in parallel programming,
such as inter-process communication and synchronization.

We hope to realize very high execution performance for logic programming in KL1 to
promote parallel logic programming application research. However, KL1 has features that
make conventional machines unsuitable for efficient execution. Three of these features are:
(1) unification is a pelymerphic operation on, usually, dynamically consiructed linked data
structures; {2} the execution context, though small, is frequently switched because of data
flow synchronization; and (3) single assignment feature demands high memory band width
and eflicient memory management. scheme.

A parallel inference machine prototype, PIM/p, tailored to KL1, is now being developed,
which is planned to include up to 512 processor elements. Hierarchical structure is introduced
in the PIM/p. Eight processor elements form a cluster, communicating through shared

memory over a common bus. The clusters are connected with one another by a multiple

hypercube packet switching network. This article presents the processor element design for
PIM/p.

Some of the innovative features introduced in the PIM/p processor element architecture
are: {1) light weight subroutine call function by macro-call instruction, which exploits the
advantages both of hard-wired reduced nstruction sel computers and microprogrammable
high-level instruction set computers; (2) architeclural support for incremental garbage collec-
Lion; and (3) local coherent cache and optimized memory operations tailored to KL1 parallel
execution, which can reduce commmon bus traffic within shared memory multiprocessors, such
as a4 PIM/p cluster,

This paper is organized as follows. The concurrent logic programming language, KL1, is
briclly introduced in seclion 2, with its influences to the processor architecture. Section 3
and section 4 describe the design decisions for CPU and cache, and innovative architeclural
features tailored to KL1 programs. Scelion 5 presenls the overview of processor element

implementation. Finally conclusions are presented.

2 Characteristics of KL1

To understand the underlying motivations of the processor element design presented later in
this paper, it is beneficial to review the concurrent logic programming language KL1, and

its execution characteristics,

2.1 Brief Introduction to KL1 Abstract Machine

KL1 was initially specilied as flat guarded horn clauses (FGHC) [23], and has been extended
to be a practical language introducing meta-call and priority scheduling functions. The gen-
eral purpese concurrent programming capability of KL1 is shawn through the development
of a scll-contained operating system, PIMOS [4] for Multi-PSI systems [20, 14].

The KL1 execution is modeled as a partially ordered sel of reductions wherein the
initial user query {a set of goals) is reduced to the empty set. In KLI, as in Prolog,
procedures are composed of sels of clauses with the same name and arity, of the form:
H : -Gy, .Gy | By, By, ..., B,. where H is the head of the clause, (7, are guards, “|” is the
commit, and B; are the body goals. Execulion proceeds by attempting unification between

a goal (Lthe caller) and a clause head (the callee), followed by guard unification. I[these

nnifications succeed, the procedure call “commits” to that clause (vther candidate clauses
are dismissed) and the input goal is reduced to the body goals in that clause. To make the
L1 goal reduction efficient, an abstract machine, KL1-B [12, 7], is developed, whicl is on
a similar level of abstraction as WAM {24] for Prolog.

T'he abstract L1 architecture i1s summarized as follows [lfﬁ. 17]- A gual 15 represented
by a goal record, similar to a Prolog environment [21]. Reducible goal records are stored in a
goal pool. A processor fetches a goal from the goal pool, and executes the compiled KL1-B
code sequence corresponding to the goal attempting to commit to one of the clanses of its
procedure. If & clause is committed to, the body instructions cause body goals to be created
and put into the goal pool, If ne clause 1s committed to, but one or more clauses are wailing
for some variables being bound, the goal is suspended. When one of these variahles is bound

at some later time, the resumption routine is executed which restores the suspended goal(s)

to the goal pool.

2.2 Conditional Execution Features in KL1

Dereference s required at the beginning of most unification instructions in KL1-B. In derel-
erence, a register is first tested to see whether its content is an indirect pointer or not. If
it i3 an indirect pointer, the cell pointed to is fetched into the register and its data type is
tested again. Unification is performed depending on the data type.

Many insiructions in KL1-B include run-time data type checks even after dereferencing,
For example, the active unification between a KLI variable, X (the contents are unknown),
and a given structure, Str, has one of four kinds of actions, selected by the data type check:
{1} when X 1s an unhound variable without suspended goals, the Str is assigned into the
variable cell; (2) when X is an unbound variable with suspended goals, these suspended
goals are resumed after the assignment to X; (3) when X matches the data type of Sir
general unification for clcm@ts of both is performed; and (4) otherwise, the unilication fails.

Consequently, most instructions in KL1-B include run-time data type checks., The actions
that follow the run-time tyvpe check are very different. How to implement these polymorphic
operations is one of the key 1ssues in the processor design for concurrent logic programming
languages. L'herefore, tagged architecture is chosen as the base of the PIM/p processor
element, and tag conditional macro-call instructions are introduced to perform polymorphic

operations in KL1-B, which will be discussed in section 3.

al
I

2.3 Incremental Garbage Collection by MRB

KL1 is a concurrent language with no side cffects. Destructive memory assignment is not
allowed at the KL1 language level. Therefore, naive implementations of K1 tend to consume
memory area very rapidly, so that garbage collection must occur frequently. The lacality
of memory relerences Is supposed to be very low during garbage collection because most
garbage collection schemes [5] walk aronnd wide memory area. As a result, cache misses
and memory faults oceur often. In sequential Prolog [24], this problem is not very serious
because of the backiracking feature. However, as concurrent logic programming languages
have no backtracking, an efficient garbage collection method with high memory reference
locality is important in KL1 implementation.

Incremental garbage collection by multiple reference hit (MRB) [3] is introduced in KL1
architeciure. MRB is a one bit tag in a pointer to show whether the referenced data object is
possibly referenced [rom other data ohjects (on-MRB) or not (eff-MKEB). When a pointer to
a data object has off-MRB, the corresponding memory area can be reclaimed after reading
its contents, because there will be no other paths to the data. The reclaimed memory area is
usually linked to [rec-lists for reallocation. As an optimization, the reclaimed memory arca
cau be reused immediately with its contents.

Contents of a data object is read during unification. Therefore, KL1 compiler detects
places where cells possibly become garbages, and inserts garbage collection instructions at
appropriate places. Unification in KL1 may produce a chain of variable cells containing in-
direct pointers. These indirection cells with off-MRB can be reclaimed during dereferencing,

The locality of memory references can be raised using MEB incremental garbage col-
lection, because memory areas that have recently been read are likely to be reclaimed and
reused, instead of allocating new areas at completely irrelevant address. The MRB is also
used to implement the constant time stream merging and array updating in KL1 programs.
For example, an array element can be destructively updated without destroying the logic
programming semantics, when the array is referenced by an off- MHEB pointer. These features
must be very important for KL1 to be a general purpose programming language.

MRB information maintenance and incremental memory management includes condi-
tional execution with bit manipulation. This is a costly operation for conventional machines,
because MRB information has to be maintained in each unification. Therefore, the MRB

scheme in KLI architecture requires low-level architectural support.

3 CPU Architecture Design

As discussed in section 2, KL1 has some features that are difficult to implement efficiently
on convenlional computers, These include polymorphic operations and incremental garbage
collection. In this section, the key issues in CPU architecture design tailored to KLIT are

discussed,

3.1 Alternatives for KL1-B implementation

Unifications include polymorphic operations for a vanable cell whose type is not known
until run-time. In addition, the incremental garbage collection by MEB is embedded in
dereferencing. Therefore, tagged architecture is vital to efficient implementation of KL1.

Most Prolog machines, such as PSI[15], have been implemented as a high-level instruction
set computers with microprogram, that is as WAM [21] interpretation by microprogram.
However, the K1.1-B interpretation by microprogram has the following disadvantages. First,
it would be difficult to male full use of micro-instruction fields, because the actions of each
KL1-B instruction are determined by run-time data type checks as in section 2.2, INexi,
the data type check often selects to proceed to the next instruction without any operations
ar with just a simple aperation. Therefore, when each KLI1-H instruction is interpreted by
microprogram, the cost for dispatching to microprogram from a fetched instruction will he
relatively large.

Un the other hand, recently, tagged architecture has been incorporated into reduced
instruction set computers (RISC) [11], taking advantage of compile-time optimization and
low eost in hardware design. However, that architecture has the following disadvantages in
KL1 implementation.

When KL1-B instructions are expanded by low-level RISC instructions, the static cade
size of compiled programs will be very large. In addition, these compiled programs pos-
sibly include many branch instructions. This is because most KL1-B instructions involve
polymorphic operation. As a result, instruction cache misses occur often and commaon bus
traffic may increase in tightly-coupled multiprocessors with local coherent cache (2], such as
a PIM/p cluster {see section 4). Software simulation in [13] found the two times and four
timnes expanded compiled code of original KL1-B code causes a 15% and T0% increase in the

commeon bus traffic of a PIM/p cluster, so that the total performance of a cluster will degrade

by 5% and 30% [10]. Certainly, high-level instruction st computers with microprogram are
advantageous to reducing commeon bus trafhic.

The compiled programs in RISC-like instructions can, of course, be kept small by us-
ing small conditional! subreutine calls. However, subroutine calls cost much in conventional
methods. Lherefore, to use only the best leatures of both RISC and high level instruction
computers, woe aimed at desiguing a processor which facilitates eflicient conditional subrou-
tinc call function on data tag, accompanied by a RISC-like instruction set. As a result, the
PIM,/p processor clement instruction set includes RISC-like insiruciions and the efficient

one-level subroutine call function by tag conditions, presented in the following subsections.

3.2 DBasic Instructions

The processor element of PIM/p has two kinds of instructions. external and internal. Erfer-
nal instructions are mainly used to represent compiled codes of user programs, while énternal
instructions are used to define high level instructions as presented later in section 3.4. Most
of these instructions are RISC-like instructions, in the sense that they can be exccuted by
one cyele pipeline. However, there are almost 100 varieties of instructions, more than other
RISC processors. This is because instructions for tag handling and dedicated instructions
for KL1 are added as presented later.

Table I shows the form of basic instructions, DBasically, ALU instructions have three
register operands (one of the source operands may be a short immediate value). In memory
aceess instructions, the memory location is specified by a register and an imnediale offset.
The sub-opcode sub-op can specify the transferred data width, which can be 8, 16, 32 bits, 32
bits with an 8-bit tag, or 64 bits. 64-bit data is loaded to (or stored from) two neighboring
registers. As will be shown in section 5.3, branching costs three additional cycles. Thus

one-cycle delayed branch instructions and conditional skip instructions are provided.

3.3 Tagged Architecture

laking practical KLI nmplementation into consideration, 40-bit (8-bit tag + 32-bit data)
registers and lag branch instructions are provided in CPU, The MRB is assigned in one of
the 8 bit tag.

As discussed in section 2.2, most unification includes a mulli-way branch based on the

-

Table 1: Form of Basic Instructions

| ALL instructions

ALU-ap Rsl, HR=2, Rd Rd +~—FRsl op Rsl;

ALU-ap Rsl, imm, Rd Rd +Rs1 op imm:

Memory access instruetions

read sub-op Rd, Ra, ofst Rd —M[Ra+ofst]:

write sub-op Rs, Ra, efst ! Rs —M[Ratofst]:

Branch instroctions

junp cond Rt, mask8, (imm8,) ofst | il condition is true. PC—FPC+ofst

(delayed jump)

jump.and-link Ra, Rd, retefst, ofst | Rd+PC+retofst, FC+—Ratofst;

! {delayed jump and link)

'1i skip cond Rt, mask8, (imm8) if condition is truc, skip next

Table 2: lag conditions in the P'IM /p processor instructions

XOR, Not-XOR tag{Rt) = imm8, or not

OR, Not-OR tag{Rt) | mask8 = all [, or not
AND, Not-AND tag(Rt) & maskd = all 0, or not
{0Rmask, NolL-XORmask | (tag(Rt) & mask8) = immB or not

IKL1 data type. Some Prolog machines, such as the PSI [21], have a hardware-supported
multi-way branch function., The processor element of PIM/p does not have such hardware.
This is because: (1) it is costly to adopt a hardware-supported multi-way branch to a pipeline
processor; and (2) branches taken in run-time are biased; not all possibilities are chosen by
equal chances. The PIM/p instruction sel has only a two-way tag condition in macro-call
instructions and in tag branch instructions, but various tag conditions can be specified in
the insiructions as follows.

The tag conditions can be specified as bit-wise logical operations between tag of a register
Rt and £ bit tag value imm8 in the instruction, as in Table 2. The (Not-)X0R checks whether
the tag of Rt matches immg. In addition lo these exact match conditions, tag conditions

to examine only specified bits in the tag of a register are provided. The mask8 values is

used to specify the bit field i the tag of Rt. The (Not-)OR conditions examines whether
the specified bits are all one, while the {Not-)AND examines whether they are all zero. The
(Not-)X0Rmask cxamines if the specified bits malches inw8. By these tag conditions, various
group of data types, as well as the combination with MRB, can be specified 1n two-way
branch instructions, such as jump, skip, and macre-call mstructions.

In the processor element of PIM/p, various hardware flags, such as the condition code
of ALIl operation or an interrupt flag, can be accessed as the lag of dedicated registers.

Therefore, these flags can also be cxamnined just as KL1 data type.

3.4 Macro-call function

A macro-call instruction can be regarded as a liphtweight subroutine call with tag conditions,
whose form is:
MCall cond, R1, R2/imm8, R3/imm&, i~fddr

where i-Addr is the entry address of the internal instruction memory; R1, R2. and R3 are
the register numbers, R2 and R3 can be 8 hit immediate values (imm8). The macro-call
instruction first tests the data type of a register, given as its operand R1, then it will or will
not invoke its macro-body in the internal instruction memory (1IM) depending on the result
of the test. The contents of these registers as well as the immediate values can be accessed
through indireet access registers and indirect value registers in the macro-body as presented
later.

The macro-bodies stored in the internal instruction memory are written in infernal in-
structions by system designers. Here, most of both external and internal instructions are
common. Therefore, system designers can easily specify a high-level instruction, using one
kind of RISC-like instructions instead of complicated micro-instructions in conventional com-
puters. Considering the difficulty in making full use of long micro-instructions, this scheme
is advantageous to system designers. In addition, the specification of a high-level instruction
is very flexible, because a macro-body can include subroutine calls in external instructions
stored in main (shared) memory as well as subroutine calls in the internal instruction mem-
ory.

One of the overheads in usual subroutine calls is the branching cost both for call and
return. As presented later in section 3.3, the tag condition for macro-call is tested at the

second stage of four stage pipeline. When the condition is true, the program counter for ex-

8

ternal insiructions is frozen, and the execution stream is switched to the internal instructions
by putling the entry address {i-Addr) in the internal program counter. Therefore, the cost
to invoke the macro-body is only one additional cvcle. while usual jump instructions cost
three additional cveles to take the branch, The cost for returning [roin macro body is also
minimized as follows. Each internal instruction has an additional bit, called eol, to specify
the exiting point from macro-body, so that the execution of macro-body can finish at any
non-hranch instruction. When the internal instruction with eoi is put into the pipeline, the
external instruction follows without branching costs, melting the external program counter.

Another overhead is the cost for the arguments passing to and from the subrouline
bodies. To aveid the arguments passing costs, two kinds of virtual registers are provided.
Indirect value registers are used to get the operand of the macro-call instruction as an im-
mediate value, and indirect access registers are used to access the contents of the register
that is specified in the macio-call operand. Each of these virtual registers correspouds to
Lhe operand position of the macro-call instruction. Therefore, the arguments of a macro-call

can he efficiently passed fo and from its macro-body.

3.5 Support for Dereference and MRB Garbage Collection

As discussed in section 2.3, garbage collection support is one of the most important issues in
parallel inference machines. The PIM/p instruction set includes several instructions tailored
to MEB garbage collection.

In MRB incremental garbage collection, each variable cell or structure is allocated from
a [ree list. When reclaimed, its memory area is linked to a free list. To support these free
list operations, the Push and Pop instructions listed in Table 3 are provided. Push links a
cell to the free list, and Pop allocates it from the free list, in one machine cycle. PushTag
and PopTag put a new tag in the register. For example, allocation of a list cell referenced
by “LIST" tag cau be done by one instruction:

PopTag Rd, Ra, ofst, LIST

The MRB of each pointer and data object has to be maintained correctly in all unification
instructions. Here, the most primitive operation is MRB maintenance during dereferencing.
In dereferencing, the MRB of the dereferenced result should be off if and only if MItBs of
hoth the pointer and the cell are off. In this case, the indirect word cell can be reclaimed

immediately because the indirect word cell has no other reference paths to it. Two dedicated

—_ g —

Table 3: Instructions for dereferencing and MRB garbage collection

Instruction COperands Tomment

Push Rs, Ra, ofst M[Ratofst] +—Rs, Rs —Ra;
iPushTag Rs, Ra, ofst, imm& | M[Ratofst]| «Rs,

dala{Rs! —(Ra), tag{Ra) «—imm8& ;
Pap Rd, Ra, ofst Rd «—Ra. Ra + M|Ra+ofst];

PopTag Rd, Ra, ofst, imm& | Rd «Ra, tag{Rd) «—imm8,
i Ra «- M[Ra+ofst];
ReadOrMRE Rd, Ra, ofst Rd« -M|[Ratofst],
- mrb(Rd} «-mrb{Ra} | mrb{old Rd);

Deref Rd, Ra, ofst Rd +Ra, Ra «—M|[Rat+ofst|,

mrh{Ra) «—mrh(Ra} | mrh{old Ra);

Instructions, ReadOrMRE and Deref, support this operation. ReadDrMRE accumulates both
the address register’s MRB and the destination register’'s MRB, then sets the result in the
destination register. Deref perfurms MRB accumulation along with the POP operation. This
means that:
Deraf Reg, Ptr

saves the pointer Reg to the derelerenced cell to another register, Ptr, then reads the contents
into Reg with MRB accumulation. Therefore, succeeding instructions can reclaim the cell
referenced by Ptr by examining the MRB of Reg.

These instructions can minimize the costs of free-list operations and dereferencing with

MRE management in PIM/p.

4 Cache Architecture Design

PIM/p has a hierarchical structure, as shown in Figure 1. Eight processor elements (PFs)
form a cluster, communicating through shared memory (SM) over a common bus. Processor
elements within cach cluster share onc address space, so that they can quickly communi-
cate by reading or writing shared memory. However, KL1 programs require high memory

bandwidth because data structure manipulations dominate whole computation rather than

arithmetic computation. Thus, we designed local coherent cache optimized for the memory

access characteristics of WL

4.1 Motivations for Cache Design

As disenssed in section 2.1, a processor execntes goal reductions of a relatively small granu
larity (compared to procedural languages). Thus, focusing on the parallel processing within
a PTN/p cluster, there are significant differences in K1 memory referencing characleristics
from the chararteristics of conventional multiprocessor systems such as Symmetry [18].

Lirst, memory write frequency is higher than in conventional languages. Memeory ac-
cess characteristics of KL1 henchmarks, gathered hy simulation, indicate thal dala write
frequency is 36% (see [§] for details).

Next, the processors communicate more often with each other, through the logical vari-
ables, than the nsnal parallel processing on the Symmetry systemn, hecanse parallel goals
share logical variables. In addition. it is necessary to communicate for schedunling KL1 goals.
Thus it ie important for a loeally parallel cache to have an efficient cache-to-cache data
transfer mechanism as well as to work as a shared global memory cache.

Finally, there are many execlusive accesses to communicate through shared logical vari-
ahles. The frequency of locking shared data in the KL1 execution is relatively high. However,

we can expect that exclusive memory accesses seldom conflict with each other [17].

4.2 Cache Protocol

Copyback cache protocols have been proved effective for reducing common bus traffic in
shared-memory multiprocessors for procedural languages, as shown by Goodman [6] and
Archibald [1), amonyg others, Thus the basis for the PIM/p cache is a copyback protocol.
Local coherent cache protocols, such as [1, 2, 16, 19], use both invalidation and broadcast to
ensure all caches are consistent. Invalidation reduces common bus traffic when the frequency
ol shared block write accesses is low, while breoadcast is better when many processors [re-
guently write data to the same shared blocks [1). Considering the single-assigninent feature
of KL1, most logical variables are shared by only two KL1 goals. Thus broadeasting is not

NMCCCSATY fur st PIU!_';TH.II[E., 'dIlL:l iﬂ‘l’ﬂlidﬂtiﬂﬂ suﬂir:c*s,

Table 4: Optimized memory access instruetions

| -
C Instruction Operalion

read.invalidate | After cache misses, the source cache block is invalidated. Otlh-

- erwise, the same as Read,

read purgs After CPU reads, the cache block is purged. T'he shared

blocks in other caches are also purged.

| exclusive.read | For the last word in a cache block, same as Read_Purge, Oth-

erwise, the same as Read Invalidate,

direct_write If cache misses at block boundary, write data into cache

without fetching from memory. Otherwise, ordinary memory

write.
lock_read Lock & memory word, then read the content.
write unlock Memory write, lallowed bu- l..l;t_l;l:l-;. -
unleck Unlock a memory word.

4.3 Local Coherent Cache Optimized for KL1

The PIM/p cache protocol is similar to Illineis protocel [16]. but has several memory oper-
ations oplimized for KL1 as described in Table 4.

In normal write operations, a feteh-on-write strategy is used. However, it is not necessary
i fetch the contents of shared global memory when a new cache block is allocated for a new
data structure. For example, in KL1, new data structures are created dynamically on the
top of the heap area when the free lists for those structures are empty. To accomplish this,
the direct_write instruction 1s introduced o avoid useless swap-in from shared memory.
The direct_write instruction can also be useful as stack pushing operations in WAM-based
architectures.

In KL1 parallel architeclures, inlerprocessor communication (such as for goal distribu-
tion) uses a shared message buffer. In this case, swap-in and swap-out of meaningless data
can be avoided by invalidating the sender's cache block after a cache-to-cache transfer and
by purging the receiver’s cache block alter the receiver finishes reading. To accomplish this,
ihe exclusive.read, read.invalidate, and read.purge instruclions are introduced,

These new memory access instructions can reduce common bus traflic by avoiding useless

gwap-in and swap-out operations, Cache simulations [8] indicate that these optimizations
reduce bus traffic by 40-50% with respect to an unoptimized system. Direct write affords
35-43% reduction and other oplimizations only 5% reduction. From the evaluation in 22},
we believe these vptimizations will prove ellective on other paralle]l logic programming ar-
chiteclures as well.

Lock operalions are essential in shared global memory architectures. The KL1 language
processor uses lock operations for heap and communication area accesses [17]. The frequency
of locking and unlecking shared data is high. The simulation result in [8] shows more than
A% of all memory accesses. However. actnal lock conflicts seldom occur [17]. Therefore, it
15 ellective to introduce a hardware lock mechanism that has less overhead when there are
no lock conflicts.

The FIM/p cache enables a lightweight lock and unlock operation by using the cache
biock status, lock address regislers, and busy-wait locking scheme. When CPU issues a lock
command to its cache to attempt a lock.read instruction, the cache checks the corresponding
address tag and status tag. If the address hits and its status is erelusive, the address can
be locked without using the common bus. The locked address is held in a lock address
regisler, When other processor attempts to access the locked address, the aceess itself is
automalically postponed until unlocked. This lock protocal is effective for reducing the bus

traflic of Tock/unlock operations: for KLI, no bus cycles are needed for the high percentage

of lock reads hitting in exclusive blocks and unlocks to non-waiting locks.

5 Processor Element Implementation

A PIM/p processor element will be implemented on a single board, which includes CP1),
internal instruction wemory (1IM), cache syslem, and two co-processors: a network interface
unit (NIU) and a floating peint processor unit (FPU), as shown in Figure 2. The target of
the basic machine cycle is 50 nanoscconds. The LSIs are now being fabricated by CMOS
standard cell technology that can include up to 80K gates,

The PIM/p has 2 4G-byle global virtual address space on each cluster. KL1 data is
represented by 40-bit word (an 8-bit tag and 32-bit data). Normal KL1 data is placed by 40-
bit KL1 tagged dala in aligned 64-bit words in the PIM/p memory system, while instructions

and some data structures, such as strings or floating point numbers, are placed on a byte

13

fid-bit data path

{ network

interface unit)
1

NIU '__..

Network rontor
p— Input /Output {FEP)

| BN
[internal
instruclion
mMemary)

FPU | |
- {floating
point unit) _
|
int-addr
+ CPU ,
int-code
&
Instrnction Cache address
| InstruEltiou N
cache | cou
-— [cache
Dala cache [+ coutroller
unit)
| 'Y
. Local _ .
" Memory
Common-
Rus
« Adopter

Common Bus

Figure 2: FIM/p Processor Element Conliguration

- 14 —

boundary.

5.1 Cache System

'I'he processor element includes two caches: an instruetion cache and a data cache. The
instruction cache supplies the instruction buffer in CPU with external insiruction stream in
parallel with data accesses by CPU. The contents of both cache memories are identical, so
that. in a branch instruetion, CPU can [eich a branch target instruction from the data cache
as shown in section 5.3

The cache controller unit {CCU) manages both the instruction cache and the data cachie.
I'he cache address array would be updated by both commands from the CPU and a common
bus. To avoid the access conflict, the commen bus adopter has a copy of cache address array
with cache block status.

In general. & larger cache is necessary Lo malntain a high hit-ratio. The simulation in
[81 shows at least 611 bytes capacity is necessary for KL1. However, 1t is preferable Lo give
up forming a large cache by enlarging the cache block size. This is becanse the simulation
results in [8] have also found that a cache block larger than four tagged words canses an
increase in shared blocks between caches in parallel execution of KL1, so that mmtual cache
invalidation may increase. On the other hand, it is found difficult to provide an address array
for 6415 byvies of 32-byte block (four tagged words), because the size of the cache address
array is restricted by the LSI capacity of the cache controller unit (CCU). Throngh these
observations, we designed the following cache system. The capacity of both the instruction
and data caches is 64K bytes. The CCU has a block status tag for each J2-byte block, and
an address tag for each two blocks, that is, every 64 byles. Our simulation result also shows
that that scherne does not decrease the perforinance so much compared to a full 32-byte

block cache of the same capacity.

5.2 Registers

The CPU in the processor clement includes 32 general-purpose regislers, several dedicated
registers, indirect value registers, and indirect access registers (see section 3.4). These reg-
isters are specified by a 6-bit register specifier in most instructions. Each general-purpose

register has an 8-hit tag and 32-bit data.

Lable 5: Pipeline Stage and its Operation

ALL gperation Memory aceess | firanch
! Decode [Decade [/

I} | Decode register read (address) | register read (address)
" o Operand address | Branch address
A |- caleulation ralculation
T | Register read Cache address access Cache address access

ALT operation [| Cache data aceess [(lache data access /
B | register write [remister wrile] condition test

The dedicated registers include a condition code register and a slit-check register (see
sections 5.4). Most flags. such as the condition code, are placed in the tag part of the
dedicated registers, and can be tested by the tag-branch instructions,

In addition to the above registers, NIU aud FPU have several co-processor registers,

wineh are handled only by co-processor interface instructions.

5.3 CPU Execution Pipeline

The CPU has two instruction streams, one is from the instruction cache, and the other is
from the internal instruction memory (ITM). The CPU uses an instruction buffer and a four-
stage pipeline, D A T B, to attempt to issue and complete an external instruction every
cycle. Exterval instructions are either four or six bytes long, so that the instruction buffer
has a hardware aligner. Each internal instruction requires two additional stages, preceding
stage D, to set the internal instruction address (stage S) and to fetch the instruction (stage
C).

Table 5 shows the pipeline stages and corresponding operation. General-purpose registers
are updated only at the last B stage, thereby avoiding write conflicts. Internal forwarding is
done by hardware so that the result of a register-to-register instruction can be used by the
next instruction even though that result has not yet been written to the general registers.

In a branch instruction to an exlernal instruction, the branch target instruction is fetched
at stage B in the same way as memory read instructions, Therefore, ordinary branch in-
structions may cost three additional cycles to branch. Delayed branch instructions can avoid
one of the three cycles by executing an effective instructions.

Most tag branch instructions test their condition at stage B. However, macro-call in-

structions and internal branch instructions test their condition at stage A. Figure 3 shows

{from
Instruction cache

! ! C

Foxternal Internal
lustruction I:leri._J:_'Llun
Buller Register

Internal
Instruction
1B - 5 Memory
Exerution A PO for Internal
pipeline T Instruction
B

Figure 3: Macro-call Instruction Mechanism

the invocation rmechanism of the macro-call instruction, and Figure ¢ shows their pipclining
foatures. A mucro-call instruction puts the entry address in the program counter lor in-
iernal instructions and initiates the internal instruction fetch (stage 8) at its stage D, Lhen
tests its condition at stage A. When the condition is true, the program counter for external
instructions is [rozen at this point, cancelling the next external instruction. Therefore, a
macro-call instruction costs only one additional cycle lo invoke a subroutine in the inler-
nal instruction memory. In addition, delayed macro-call instructions are provided to avoid
the penalty. Return from macro-call, that is, return from internal instructions to external
instructions, can be indicated by a one-bit flag: eoi, in each internal instruction except for
branch instructions. When an internal instruction with eoi is put into the pipeline, the in-
ctruction stream is switched back to external at stage D, and the external instruction frozen

by the previous macro-call instruction follows without waiting cycles. (See Figure 4.)

5.4 Slit-check and Interrupt

Various events may arise asynchronously during KL1 execution, such as: other processors
requires a garbage collection of shared memory. However, the actions correaponding to these
events are delayed until a current goal reduction finishes, even if the event occurred during a
poal reduction. This is because garbage collection is difficult to start during a goal reduction.
So, they may be delaved until after the goal reduction finishes. The detection of these events

at the end of goal reduction is called siii-checking.

When the condifion is frue:

DA [rondition test at A} @ macro-call instriction

D (cancelled) : next external instruciion
5 O D A T H ; first internal instruciion
s O D A T B : second internal instroction

When the condition is false:
D A (condition test at A) : macro-call instruction
DA T B : next external instruction

oD A T B : external instruction

End af maero bady:

5 C D A T B ¢ internal instruction eoi
S C (cancelled} » internal instruction
5 (cancelled) : internal instruction
D A T B : next external instruction

[igure 4: Pipelining Features of Macro-call Instruction

— 18 -

The processor element of PIM/p incorporates a hardware mechamsm for slit-checking
as well as ordinary interrupts for debugring and error detections. A hardware interrupt, 1
seneral, causes automatic save of program status, slit-checking does not. Each processor
elerment has flag registers, each of which can keep an individual event, such as signals from
ather processors and network packet arrival. The lit-checking mechanism has an additional
flag to show whether any events has happened or not, which can be tested by one condi-
tional branch instruction. Therefore, the KL1 language processor can detect the normal
but asvnchronons events by itsclf at appropriate point. On general purpuse computers, the
slit-checking might be implemented using normal interrupt mask/unmask operations and
a cumhbersome interrupl handler. It would cost too much for the KL1 system. By incor-
porating the hardware slit-checking mechanism. the processor element can avoid frequent

mask /unmask operations and interrupt handling overhead.

6 Conclusion

This paper describes the design of processor element architecture for the parallel inference
machine prototype, PIM/p. The execution features of the concurrent logic programming
language, KL1, were observed, and its architectural issnes were discussed. The innovative
processor architecture for KL1 and with its design decisions were presented. The proces-
sor is designed based on tagged architecture. With the variely of tag handling operations,
instructions can be executed by one cycle pipeline. Maero-call instructions are introduced
to enable lightweight subroutine call function for polymorphic operations in unification, so
that svstem designers can casily define high level instructions. Dedicated instructions are
introduced to support incremental garbage collection embedded in KL1 unifications. Local
coherent cache and optimized memory operations tailored to the memory access character-
istics of KL1 are designed, which can reduce common bus traffic within shared memory
multiprocessors. These features incorporated in the processor architecture can be expected
to suit other concurrent logic programming languages. The LSIs are now being fabricated

by CMOS technology.

- 1§ —

Acknowledgement

We wish to thanlk all of the PIM research members both at 1COT and Fuptsu Limited, Espe-

cially we thank TCOT researchers: Mr. A Matsumoto, and Mr. T, Nakagawa, Mr. K. Naka-

jima. and [ujitsu researchers: Mr. 5. Arai and Mr. A, Asato. for their useful comments. We

alse wish to thank Mr. H. Murano in Fujitsu Limited for his help in develaping the LSls and

his useful comments. Finally, we would like to thank [COL Director, Dr. K. Fuchi, the chief

of the fourth rescarch section, Dr. 5. Uchida, the general manager of Information Processing

Division in Fujitsu Laboratories, Mr. J. Tanahashi, and the manager of Artificial Intelli-

gence Laboratory in Fujitsu Laberatories, Mr. H. Hayashi. for their valuable suggestions

and guidance,

References

]

[3]

4]

6]

J. Archibald and J. Baer. Cache coherence protocals: Lvaluation using a multiprocessor

simulation madel. ACM Transaction of Computer Systems, 4{1):273-298, 1986.

P. Bitar and A. M. Despain, Multiprocessor cache synchronization. In Proc. of the 13th

Annual fnternational Symposium on Computer Architecture, pages 424-433, June 1986.

T. Chikayama and Y. Kimura. Multiple Reference Management in Flat CHC. In
FProceedings of the Fourth International Conference on Logic Programming, pages 276
203, 1987.

T. Chikayama, H. Sato, and T. Miyazaki. Overview of the Parallel Inference Machine
Operating System (PIMOS). In Proe. of the International Conference On Fifth Gener-
alion Compuling Systems 1988, Tokvo, November 1983.

J. Cohen. Garbage Collection of Linked Data Structures. ACM Computing Surveys,
13(3):341-367, Sepl. 1981.

J. R. Goodman. Using cache memory to reduce processor-memory traflic. In Proc. of
the 10th Annual International Symposium on Computer Archilecture, pages 124-131,
1983,

- 20 -

[

[

[12]

[13]

[15]

[16]

[17)

A Goto et al. Overview of the Parallel Inference Machine Architecture (PIM). In Proc.
of the International Conference On Fifth Generation Compuling Systems 1088, pages

M5 - 229, Tokve, Japan, November 1985,

A, Goto, A, Matsumoto, and E. Tick. Design and Performance of a Coherent Cache for
Parallel Logic Programming Architectures. In 16t Annual International Symposium

on Computer Archilvelure, pages 25 - 33, Jerusalem, Israel, May 1989,

A. Goto and S. Uchida. Toward a ligh Performance Parallel Inference Machine —the
Intermediate Stage I'lan of PIM-. In Fufure Parallel Computers, pages 209-320. LNCS

272, Springer Verlag, Piza, [taly, 1956

A. Hattart. T. Shinogi, K. Kumen, and A, Goto. Architecture of Parallel Inlerence

Machine: PIM/p. In JSPP'85, pages 107-114. IPS], Feb. 1989, {in Japanese).
M. Hill et al. Design decisions in SPUR. JEEE Computer, 19(11}1:8-24, November 19806,

Y. Kirmura and T. Chikayama., An Abstract kL1 Machine and its Instruction Set. In

Proceedings of the 1987 Symposivm on Logic Pragramming, pages 468477, 1987,

A. Matsumoto et al. Locally Parallel Cache Designed Based on KL1 Memory Access

Characterestics, TH 327, 1COT, 1957,

K. Nakajima, Y. Inamura, N. lchivoshi, K. Rokusawa, and T, Chikayama. Distribuled
Implementation of KL1 on the Multi-PSI/V2. In Proceedings of the Sizth Internalional
Conference on Logic Programming, pages 436-4531, Lisboa, June 1989,

H. Nakashima and K. Nakajima. llardware architecture of the sequential inference
machine: PS1-IL In Proceedings of 1987 Symposium on Logic Frogramming, pages
104-113, San Francisco, 1937,

M.5. Papamarcos and J.H. Patel. A low-overhead coherence salution for multiproces-
sars with private cache memaories. In Proceedings of the 11th Annual International

Symposinm on Computer Arehileclure, pages 348334, 1984,

M. Sato et al. KL1 Execution Model for PIM Cluster with Shared Memory. In Pro-
ceedings of the Fourth International Conference on Logic Programming, pages 338-353,
1987.

- 1 —

[18]

[19]

20]

21

22

23]

124]

Inc. Seguent Computer Systems. Sequent Guide to Parallel Programming, 1987,

L.C. Stewart et al. Firefiv: A multiprocessor workstation. [FEFE Transaclions on

Computers, 37(8), August 1988

Y. Takeda et al. A Load Balancing Mechanism for Large Scale Multiprocessor Svstems
and its Implementation. In Proc. of the International Conference On Fifth (Feneration

Computing Systems [958, Tokvo, November 19885,
puting 51 :

. Takiet al. Hardware Design and Iinplementation of the Personal Sequential Inference
Machine (P51). In Proc. of the Internalional Conference on Fifth Generation Computer

Systems, pages J95-409. Tokyvo, 1934,

E. Tick. Performance of Parallel Logic Programming Architectures. TR 421, ICOT,
1988,

K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog - Collecled
FPapers, pages 140-156. MIT Press, 1937.

D.H.D. Warren. An Abstract Prolog Instruction Set. Techmical Note 309, Artificial
[ntelligence Center, SRI, 1983,

22

i< v PIM/p OEET a3 7 —F 74 Fx
Processor Element Architecture for Parallel Tnference Machine @ PIM /p
Pl oL A R SRl R, ART 0 IR R
Atsuhiro Goto®?, Tsuyoshi Hhinagi'j, Takashi l"h]]-.‘a.}'ama.‘l. Kouichi Kumon=?, Akira Hattori®?
1o Pl o v = — R ARG
*1: Institute for New Generalion Computer Technology {(ICOT)
"2 BHaERR

®2: ujitsu Limited

Bige

HETH, R~ v PIM/p 0B ory 0T -2 72 F+ 2L UE DG
HirownTlas, K7e v HEEWTE, HHREREECH LT 77 F2r %
WHLZe TRty Tl T —F7rFrinh et iy, BER2 7 E
AR S v v @SR L M, 2 AR VL vt aTHiFFI LM TE S, KL]
D= T 4 r—ioa it BT — A BHEORRIC L o TERCE CEENIRE S, C
DL RSEHREOD ST RACHET DI, v 7 sHiT EPFEE 22 PO En
FF e PR LBEER A L, CHICE D, =74 r— v 3 vICHET IER
R Dot AERICE D, i, HVREBENEHRC L > THEHEAETROT -~V a1
roa vk BT AR v GBS EHE L. 2 bic, KL1 @ 4 %) SRNHEORITIC
HSnTH L ARG A= VAR v w2 b BEES+» v oo TEAL, EH7
ArFew 2 OERER A, BAE, ot 3R TALSIE CMOS 22 v X —F
AR X o TREPTHE D,

WS~ v PIM/p oEf 7ot o9 T—-F7 2 F 5
P'rocessor Llement Architecture for Parallel Inference Machine : PIM fp
B TR T, K IR, AT B, A B R
Atsuhiro Goto*!, Tsuvoshi Shinogi®?, Takashi Chikayama*!, Kouichi Kumon™2, Akira Hattori*?
"1 B = o 2 — 2 TR
*1: Institute for New Generation Computer Technology (ICOT)
el T T o

*2: Fujitan Limited
1. L&

ICOT UM v Ea—s T a2 bR, B0 52 FRL FOEHRS
o FELEG L AR o OB R ES TR, PIM/p i, FiIcESEhi 8
TOERTe ey IhbhE2 T2 EEF 0 + 7 — 70X - TREFEAYICHE L Aol S
vvvDAfay b v ThE,

R~ > v OB EFE KLL (2, #ifh i ymEs SEes 3 GHO kS v
FNAEHTHE, KL O X5 R WFIIMPAREHEL, GEMAEF7 e 75 3 v i aje
L L, afilld D R FURBVEORBRSTE & £ 5 2w, SBOAHEEER Y 7 + 9 =7
RCpWTHELREN+HE 2 b0 D, LAL, KL1H: (1) B ASZa=74
- v T - F RIS SREBETH Z; (2) BRMEI G A (7
wtR) ORERNE C, FROOMOT — XK L - TERICEFT2 v 7 5 2 | 44)
Db 5; (3) B—RAOEEIC X D, ¥ A WA L4805 A =) BEEEE &
LT 5, Lo RO B TS L ER T B, AfTR, B0 XS
Rl FRAMSHEORNEICGES T3 £ LA TE iR~ v PIM/p 0BR ety
YOT—2F 7 F+BLUFEXTOREFEHDOWTIE~S,

2. RISC #gm@ans & =7 nhik

WFEREE RO =74 F— e v, B F— s B CoRRC LT HF ek
BerE s, BYRELRSHEE O T oyt P wTR, 0L 9 A EHM S 28
ERwAL LTEBTEANEE LA L. BN —ARYEDLDICH, FF, 277 -

34

EF O F AR E R B, P, AV T—%F 7 F 4%k RIBSCHROGHTRRT I 7H
b BRI NT WD, 2L, KLl oM—{bo X 3 a2 AR TR L LS &7
BE mvsfra— FRKESASTLEY, Yvvia i AFERTEBNEDD F
o SEA A F T m A T, SR BT ey 2 SN L, SiRHEREOIE TR U
EBaz Liibhai, 0T, PIM/p OMRS vt s ¥iL, Ok ASREOH IR
VR A 11 ¢ FEET D A IC, < 7 T LIRS, 2 A PO Eny T F TR LR
fifETAL .

ﬁﬁfutp%mﬁﬁ%ﬁ.%E&??@Wﬁ%&éﬁg4ﬂ@ﬁﬁf§4v%ﬁm1,
(50 PR R ETE) L vy v 7 it | GEOEETEITE S, KL Dx=74
boovawnk s hEEEeSRY s SRR LTEEY L. v emaRIE L
CHRTERAL Y REOF— A EHERESE SpE o R v 2 nDREORIFT
WL BT E B, < 7 e OAKIGEROGS & BEREONEGHIC - TRLETY, < 4
?ufufﬁmﬁmmmﬂfﬁﬁﬁﬁﬁfﬁéuﬁk,vfumKWﬂ%futyﬁmm
me e) S A N L, vy nkikoRTRREF AR pbOBT T2y F
PHEHITE A,

3, H—~yalsra - OiiE

KLL it F— 2 oMM s iz 3 2 A Wl —RAGHTH LD, A= 1T EHOH
EIA GO WL CEE 2 5. MRB AR, F—FeA~0Ff R, £
HF =R OERRA R L Ey b0 Y77 (MRB) 26HNT 3 C Lic L), HERAICA
VAW, ERERFI A —<Yurris v HRTHE. MRBHATH, Fx)8R
DETHEA A &\ 5 B 08 B0 7 ut v $CH, 1 ¥ v b MRB tGHOEE
FkE TR R, LT, PIM/p 0ERET vty YT, MRB LD — <2
iavkEETIMTEABELTY .

4. FFHBREEGE—HiEF v v > 2 Ot

PIM/p w79 250k 4 ABHES~AF ety ¥ LiICED S KLL O A<) B
SO TR IS T, GFTRTR SN ¥ OB S v v v 2 ARATL, BRI 0t >
F e AL A, KL i, 2 OM—CARI X 0 2% Y ~OHF AR EREFH 0, 1%

25

EAAEOFL bt IRAT o b2 AT FTEKE L, TTT, &5 2220 wT Tty
I E BT LB U e T LERRERE A H 8 e ic L, S 2 4 v s OO@RBETH S, #
O A ZOEERIENE TS L i, KL oW RLIE oS S EA L TR T e
FEAEIT IS vy raavr PRHEL A,

Fro 3l A) LOBE BN L BE TR A) T 2 e A0 gk EE T
Be RLC. & 70Es¥DFy v van /oy PRESFIFALED » 7 BEERG, K=
2 b oHHEREETIREE LTw D,

._EE_

