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Abstract

CAD systems that can quickly produce quality designs are needed for the expanding VLSI
market. This paper presents a cooperative design mechanism in a cooperative logic design
¢xpert system on a multiprocessor, co-LODEX. co-LODEX accepts constraints on area and
speed, and outputs a CMOS standard cell netlist that satisfies the constraints. Short turnaround
is expected through the combination of parallel processing by several processors and their
cooperaton.

The cooperative design mechanism is based on an evaluation-redesign mechanism using
assumption-based reasoning within a single processor. Design alternatives are considered as
assumptions and constraint violations as contradictions. Redesign i3 implemented as
contradiction resolution. The evaluate-redesign cycle repeats itself until the design satisfies the
specified constraints.

co-LODEX divides the whole circuit to be designed into subcircuits in advance and designs

cach subcircuit on each processor to take advantage of parallel processing. Global evaluation-



redesign takes place by processors exchanging design results in terms of gate counts and

delays (in case of success) or justifications for constraint violations {in case of failure).
Experimental results on the cooperative design algorithm suggest that the number of iterations

is considerably reduced. It is observed that the number of iterations through cooperation is less

than half that for the sequential evaluation-redesign algorithm.

1 INTRODUCTION

CAD systems that can produce quality designs quickly are needed for the expanding VLSI
market. Although rule-based cxpent systems have great potential, they are still inferior to
experienced designers. One of the most pressing problems is the lack of a means to iterule
evaluate-redesign cycle untl the design sansfies all given constraints. Without it, it would be
impossible 1o design a quality circuit with the desired characteristics by looking at the design
from a global point of view,

Turnaround time seems to be another key issue, Short tumaround allows designers to
rapidly implement a vaniety of architectural choices and choose the solution best suited for their
Specific situation by comparing area and speed characteristics. Designers can thus explore their
opuons in a way that has not been practical before.

Since design decisions may be retracted after later evaluation, they can be thought of as
assumptions. Assumption-based reasoning uses both facts and assumptions that can be
retracied [de Kleer 1986]. Justification, originally introduced for truth maintenance [Doyle
19791, is the key concept to manipulating information containing assumptions. In de Kleer’s
Assumption-based Truth Maintenance System (ATMS), all assumptions are enumerated in
advance and all combinations are examined. In design, however, we are not interested in all
combinations. This is because a decision’s importance depends on the decisions made earlier.
We can prune a considerable number of combinations.

Finger and Genesereth propose a new approach to deductive design synthesis, the Residue



Approach, in which designs are represented as sets of constraints [Finger and Genesereth
1983]. Since we are interested in the characteristics (area and speed) of the resulting circuit,
we can think of constraints regarding the above characteristics.

We proposed an evaluation-redesign mechanism using assumption-based reasoning
[Maruyama 1988]. In our evaluation-redesign mechanism, design alternatives are considered
as assumptions and constraint violations as contradictions, Redesign is implemented as
contradiction resolution. Justifications for violations, called nogood justifications (NJs), play
a central role in the mechanism.

In this paper, we present a cooperative logic design expert system on a multiprocessor, co-
LODEX. c¢o-LODEX divides the whole circuit to be designed into subcircuirts in advance and
designs each subcircuit on each processor to exploit parallel processing. Global evaluae-
redesign takes place by processors exchanging design results (in case of success) or NJs (in
case of failure). A cooperative design algorithm makes this possible. Short turnaround is
expected through the combination of parallel processing by several processors and their
COOperaton.,

The next section gives an overview of co-LODEX. Section 3 describes its evaluation-
redesign mechanism within an agent or a processor. Section 4 discusses its cooperative design
algorithm among agents. We give some experimental results in Section 5 and concluding

remarks in Section 6,

2 co-LODEX Overview

2.1 Inputs and Outputs
The user specifies a behavioral specification, a block thagram of the darapath, and
constraints on area or speed. co-LODEX outputs a CMOS standard cell netlist that satisfies all

given constraints.

The specification language for behavior used in co-LODEX is UHDL [Fujisawa 1989], an



extension of DDL [Duley and Dietmeyer 1969]. Figure 1 shows the specification for a circuit
that calculates the greatest common divisor (GCD) between two integers using the Euclidian

algorithm [Campaosano 1987].

FUNCTION; main: clk;
idle::
STOP(rst =), x =- xi, vy <- yi, GOTO loop;
loop::
IF(x = y} THEN (ou := x, GOTO idle)
ELSE (IE(x < y) THEN (y <- y - X)
ELSE (x =-x -y},
GOTO loop).
FEND;
Figure 1. Example of behavioral specification

Twao intervals, idle and loop, have counterparts in DDL states, but are not limited to one clock
cycle. STOP(rst = () means that interval idle is finished when rest equals 0. <- means register
transfer and := means terminal connection. The rest is self-explanatory.

A block diagram of the datapath is shown in Figure 2. The boxes signify functional
blocks. COMP, SUB, 2CPL, MUX, and X and Y are a comparator, a subtracter, a two's
complement, a multiplexer, and registers. The triangles signify input/output buffers.

Constraints on area are expressed as inequalities in the gate count, for example, “The total
gate count must not exceed 1400." The user can specify as an area constraint the maximum
gate count that could be squeezed into a given LSI device. Constraints on time are expressed
as inequalities in the propagation delay, for example, “The maximum delay must not be longer

than 200 ns.” The user can specify as a timing constraint the clock cycle the LSI device should



operate with,

The resulting netlist can be input to an automaric place-and-route system.

2.2 Brief Overview

Figure 3 gives an overview of co LODEX. Each agent is given one of the subcircuits of
the whole circuit. Figure 4 shows the six subcircuits for the GCD example and the agents in
charge. It should be noted that the control cireuit, CTRL, is included. co-LODEX establishes
a finite-state machine from the behavioral specification and extracts the specifications for the
control circuit in terms of logical expressions. It then divides the whole circuit so that the
blocks along critical path candidates ure distributed to as few agents as possible,

Each agent designs given functional blocks hierarchically using the top-down methwl. It
keeps splitting up functional block and subblocks into sub-subblocks until all given blocks are
implemented with CMOS standard cells. This is done by referring to the library that includes
knowledge about functional block design, knowledge about technology mapping, and standard
cells data. Then it counts the number of gates and estimates delays for evaluating the
implemented circuit against constraints on area and time.

An agent usually designs its subcircuit independently and in parallel with the other agents.
However, since the design results of the other agents are necessary for evaluation against
global constraints, agents exchange their results every time they finish designfredesign. An
agent redesigns when it detects a constraint violation for which it is responsible, for example
when a path passing through it is too slow. If it designs a standard cell netlist that satisfies all
the local constraints specified by stored NIs, it notifies the resulting gate count and delays. If

it cannot, it notifies an NI,

3 Redesign Mechanism Using Assumption-based Reasoning



As mentioned earlier, we regard design decisions as assumptions. ATMS enumerates all
assumptions in advance and examines all combinations. In design, however, we are not
interested in all combinations because a decision’s importance depends on decisions made
earlier. In Figure 2, for example, how to construct an adder is unimportant if the subtracter is
designed without using adders. Moreover, we are interested in the characteristics (area and
speed) of the resulting circuit.

The area a circuit requires and its delay are the sum of their constituent parts. The delay of
a path, for example, can be attributed to that of the components along it. This fact lets us break
a global condition into local conditions. A hierarchical structure is useful for this. We explain
a redesign mechanism using assumption-based reasoning, which operates on a hierarchical

design description,

3.1 Hierarchical Design Description

Design objects are represented in a hierarchy. Figure 5 shows part of the hierarchy
corresponding to Figure 4. There are three types of nodes; agent nodes (capsules), component
nodes (ovals) and alternative nodes (rectangles). An agent node is responsible for one or more
component nodes. A component node associates alternative nodes as possibilities of
implementation. There is a special component node called the chip node that corresponds to
the whole chip. An alternative node conrains information about the connection between
subcomponents and has the subcomponent nodes as children. An alternative is called either
“in” or “our” based on whether it is adopred or discarded. Each component node has at most
one in alternative node. Other alternative nodes are stored in the our alternative list to be
recalled later if necessary.

Figure 5, which shows only in altlernative nodes, means the following:

‘The whole chip (Chip) consists of a control circuit (CTRL), a comparator (COMP), a

subtracter (SUB), a multiplexer (MUX), a register (Y), and other parts.



-Agent3 is responsible for a subtracter; other agents are responsibie for the respective
components.

-SUB consists of an adder (ADD) and a one’s-complement (1CPL).

-ADD, the 32 bit adder, consists of eight 4-bit CLA {(carry-lookahead adder) cells connected
serially. Current our alternatives might include a serial connection of 16 2-bit CLA adder cells

and 32 single-bit adder cells.

3.2 Justifications for Constraint Violations (NJs)

An NJ (nogood justification) is a logical expression that must not hold during design.
Satisfying an NJ means a constraint violation and invokes the redesign mechanism.

The following default NJ at Chip (in Figure 5) is equivalent to the original constraint on
gate count in that any design violating the constraint satisfies it,

CTRL + COMP + SUB + 2CPL + MUX + X + MUX+ Y > CHIP (1)

This says that if the total gate count of the control circuit,the comparator, the subtracter, and so
on, exceeds the value of variable CHIP, it means a constraint violation. CHIP is the variable
that refers to the currently valid constraint value on gate count, for example 1400. co-LODEX
transforms each constraint specified by the designer into default NJs.

A uming constraint in terms of the clock cycle is transformed into a set of default NJs,
among which is an inequality representing that the sum of the delays of the components along a
path from source to destination exceeds the constraing value. For example, one of the defult
NIs, the path from Y wia SUB, 2CPL, MUX, back to Y is longer than the clock cycle. It is as
follows:

Y(P1) + SUB(P2) + 2CPL(P'1) + MUX(P2) + Y(P2) » CLOCK (2)

The form, “component (P number)”, represents a path within each component. CLOCK is the
variable that refers 1o the currently valid constraint value on clock cycle, for example 200,

Starting from default NJs, new NJs are added during redesign through NJ expansion and



generation. NJs save us doing direct evaluation against constraints. All we have to do is to

check to see if any NJ is satisfied.

3.3 NJ Expansion

NJ expansion is used to narrow the scope and go down the hierarchy to resolve
contradictions, or constraint violations. Formally, NJ expansion 1s defined in the following
three steps. The NJ to be expanded is one that is satisfied at the moment.

Step 1: Select a component appeanng in the NJ to be expanded. Call it C.

Step 2: Replace C in the NJ with its in alternative’s subcomponents. If the in alternative 1s at
the leaf of the hierarchical structure (at the standard cell level), replace C wath 1ts acmal gae
count or its delay value,

Step 3:Go down the hierarchy to the alternative node and store the NJ obtained in Step 2.

(End)

An example of heuristics for selecting a component in Step 1 would be to select the largest
or the slowest component, the one that is the most responsible.

Suppose default NJ (1) turns out to be wue. That is, a constraint violation on gate count
has been detected. In NJ expansion, the largest component, the subtracter, is selected in (1)
and 1s replaced with its in alternative’s subcomponents, the adder and the one’s-complement.

CTRL + COMP + ADD + 1CPL + 2CPL + MUX + X + MUX + Y > CHIP (3)

(3) is put at SUB's in alternative node, SUBL. Again, the largest component between the
adder and the one’s-complement, the adder, is selected. Since it is implemented with standard
cells, eight 4-bit CLA cells, variable ADD is replaced with 400, which is the actual gate count
for the adder.

CTRL + COMP + 400 + 1CPL + 2CPL + MUX + X + MUX + Y > CHIP (4)

(4) is put at ADD1. Then, alternative ADD1 is going to be changed to another altemative. (4)

is a condition under which constructing a 32-bit adder with eight 4-bit CLA cells is inhibited.



3.4 NJ Generation

If every alternative of a Lomponent causes a constraint violation, NJ generation enables us
to get a new NI, the logical product of the NJs comesponding to each alternative. The
generated NJ does not refer to that component. It is put at the alternative node one level up.
This procedure is justified by resolution [Robinson 1965].

In the above example, suppose neither ADD?2 (with 2-bit CLA cells: 256 gates) nor ADD3
(with 1-bit adder cells: 256 gates) sarisfies the gate count constraint. The following two NJs
should be put at ADD2 and ADD3, respectively:

CTRL + COMP + 256 + 1CPL + 2CPL + MUX + X + MUX + Y > CHIP (5)

E.‘TRL+CUMP+1$+1CPL+2CPL+MUX+X+MUX+Y::-CHII-" (6)

The gate counts of ADD2 and ADD3 happen to be the same. If no other alternative is
available, NJ generation gives us anew NJ from (4), (5) and (6):

CTRL + COMP + 256 + ICPL + 2CPL + MUX + X + MUX + Y > CHIP (7)

(7) 15 put at SUBL. If no more alternatives are available for the one's complement, it is
replaced with its actual cell count, 32, and we have the following NJ:

CTRL + COMP + 288 + 2CPL + MUX + X + MUX + Y > CHIP (8)

(8) is put at SUBL. This shows that altemnative SUB1 is not possibie under the circumstances
specified by this NJ. We would have to change the subtracter. (8) shows that constructing a
subtracter with an adder and a one’s-complement requires at least 288 gates.

Although only an example of NJ generation from NJs about gate count only was shown,

the generated NJ, in general, is u logical product of NJs about gate count and NJs about dela Y.

3.5 Evaluation-Redesign Algorithm within Each Agent

The redesign algorithm within each agent uses NJ expansion and generation. Redesign is

invoked when an NJ turns out to be rue.



Step 1: Set ALT 1o the agent node and proceed to Step 2.

Step 2: Check to sce if there is any satisfied NJ at the ancestor alternative nodes (including
itself) of ALT. If so, set ALT to the alternative node where the satisfied NJ is put, and proceed
1o Step 3. Otherwise, go to Step 7.

Step 3: If there is a subcomponent of ALT appearing in the NJ, proceed to Step 4.
Otherwise, go to Step 5.

Step 4: Expand the NJ. Set ALT to the current alternative node and return to Step 3.

Step 5: Make ALT our. Select another allernative node that is not inhibited by an NJ, make it
in, set ALT 101ir, and go to Step 2. If every alternative is inhibited by NJs, proceed to Step 6.

step 6: Generate an NJ. Set ALT to the current alternative node and go to Step 3. If there is
no alternative node one level up, output the generated NJ and exit (Fail!).

Step 7: If there is no component node whose alternative nodes are all our, exit. (Succeed!).
Otherwise, select an alternative node that is not inhibited by NJs, make it in, set ALT to it, and
go to Step 2,

(End)

In Step 5, selection is done either by recalling an our allernative or by generating a new
implementation.

The above algorithm starts when an agent receives information from the other agents. Once

the algorithm terminates in success or failure, the agent sends information to the other agents.

4 Cooperative Design Mechanism on a Multiprocessor

We propose a cooperative design mechanism on a multiprocessor. It is based on the
redesign mechanism within each agent. Moreover, (1) exchanging design results and NJs
among agents and (2) combining the NJs received from the other agents are necessary.

Agents exchange the design results (gate counts and delays) ﬂf subcircuits when they

succeed in design. They exchange the resulting NJs when they fail to design subcircuits

10



without any stored NJ satisfied.

4.1 Combining Nls

When an agent fails in redesign with the evaluation-redesign algorithm described in Section
3.3, it generates an NJ and sends it out to the other agents. Each agent “combines” the NJs
received from the other agents and makes a new NT out of them. Considering an NJ from an
agent as a condition where design is impossible for the agent, the combined NJ can be seen as
4 condition where design is impossible for the agents other than the recipient agent. Agents are
required to design without any combined NJ satisfied.

For example, suppose Agent3 received the following two NJs originated from default NJ
(2) from Agenid and Agent6;

Agent3(P2) + 61.1 + Agent6(P2) > CLOCK (%

Agent3(P2) + Agentd(P1) + 15.6 > CLOCK (10)
Where Agent6(P2) represents Y(PI) + MUX(P2) + Y(P2). Agent3 combines the above NJs
and makes a new NIJ:

Agent3(P2) + 76.7 » CLOCK (11}
(I1) 15 added 10 Agent3. (11) works as a local constraint imposing that the delay of

subtracter’s P2 must not be longer than (CLOCK minus 76.7) ns. This is a simple example.

Combined NJs are usually logical products.

4.2 Cooperative Design Algorithm
We propose a cooperative design algorithm by describin g the procedure for each agent.
Step 1: Design its subcircuit. Repeat redesign by the evaluation-redesign algorithm. The gate
counts and delays of the other subeircuits are assumed 1o be 0. If any agent fails, the algorithm

terminates in failure. Otherwise, proceed to Step 2.

Step 2: Exchange the design results, that is the gate counts and delays of the subcircuits, with

11



the other agents. Proceed to Step 3.

Step 3: Set the pate counts and delays of the other subeircuits 1o the design results received in
Step 2. If no stored NJ is satisfied, go to Step 9. If some of the stored NJs are satisfied and
the design results of cach agent are the same as in the previous cycle (caught in a loop), go to
Step 7. Otherwise, proceed to Step 4.

Step 4: Redesign its subcircuit. If at least one agent succeeds in redesign without any stored
NI sansfied, go to Step 2. Otherwise (all agents fail), proceed to Step 5

Step 5: Exchange the generated NJs with the other agents. Proceed to Step 6.

Step 6: Combine the NJs received in Step 5. Go to Step 1.

Step 7: Set a temporary constraint and proceed to Step 8.

Step 8: Design its subcircuit. Repeat redesign by the evaluation-redesign algorithm unril all
the constraints including the lemporary one are met. The gate counts and delays of the other
subcircuits are assumed to be 0. If all the agenis fail, the algorithm terminates in failure.
Otherwise, go to Step 2.

Step 9: Put together all the subcircuits. The algorithm terminates in success.

(End)

Initially only default NJs are stored. As the algorithm proceeds, new generated NJs and
combined NJs arc added. Tn Step 7, select one of the violated constraints with the fewest
agents related, and set the current value corresponding to that constraint as a temporary
constraint.

Once the above algorithm terminates in success or failure (In Step 1, Step 8,and Step 9),
the design run is finished, and the user can retry by changing the constraints. The user can
look for a faster circuit by tightening the delay constraint, or can rerun by relaxing the
constraints in case of failure. When the constraints are changed, the system updates them and
re-cvaluates by checking all the stored NJs. As more NJs are accumulated, the efficiency of

the algorithm is further improved.
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5 Experimental Results

We implemented the cooperative portion of co-LODEX on Multi-PSI [Taki 1988] in KL1
[Ueds 1986] to evaluate the performance of the cooperative design mechanism. We had an
extra agent that synchronized the six agents in charge of subcircuits and took statistics.

Figure 6 shows some of the results for the GCD example. First, the area constraint was
1400 and the timing constraint was 200. We obtained the circuit shown at the upper left. As
the timing constraint was strengthened and the area constraint weakened, different results were
achieved. It ended up the fastest circuit of all, shown at the lower right. Figure 7 shows the
circuit in detail. When the area constraint is 1550 and the timing constraint is 140, the design
fails with NJ, 142.8>CLOCK & 1572>CHIP. This mcans that design is impossible if the
specified set of constraints satisfies the NJ; we must relax either of the constraints so that the
above NJ is not true any more.

The primary statistical results are encouraging. Some results suggest that the number of
iterations is considerably reduced. 1t is observed that the number of iterations through
cooperation is less than half that for the sequential evaluation-redesign algorithm. The reason

scems to be that combining NJs helps narrow the design space.

6 Conclusion

We presented a cooperative logic design expert system on a multiprocessor, co-LODEX,
co-LODEX divides the whole circuit 1o be designed into subcircunits in advance and designs
each subcircuit on each processor to take advantage of parallel processing. Global evaluate-
redesign takes place by processors exchanging design results or NJs, A cooperative design
algorithm based on assumption-based reasoning makes this possible. Short tumaround is
expected through the combination of parallel processing by several processors and their

cooperation.

13



We are implementing co-LODEX on Mult-PSI in KL1. Our future plans include working
on parallel processing of design, evaluation, and redesign within an agent. It is also important

to work on load balancing among processors.
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