ICOT Technical Report: TR-562

TR-562

Coimnductive Semantics of Horn
Clauses with Compact Constraint

by
K. Mukai

May, 1990

©1990, ICOT

Mita Kokusai Bldg. 21F (03) 456-3191~5

|[: DT 4-28 Mita 1-Chome Telex ICOT] 32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

Coinductive Semantics of Horn Clauses with
Compact Constraint”

Kuniaki Mukai

Institute for New Generation Computer Technology
Mita Kokusai-Build. 21F
4-18, Mita 1-Chome, Minato-ku, Tokyo 108 Japan

Abstract

A eonstraint language L with an interpretation in the domain Vi of non
woll- foinded sets over a finite set A of atoms which is hereditary finite with a
cardinality no more than & 1s proposed. L is a quantifier free first order sublan-
guage with equality, subsumption, disjunction, and negation. It is proved that
the domain V4 . is solntion compact and L is satisfaction complete in the sense of
constraint logic programming (CLP) schema. According to the schema we have
now CLP{AFA) just as CLP(R), where R is the domain of real uumbers. Hy gen-
eral theory of the CLP scheme completeness and sounduness theorem are obtained
for the class of canonical programs. A characterization of the canomical programs
is given in terms of bisimulation relation. Operationally this is equivalent to that
variables in negative constraints must be grounded in a finite number of steps on
Lhe computation.

I'hese results are shown directly based on the AFA set theory. A declarative
semantics and an operational semantics of a given Horn clause program over Lhe
canstraint language L are defined coinductively in the domain ¥ .. Soundness and
completeness are proved by showing a simulation relation between two semantic
domains. Basic computational concepts of CLP schema are well anderstood in
this method of ZFC ™ JAFA set theory.

A large part of existing constraint logic programuning and unification grammar
formalisins are reconstrueted in the domain Vg ..

1 Introduction

We assume that the reader is familiar with basic notions of non-well founded sets
theory{1], constraint logic programming[7], and unification grammar formalisms[#].

ICOT-TRHG62, 1980, This short nute is a revised wersion of the extended abstract which was
presented for explaining some basic ideas of "AFA Pralog' at an informal joint workshop of NLU and
PSG working gronp at TCOT, 19th-20uh March 1990. ‘This paper was accepted to be read at the second
conference on Situation Theory and its Application at Scotland, Septemiber 1990, Also this paper will
appear in the proceedings of the annual conference of logic prograiming Japan, Tokyo, 199(.

Aczel(l] proposed the universe of non-well-founded sets for modelling circu-
larly structured objects. He provides very powerful coinductive method like the in-
ductive one in the standard well-founded sets universe. Barwise and Etchemendy|4]
and Darwise[3] applied Aczel’s theory to circular situations and unification of fea-
ture set respectively. The present work was inspired by Barwise[4] and extends it
so that negation and disjunction are included into AFA-Dbased unification gram-
mar formalism. In logic programming, Colmerauer[3) used infinite trees domain
for modelling such kind of circularity. Now I am trying in the presenl paper
to replace the infinite trees with non well-fuunded sets to sce how neatly con-
straint logic programming schema and unification grammar formalisms can be
reconstructed,

According to the CLP schema, the key point of the problem is to find a lan-
guage L and subelass W of non-well-founded sets of ZFC™/AFA' theory such
that W is solution compact and L is satisfaction complete,

Our language [is a constraint language consisting of set equations, subsump-
tion (hereditary subset relation), conjunction (of course), disjunction, and nega-
tion. A term of L is a parametric hereditary finite well-founded set which has al
most k elements, where k is a certain fixed [inite integer.

On the other hand, onr domain ¥y for W is the class of hereditary finile
subsets which has a bounded size x. It is proved that Vg, and L are what we
want. I believe that this discovery will give a new integrated view to both logic
programming and unification grammar formalism,

We use Aczel’s theory in two ways, One is for defining semantics of the program
coinductively and the other is as a domain of logic programming as mentioned
above. In the former two classes are defined coinductively, One is a class of non-
well-founded triples for the declarative semantics of the program, the other is the
class of non—well-founded pairs for SLD-like fair computation trees for queries,
Soundness and completeness results are proved by showing a simulation relation
between them. Indeed the simulation relates solutions with computations in a
hereditary way.

The subdomain of records in CLP{AFA) has an efficient implementation for
a theory of = and #£. As a faci, these constraint can be combined straightfor-
wardly with well known Boolean constraint solving methods and UNION-VIND
technique[2] inte implementing practical computation.

The present paper is a report of a recent drastic progress of a logic program-
ming system CIL[10]. which has been based on records and lazy control on prac-
tical basis,

2 Preliminary

We use a Aczel’s non well founded set theory ZFC™/AFA[1] as the metatheory
of the present paper throughont, The following concepts are from Aczel[l]: coin-
ductive definition, solution lemma, bisimulation rela,tiu-u[lll.

Let X be a set of variables and (b;) {z € X} be a family of sets. The set
of equations ¥ = b, is called a system of equations. The following theorem is a
special case of Aczel[l], but is enough for our present purpose.

Theorem 1 (Solution Lemma(Aczel[1])) Every system of equations has a unique
solulion.

'ZFC minus the axiom foundation plus Aczel's anti foundation axiom.

A system is a class of ordered pairs such that for any node a in the system
the all the successors of a form a sef, which is written agr. Let M be a sysiem. A
hinary relation B on the system M is a bisimulation on M if B C Rt where for
a. b M

altTh « Yr € aydy € by RypleWy € byrdr € aprrRy.

A hisimulation relation R is represented as the set ¢g of cquations a = b such that

alb. A set ¢ of equations is called a bistmulation constraint if ¢ = e for some

hisimulation relation K.
The main technical result of the present work owes to Barwise[3], which gives

a characterization of feature structure unification through existence of simulation
pair which inclodes the given unification data. The definition of solution com-

pactness and satisfaction complete are from Stuckey[9].

3 Constraint Language

We borrow from Smolkal12] the lollowing definition. A constraint language is a
guadruple (VAR, CON, V|, INT), where

o VAK 13 a sl of vorfables,

o CONis a sel ol consiruints,

« V iz a function which assigns to each constraint. say ¢, a set Vi of variables,

o [NTis a set of interpretations. "An inlerpretation is given as a pair (D, 5)
of a domain D and a function 5 such that for any constraint v € CON, §
assigns a set S of partial functions from VAR into D, An element of S is
called a solution of 4o, If the restriction [to Vi is the same as that of some
solution in S, f must be in Sy

A ronstraint language [is compact if any set ¢ of constraints in L is satisfiable
whenever every finite subset of ¢ is satisfiable,

3.1 Constraint Language L
In this section we introduce a constraint langunage L. Roughly speaking, a con-
straint is a quantifier—free first order formula over the following items:

s well-founded hereditary finite parametric sels

o =, [

e AW, o

Let us define the language L = (VAR, CON,V, INT | more formally. We as-
sume in the rest of the paper that VAR is a countably infinite set of variables. ¢ is
a reserved constant symbol, which denotes the empty set. ¢ = {}. We assume that
our language has only finite number of constant symbols. This assumption will
be used later in the proof of compactness of the domain Vy .. A term is defined
inductively as follows,

¢ A constant is a term.
e A variable is a term.
o Aset {ay,---,aq} is a term, where aj,---,a, is a term.

For the sake of simplicity we use the following conventions in the formal part
of the paper.

s If a term is a set theu each element of the term is a constant or a variable,

¢ A constant denotes itself,

Note that by this convention ¢ is the only constant which denotes a sot: e, other
constants behaves as an urelement. An alomic constraint is an equation a = b or
a subsumption @ b where a and b are terms. A literalis an atomic constraint or
negation —a where a is an atomic constraint. A constraint is a literal, ~a, a v b,
or a Ab where a and b are constraints,. We write @ # band a [/ b for ~(a =) and
={a C &} respectively.

We assume that every term in the language [has a bounded size in a uniform
way. That is, there is an integer & such that the cardinality of every set in the
language is no more than .

Note that our formalism includes that of the ‘record as function” as introduced
later as a special case.

The following are the list of rules of the constraint language L.

® r =

o Ifx=ythen y=u.

e Ifr=yamnd y= 2z then r = 2.

o {r. - un) = {¥i . 4m} then zy = V1) B = Ygwy and @y = g,

CrT) = Y TOr some [unetion

Jidleenp = {l,eo- m}

and
kAl -eo m} = {1,-+- n}.

o Ii{zy, -~ 2.} # {wi -, 0w} then either 2; # yy, -+, and z; # y,, for some
l=j<norz #p, - - and o, # y; for some 1 < & < m.

L I o

e WoeCyand yC zthena C 2.

¢ Iz =yand C z then yC =

¢ Ife=yand 2 C x then = y.

¢ If 2 C y and either z or y is a constant but ¢ then z = y.

e Wiz, o} C{y.-+ st} then o, O igiye =+ and 2, C yyp, for some
function
Jodleein} = {1,---,m).

o I {zyszn} @ {wi o pm} then z; @ 3y, -0, and Z; T Ym for some
1 <7<

These rules are Horn-like in the sense that positive and negative information
are derived only from positive and negative one respectively, The rules are com-
binatorial in the sense that every piece of information on the right-hand side of
the rule appears in that on the left-hand side. These two properties of the rules
will be used in the rest of the paper implicitly. .

These rules are not intended to be efficient for computation but only for a
theoretical exposition. Record structure should be used for practical computation.
The record structure shall be discussed later part in the paper for implementation
purpose.

We can restrict the two transitive laws ahove in such a way that it is applied
only in the case that the intermediate term is a variable. By this restriction, the
constraint & = ¢ Ay = ¢ can not yield the information # = y. Also the rules which
treats negative information is redundant for the purpose of the present paper.

Remark The C relation is not assumed to be a partial order. As a fact the
following are trne, which show a failure of the anti symmetric law:

{e.{o}} T {{eh}
{{e}} C{e.{a}).

3.2 Support

In the rest of the paper, by a set of literals we mean the conjunction of possibly
infinitely manv literals in the set if the context is clear,

A support is a set of literals which has no complementary pair of literals and
it closed under the coustraint rules of the language L. For example, a bisimula-
tion conskrainl is a support. A support is a constraint. The support is used fo
chatacterize the satisfiability of a given constraint.

A constraint ¢ i= a support of a constraint e if ¢ is a support and one of the
followving holds,

I. ~is a literal and ¢ £ ¢,

2. ¢is a b, and both @ and b have the support ¢,
d. e s a v band either @ or b has the support .

Note that as a special vase ¢ is a support of ¢ if ¢ is a support and ¢ C ¢\
Also we say that a constraint ¢ has a support ¢ if ¢’ is a support of ¢,

A variable z is bound in & set ¢ of literals if ¢ has an equation x = b for some
set b

A normel constraint e is a set of literals such that each variable » appearing
in ¢ 1s bound in e

A canonical constraint ¢ is a set of lterals such that for each negative literal
g in ¢ there is a finite subset ¢ of ¢ such that every variable accessible from sume
variable appearing in ¢ is bound in ¢. Note that a normal constraint is a canonical
constraint but a canonical constraint is not always a normal constraint,

3.3 Bounded Hereditary Finite Set

et 4 and & be a finite sel of aloms and a positive integer respectively. Let V4.
be the largest subset D of the universe of non-well-founded sets generated over A
such that if # € I then there are some 2y, -- -, &, in D such that z = {aq,-+-, 2.},
where 00 < r < 5. An element of Vy . is a Bounded Hereditary Finale Set with &,
It will be proved later that a set ¢ of atomic constraints of L is satisfiable in 174 ;
if and only if every finite subset of ¢ is satisfiable in Vy .. This theorem is referred
as Compactness Theorem.

Here are a couple of remarks about the compactness, Firstly, Herbrand uni-
verse H is not compact. That is, we can not replace V4 . in the theorem with H.
To see this, take a sel ¢ of alowmwic constraints

I = f[TE}HI‘J = f{x:'l}?”'?mn = f{$ﬂ+l)1"'

5

where [is a unary function symbol. Every finite subset of ¢ is satisfiable, but
¢ itgell iy not satisfiable in M. Secondly, the compactness theorem above holds
only for the positive constraint. For the constraint with negation, even ¥y , is not
compact. To see this, take a set of coustraints

¥y # Ta. ;o= {23}, 33 = {Ta}, 2 = {Zua). {1}

Every finite subset of these constraints is satisfiable, However by the solution
lemma the global solution of the equations is uniquely determined as

Bom == ({0),

which does not satisfies the unequation =, # r;. Note that the constraint (1) is
normal support buf not canonical.

4 Unification over Non—Well-Founded Sets

We relate ZI'C™ /ATFA to the constraint logic programming schemel7]. We show
that the constraint language L introduced above satisfies the eriteria of the schema.

Here let us recall the definition of ‘solution compact’ and ‘satisfaction com-
plete’. A manv sorted structure B s called solution compact by Jaffar and
Lassez[T, 9] il the following hold.

(1) every element in R is the unique solution of a finite or infinite set of con
slrainls,

(2) for every linite constraint ¢ and choice of n there exists a finite or infinite
family of constraints ¢; containing n variables z,. ---, , such that:

R~ A{(flay)y-- - flag))|f is R- solution of ¢}

= U{[g(:r; - gl zs0)|g is B- solution of e; }.

We shall treal only the case of n = 1, since the general case in which variables
Xy, s, Xy in the given constraint ¢ are chosen is reduced to this simple case by
adding the equation z = (xy,---,z,) o ¢ in which = is the only variable chosen,
where z is a new variahle,

A theory T is satisfaction complete if

T EYy - Yym o whenever not T = Ay -+« Je ©

where ¢ is a linite constraint and yy,---, ¥, are all the variables appearing in e.
In other words, a theory 7 is satisfaction complete if there is a model M of 7 in
which ¢ is unsolvable then ¢ is indeed unsolvable in every model of T

T\ e) is the set of sets, parameters, or constants appearing in the constraint

¢. For example

TU[{E =a,y# {bc}}} = {z,a,y.{b,c}rb,c}

where x,y, a, b, and ¢ are a constant or atom. It is easy to see that T'C'(¢) is finite
if ¢ is finite. A support ¢’ of ¢ is small if the field of ¢’ is a subset of TC(e).

Lemma 1 For a finile sel ¢ of atomic constraints, the following are equivalent.

(1) ¢ has e finite support.

(24 ¢ has a suppord.

Proof Condition (2] follows obviously from Condition (1). For the proof of the
converse, suppose that ¢ is a support of ¢, The restriction of ¢' to T{e)is a
snpport of ¢ since ¢ is closed under the constraint rules, w}

The following lemma is a corollary of ‘simulation pair theorem’ of Barwise[3].
Theorem 2 (Simulation Pair Theorem } (fiven a sel ¢ of atomic constraints
the following are equivalent,

o ¢ has a normal support.

o ¢ has e solulion in Vg .
Remember that every set term in L has only at most & elements.

Lemma 2 (liven a constraint ¢, the following are equivalent.
. ¢ has a support,
2 ither e e = a} oreUdx = {y1----,ux}} has a supporl

where = © V(e), @ is a constant and gy, ---, y. are new variables.

Proof The proof from (2) to (1) is obvious. Suppose {1). Let ¢ be a support
of ¢. Firstly suppose that a is a constant and that » = a € ¢. Then ¢ is also a
support of ¢ U {r = a}. We are done. Secondly suppose that fur any constant a,
x—aisuotin . Let X = [J{b| b is a set, z = b € ¢’}. By the assamption about
L.if X is non empty then every clement of X is a constant or variable. From
the consiraint rules and the limit size # of sels, there are at mast & equivalence

clusses, say eq,-+. 6,0 in X induced by the bisimnlation relation contained in ¢,
where # < & Now we can divide the set {41.7 -+ ¥ | into r non empty groups,
cay g1, 4. (Let 7=k if X is empty.) Let o be the set of literals 16 where { is

u literal in ¢ and # is a substitution such that if #(u) = v then n € ¢, and v € g;
for some 0 < < r, It is easily seen that d is a support of cU {r={w. .t}
O

The following is a key lemma of the presenl paper.
Lemma 3 (Normal Support Lemma) Given a constraind ¢, the following are
equivalont,
(1) Every finite subsct of ¢ has o support.

{2} ¢ has a normal supporl.

Proof Condition (1) follows (2) obviously. Suppose Condition (1). Without
loss of generality we assume that ¢ = {g,|0 < n}, where each g; is a literal. Let
us make an inductive definition dy = @ and dy = dyeyq U {gn-1} U V5 in such a
nondeterministic way that

o V= {z= eqle € Vidi U {ﬁ'n-l}nv{dn—l}]

e £ 05 a constant a or {£,,-- -, %) Where z7,-+,T, are new variables and K
is the upper bound size of sets.

Furthermore, by the previous lemma, we can choose the sequence d, (n > 0) so
that the constraint | {d;|f € J} has a support for each linite set J of integers.
Let SF, be the set of small supports of d,. 1t follows from the assumption that
SP, is non empty finite set and that for any @ € §F, (n > 1) there is a support
(' e 51,y snch that " C . Let T be the set of all finite or countable sequences
@ (0 = j = v)of supports such that @, € 5Py and Q- © @, (7 # 0). Applying
the standard argument of Konig's lemma to this situation, there is an infinite
sequence ¢, (0 < j)in T such that @, € §F; and Q; , C ¢; (5 # 0). let Q
be the union of the sequence: ¢ = [J{Q;]0 < 7). It is easily checked that Q is a
normal support of e, o

Proposition 3 (Normal Unification Lemma) For any normal supporf ¢ the
following are equivalent.

{1) ¢ has o solution.

(2] For each negative liteval 1 € ¢, p U {I} has a solution, where p 15 the set of
posite literals in ¢

Proof (1} = (2): Obvious. For the converse suppose (2). Let { be a negative
literal and f; be a solution p U {{}. Then f; is a solution of p. As p is normal,
by the solution lemma f; is independent of . Thus f; is also a solution of every
negative literal in «. Hence f) is a solution of e]

Lemma 4 For alomic constraimnt and any normal support p consisting of posi-
tive literals, the following are equivalent.

(1) pu{-d} has a solution.
(2} pu {d} has no selution,

Proof (2) = {1): Obvious.

(1) = (2): For the converse suppose that pU {=d} has a solution f. Suppose
that also p) {d} has a salution g. As p Las at most one solution, il must be the
case f = g. Hence fis a solution of pu{d}. It follows from this f is not a solution
of =d, which is a contradiction. Thus pU {d} has no solution. o

The above theorem and lemma are a basis of a naive unification algorithm.
Let p and d be a finite normal support and an atomic constraint such that pu{d}
is normal. Applying the saluration method of our constraint rules to p U {d} it
is decidable whether there is a normal support p’ such that pu {d} € p'. Soit is
decidable whether p U {d} is solvable or not. This remark will be used in a later
section for application to the nsual term structure and record structure,

We use Barwise's theorem also to show the compactness of the domain Vg .
with respect to the constraint language L. It is important that L is assumed to
have a fixed integer x such that any parametric sel in the langnage has at most
elements.

Lemma 5 (Compactness Lemma) For a positive constraint ¢ = {p,|0 < u}
the following are equivalent.
(1) Each finite subset of ¢ has a solufion in Vj ..

(2) ¢ has a solution in Vy .

Proof Suppose (1). Then every finite subset of ¢ has a support. Hence by the
previous lemma, € has a normal support ¢’. Then by the Barwise's theorem, there
is a solution f to € in Vi .. The second half of the proof is obvious because a
solution of a constraint d is a solution of any subset of d. o

Remark We ecan not dispense with having the upper bound & of the size of
sots. To see this, let ¢ = {o, = anln = 0} U {z, C yln = 0}, where ap = ¢,
@y = @n_) U {an—1}. Note that a, has n elements. Then y must be not in Vi,
for any &, though y can be a hereditary finite set as a solution for each finite
subset of ¢.

The nexl two lemmas are just corollaries of Compactness Lemma.

Lemma 6 For a set ¢ of alomic constraints in L, the following are equivalent.
1. There is no support of ¢
9, There is sone finite set ¢ aof ¢ such that there is no support of .

Lemma 7 (Fiven a positive constraint ¢ in L, the fellowing are equivalent.
1. v has o suppori.

2, ¢ has e solulion m Vg ..

Now we prove a more general case for compactness in which negafion is in-
valved. Note that a canonival constraint has not always a solution. For example,
the constraint consisting of the following literals

z# yz={z}y={y}
iz a canonical support but has no solution,

Theorem 4 {Canonieal Compactness) If ¢ is a canonicel constraint in L then
the following are equivalent.

1. ¢ has o selution in V..

2. Feery fintte subset of ¢ has e solution in Vg ..

Proof Let e = PUN,where P and N are the set of positive and negative literals
of r respectively.

(2 = (1): Suppose (2), ie. every subset of ¢ has a solution. Since every
subset of /? has a solution, it follows from the compactness of positive supports
that there is a solution f of P. We show that f is also a solution of N.

Since ¢ is canonical, then for each negative literal g in N there is a finite subset
(@ of ¢ which is a normal constraint containing g. By Condition 2, {2 has a solution,
sav, h. Iy the unigueness of the solution, f and h must coincide on each variable
of g. Thus [satisfies every negative constraiuts in N. Therefore f is a solution
of o

{1) = {2): Obvions. m]

Theorem 5§ (Solution Compactness) Vi, 15 solulion compact with respect to
L.

Proof We prove the case in which the given constraint ¢ = p U g is a (finite)
constraint such that p and g are the positive and negative part of ¢ respectively, We
assume that g = {~dy,---,~ds } for some integer n > 0. By transforming the given
constraint into the disjunctive normal form, the general case is straightforwardly
reduced to the siinple case,
Let # be a distinguished variable in e, Let f £ V.. let F be a system of
equations
Ip = El‘n.,-li] ='b'11"'~Ir-: = E"n-"'
which defines t as the unique solution to z5. Assume that the constraint ¢ is not
satisfiable with =z = 4. We divide it into two cases. Firstly, suppose that the
constraint F U p is not satisfiable. Then there is some finite subset £ of F such
that
{le=uwp)UE Up
is not satisfiable, for otherwise we can build a support for
{z =z} UE LR

But this means that = = 1 is a selution of p, which contradicts to the assumption.
Now we have obtained a neighborhood {z = ID} LR of £ which separates § off the
set of solutions to z of c.

Secondly suppose that the constraint £/ pis satisfiable. Suppose that FipU
{d;} has a support for some 1 < ¢ < n then pU {d;} is a neighborhood of 1 which
separates | off ¢

Finally, suppose that for any 1 < ¢ < n, EUpU {d;} has no support. Then
no solution of {& = t} U p can be extended to that of {d;}. Then any solution of
{z = t}Upsatisfies ~d;. Hence any solution of {x = {}Up satisfies {~dy, -, —d,).
Hence r = t can be a solution of plg. This is a contradiction. Therefore the last
case is impossible, This concludes the proof. o

Our language L has no functor symbol. Each constant {atom) e of L is inter-
preted as the atom a itself. Also recall that Vy . is defined as the largest class D
of ¥4 such that the following axiom holds:

"E"IE D[I:ﬁbUIEA Vaﬂ'j [= D'--HI.‘EDI= {’311"':::'-:}'

In ZFC~ /AFA, the structure (V4 .. {=,C}) is characterized as a unique model
of the constraint language L = L4 .[X] Thus the satisfaction completeness of L
is trivially true because there is only one model, e, Vy ..

Theorem 6 (Satisfaction Completeness) L is salisfaction complete.

We have proved the necessary properties required hy the constraint logic pro-
gramming schema to have CLP({V4). Also note that solvability of constraints
in L is fully characterized using a syntactical notion of the support. T think that
it is the following kind ol theorem that CLP schema requires as for our case of
CLP(Va)

Theorem 7 Let ¢ = pUg be a set of literals in L with a negative part g and a
pasitive part q. Then the following hold.
¢ ¢ is solvable.
» p has a normal support p' such that for each (=d) € ¢ there s no support of
{d}up'.

Proof Use lemma 4. (]

10

4.1 Solving Equations with Unequations (=, #)

We describe here a resull on constraints which is similar to Colmerauer’s funda-
mental result[s]. Let V = V.. In this subsection, basic constraints are of the
form @ =y or & # §.

A variable o is free in ¢ if there is no equation € in ¢ such that one side of e is
1+ and the other side of ¢ is not z. A variable z which is not free in ¢ is redundant
in ¢ if for any equation € in ¢ such that the one side of € is x the other side of ¢ is
a variable. A set ¢ of equations is frivial if € has a small support ¢ in which each
variable is free. An idenfity is an equation which has the same expression on both
sides, A constraint e is valed if ¢ is true for every assignment for .

Lemma B Let ¢ bo w set of equations. Then the following are equivalent.
(1) ¢ 1 valid.
{2} ¢ is trivial.

(4] ¢ has wentities only.

Prool (2)= (3): Suppuse (2). Let ¢ be a small suppart of ¢ in which every
variable is free. Let n = be any equation in ¢, As every variable iz free in e’y if
either w or ¢ is a variable then u and » must be the same variable. Also il either
v o ¢ is a sel then both of them must be a set and moreover according to the
definition of support the 1wo sets must the same because ¢ is trivial. Thus every
equations in ¢ is identities,

(31 _» {13 As every identity is valid, every conjunction of identities is valid.

{10 = (2); Let ¢ be an equation in ¢, As € i valid, it must be an identity.
Henee ¢ has the support {u = u |« € TC(e)}, which is obviously trivial. o

Lemma 9 fet ¢ = gV -+ V p, where each p; is a conjunction of equations. If
no identity appears in ¢ then ¢ s not valid.

Proof We prove by induction on the number » of variables appearing in ¢.
Assume that # = 0 i.e. there is no variable in ¢. The lemma is obvious in this
A

Assume that 7 > 0 and that the lemma is true for n = 1. Suppose that there
is no identity in ¢. Let a be any variable of ¢. Let b be a set without any variable
ench that there is no oceurrence of b in ¢, Substitute b for each occurrence of r
i ¢ to obtain ¢, From the construction of b, ¢ has no identity. The number of
variahles in ¢ is m — 1. Then by the induction hypothesis ¢ is not valid. Hence ¢
is not valid, O

Lemma 10 [fe=p V-V, isa disjunction such that each p; is a congunciion
of equations. Then the following are equivalent.

(1) ¢ is valid,
{2} Some digjunct of ¢ is valid.

Proof (2) = {1): Obvious.

(1) = (2): Suppose (1). Suppose that (2) is not the case. Then every disjunct
p; of ¢ has at most one equation which is not an identity. Let ¢; Le the set of
equations e in p; such that # is not an identity. As py V --- V py is valid, by a
simple logical operation, it follows that gq V -+« V gp is valid. On the other hand,
hy the previous lemma, g V- -V gy can not be valid since it has no identity. Here
we have contradiction. Henece (2) mnst be the casc.]

11

This lemma can be extended into the following more general one.

Lemma 11 Let p be a normal suppert. If c = py V -+ V p, is a disjunction such
that cach p; iz @ conjunction of equations. Then the following are cyuivalent,

(1) e is true whenever pis fruc,
(2) There is some disjunel p; of ¢ such that p, is true whenever p is true.

(3} There is a support q of p\U {p.} for some disjunct p; of ¢ such that the set of
free vaviables in g is the same as that of p U {p;}. still free in g.

Proof (2)= (1}): Obvious.

(3)=i2): Obvious,

{1} = {3): We prove by induction on the number of free variables in pU c.
Firstly suppose that there is no free variable in pUe. suppose that pis true. Then
there must be some disjunct p; such that pu {p.) is solvable. Hence pu {m} has
a small support, Secondly suppose that (1) = (3} is true for the number m — 1
of free variables in pUe, where m > 1. Let x be a free variable in pU e, Let a be
a new atom. Replace & in p and p, by a to obtain p’ and p! respectively, where
L=i<mn Lete = {p),---.p,}. By induction step there is a digjunct p oof ¢
such that of p{ is true whenever p' is true. It follows directly from this that p; is
true whenever p is true, o

Proposition 8 Let p be a solvable support consisting of equations with no redun-
dant variable. Let g be o sel of unequations. Then the following are equivalent.

(1} For each unequation u # v in g there is no support p' of pU {u = v} such
that the sei of free varables of p' is the same as that of p.

(2} pltg = solvable,

Proof (lj= (2): Suppose (1). Suppose that the negation of (2) is the case.
Equivalently suppose that for any solution [of p there is a unequation u # vin
g such that fis also a solution of w = v. Then by lemma 11 there is some u A
in ¢ such that there exists a support p' of p U {u = v} such that the set of free
variables of p’is the same as that of p. This contradicts with (1). Thus (2) must
be the case,

(2)= (1}: Suppose (2]. Suppose that the negation of (1) is the case. Equiva-
lently let p’ he a support of pU {u = v} for some u £ v € g such that the set of
free variables of p' is the same as that of p. By lemma 11, it follows that p 5w = »
is always true. This is contradiction to (2). Hence (1) is concluded.)

Lemma 12 lLef p be a solvable support consisting of equations with no redundant
variable. Then following are equivalent.

(1} puU{u# v} is solvable.

(2) There ix no support p' of pU {u = v} such that the set of free varinbles of p'
is the same as that of p.

Proof (1)= (2): Suppose (1} and let p' be a support of pU {u = v} such that
the set of free variables of p’ is the same as that of p. By lemma 11, it follows that
p 2 u=rvis always true. This is contradiction to (1). Hence (2) is concluded.
(2)=> (1): Suppose (2). Suppose that the negation of (1} is the case. Equiva-
lently suppose that for any solution f of p such that f is also a solution of u = v.
Then by lemma 11 again there is some u # v in ¢ such that there exists a support
p' of pU{u = v} such that the set of free variables of p’ is the same as that of p.
This contradicts with (2). Thus (1) must be the case. o

12

The following theorem is a casy combination ol the previous two lemmas,

Theorem 9 {Independence Theorem) Let p be a solvable suppori consisiing
of equalions with no redundant variable. Let g be a set of unequations. Then the
folloring are eguivalend.

(1) pilg is solvable.
(2) plU{l} is solvabic for cach 1 € g.

Remark An analogy from a simple set theory might be helpful for understanding
the independence theorem: Given sets pogy. =+ o the [ollowing are equivalent,
where T means the complement of .

. rn"]ﬁl'l e My, T &

o pCpy LU Py

In addition to this seneral property, the independence theorem resls on a
special property that the ‘total space’ X can not be covered by any finite family
of ‘subspaces’ with properly lower ‘dimensions’ than that of X. In general there is
some constraint language in which the independence theorem does not hold. For
example. take the set of liverals,

r=z,r#ar#b

in the domain D = {a.b}. Bothof z =z Az #aandr =z hz # bare satisfiable,
bt the total constraint is unsolvable,

Remark [t is interesting Lo investigate to extend this proposition for the sub-
smnption relation. Normal Unification Lemma was for the case in which the
constraint is normal, i.e. there is no free variable in the constraint.

5 Coinductive Semantics of Horn Clauses

5.1 Horn Clause with Constraint

Let T, @, and I be sels of predicate symbols, function symbels, and constant
symbols, respectively, I p € IT and x,,---, 7, are variables then plxy,....Tx) is
an atomic goal. A goal is a finite set of atomic goals. A constraint Horn clause is
a triple (h, ¢, g) such that k is an atomic goal plao.. .. ,ay), ris a constrainl, and
g is a set of atomie goals, where u; # z; (i # j). We write for (h, e, {b1,---,bn})

h:—eiby, - by

A constraint Horn elause is also called a program clause.

5.2 Computation Tree

A computation state (state for short) is a triple (c,g, V) of a goal g, a constraint
¢ which has a support, and a set V' of variables such that V(g)u W(e) C V.

For the given goal g, the initial state is the state (true,g, V(g)). The atomic
constraint {rue is the constraint which is always true. A function which assigns a
program clause to each atomic goal in g is called a choice for g. Note that the

13

set 5, of choices for ¢ is finite since g and the program are finite sets. The V-
component of states are often omitted when the context is clear. Let s = (¢, 4, V)
and & = (¢".¢", V') be two states. Let v be a choice for g. A triple (s.v,5) is a
transition written

B = -‘ir

if there are ‘renamed versions’ {;:
by © —calfq
of clauses v(a) for a € g such that the following hold.
o VOOV) = d (a#a')
V ”‘LF[‘{I,:;J = .
§'= U{.ﬁ"nl’u C 9']-

s ¢ s an eguivalent constraint to the following.

e h ,K"\,'{ﬁ =hy} Ay

nEY

o V'V UlHVIC) e e domiv)}.

Let 7 be the largest sel M such that if z € M then £ = {s.8) for some 5 and
b such that the following hold,

& & 05 A state,

o bis a partial lunction defined on the set of choices for the goal component
of s.

o ran(h) C M.
o If v € domi(b) then s —, ', where b(v) = (s, b') for some ¥'.

A binary order < is the maximum relation in P such that if # < y then the
following conjunction holds for soe 5, b, 1,

(1) = ={sb) and y = (& V).
(2) domib) C domih'}).
(3) If % € dom(b) then b(v) < (7).

Note that we identily states up to the equivalent constraint component of states.
A maximal element of P is called & computation tree.

5.3 Solution Tree

Let 1) = V4« be the domain of the constraint langnage L. An interprefation of
the program is a function I which assigns a subsel of D" to predicate symbols
p, where n is the arity of p. An interpretation T is a model of the program F if
@y, --,a,) € I{p) then there are a program clause

plar,...,on):i=cl g

and assignment f such that the following hold.
o flog)=oiforl <i<n

* Vi S E e

14

s ifglz.....2mlEQ then { f(z1)y.-. s flzm)) € Tig)-

where m is the arity of the predicate symbol q. By general theory of Aczelll], since
the Horn clause program P can be seen a monotone operator vu interpretations,

there exists the largest model Mg of the program.
Let ¢ and g he a constraint and a goal, respectively, Let f be an assignment

such that Vel U Vig) C dom(f). [is a solution of (e.g) if Vax.f | ¢ and
Mp, f b= a for cach atomic subgoal a of g.
Let A be the set of triples { f.¢,g) which satisfies the following.

o Vie)UVig) © doem([f).
e [isa solution of (e.g).
e ¢ has a support.
A binary relation -+ is defined to be the largest relation on A such that if

[f!'r-:1y] - {f:ﬂjl'!gr]

‘¢ defined then there is a function 7 from g Lo the program P such that there are
teenamed program clavnses’ g

bg t —¢q|0a

of <{a) which satisfies the following.
s f'isan extension of f.
o g = {gala € g}
o ¢ is the constraint equivalent to
e N\ fa=ha} hea
uEyg
e VICHNV(Cp) =& (a # a').
e dom([INV{C,) = ¢ forany a € g.

We write [f,e,9) —- ([',¢'.¢") indicating v explicitly.
Let P be the given program. Let W be the largest set M such that if £ € M
then # = (£,b) for some s = (f,¢,g) € A and a fanction b such that the following

hold.
o dom(b) consists of choices for g.
o ran(b) C M.
o 5 —. & if b{v) = (&',8') for some ¥

Let < be the largest binary relation on W such that if r < y then the following
conjunction holds.

e & = (s,0)and y = (s,b') for some s.b b,
o dom(d) C dom(b').
o If v € domib) then b{y) < V'{y).

A solution tree is a maximal element of (W, <). A path is a minimal element
of W with respect 1o <.

Lemma 13 If z = (s,b) is a path such that dom(b} # & then the following con-
junction hold for some ¥, s', and .

o dom(b) = {1}
¢ bl = (& V) is a path.

. 5 —. 5,

Proof It is obvious by the definition of path. [

Let Z be either W or 7. Let X and Y be disjoint sets of new variables. Let
F be a system of equations. and = is a distinguished variable in X. A quadruple
(E,X,Y,z)is is a construction with the root z if the following hold.

o For each = ¢ X there is an equalion @ = {u,y) € E such that « € Z and
ye Y.

e For each y € Y there iz an equation y = b € E such that & is & function
which assigns variables in X to choices,

e lfr=(uy)e k y=>be E biy)=x"and £ = (v, ¢) ¢ E for some y'
then w —., u'.

o every variable in X can be accessed from =,

By the value of construction (E, X, Y, 2} we mean the value of the root variable
z of the solution of the construction with respect to X UV

Lemma 14 Given{ay,---,a,) € L{p) and a path p — ({f.trve, {p(zy,- - 2,0}], ¢)
where f{z;) = a; (1 <1< n}j, there is a construction E with z such that the value
of the construction is p.

Proof & is constructed in a standurd way by induction on depth from the root
variable z. rl

Lemma 15 The following are equivalent.
|!'-|!l.;| [u1 [Sl ~'ﬂ':1.} C I{’P‘]

(2} There is a path ({ f,true {p(z1.- -+, 2,)}),b) for some b such that f(z;) = a;
f1<i<n)

Proof Suppose (1). By the previous lemma, there exists a construction £ with
the root = which has an equation z = ((f,irue {p(zy,---,2,)}),2") € E, where
flzid = a; (1 < ¢ < n). By the solution lemma, there exists a unique solution of
the system. The solution to the distinguished variable z is clearly a solution tree
which salisfies Condition (2).

Far the converse, suppuse (2). Then [is a solution of p(zy,...,%,) by defini-
tion. Hence {ay,---.a,) = flry),- -+, flz,)) € I(p). O

Lemma 18 (W, <) iz chain complete,

Proof Suppose that the following monotone sequence is given.
T < Ty = e Ty e,
Let us define a sequence X; (i > 0) inductively.
o Xg={z;}s > 0}.

16

o X,y = {b(z)|3s (2,b) € X;,x € dom(b)}.

Let X = |J{X,]i > 0} and A = [J{dom(b)|35 (s,b) € X}. Let A" be the set of
finite sequences over A,
Let us define a partial operation of & € A" on r = (5,b) € X inductively.

s rlc)=ur
o z{ya) = b{y)(e) where (7 € A).

where £ is the empty sequence.
Then consider the system of equations for o € A®

Yo = (€4, Y5)

such that
« there is some >, and b such that r;{a) = (as,0)
o {7, Yy) € Y, if and only if there is some r; such that xj(ay) is defined.

This system of eguations are well defined, though some o € A may fail Lo have the
corresponding equation. Hence by the solution lemma there is a unique solntion
of the system. Let y be the solution to y.. Now let us show that y is the least
upper hound of the family =, (0 < ¢). Suppose that z is an upper bound of the
family, i.e. #; < = for all 0 < i, By comparing the defining system of equations
for = with that for y, it follows that ¥ - =. a

Lemma 17 (Maximal Solution Tree Lemma) If r is a solution iree m W
there is a mazximal one ' in W such that z < 1’

Proof let X = {z & W|z = z}. By previous lemma, any monotone family of
elements of X has the limit with respect <. Hence, by Zorn’s lemma, there exists
a maximal element =’ in X. o

5.4 Soundness and Completeness

(Jur formulation of soundness and completeness is that there is a simulation be-
tween W oand P,

Let T(§, L} be the largest set X of sets such that if z € X then z = (a,b)
where ¢ € § and b is a partial function from £ to X, An element of X is called a
tree over § and L. Let X; = T(S5;, L) for i = 1,2 and f is a function from 5, to
5, then there is a function F from Xy to Xa such that

F(lz,y)) = ((flz), F ¥}

where Foy = {F(z)iz € dom(y)}. We write [for F. Particularly we call f* a
hereditary projection if [is a projection.

A subset R of W x P is a simulation between W and P if the following hold
whenever &y,

¢ 2 =((f,c.9).b) and y = ((c, g, 0).
o 1 dom(b) # ¢ then b{y)R¥(7) for some v € dom{b) 1 dom(b’).

Lemma 18 There is the marimum simulation,
Proof Take the union of all simulations between W and P. o

17

Lemma 12 (Simulation Lemma) For the mortmum simulation R, the follow-
tng are equivalend.

(1) Ry

(2) There exist paths p < r and ¢ < y, such that pKRy.

Proof Suppose (2). Then hy definition of p < z, it follows that = = (s,b],
p = (s {(7.71}), and p' < b{7) lor some path p'. Since pRg also it must be the
case that y = (w8}, ¢ = (. {{7.¢}}). ¢ = ¥~} and p'Rg’ for some u, ¥, and ¢,
Hence from the last two formulae b+ | BV« lisebtained, Since I is maximal, =y
is ohtained.

For the converse, suppose (1). By definition of & [y we can construct a sequence
ri, yi (¢ 2 0), where 24 = & and yp = y. such that 1he following hold.

o xRy
o 1= ((fiegi). b

e bily)= o0

v = ((eg,g:),d;).
- l"{4'[']']' = Wi+

From this we write a system of equations as follows.
wi = (Ufcigih Al v) 1)

v = (e gi) A v 1)
By the solution lemma, let p and g be the solutions to uy and vy respectively. Dy
definition of < and R, it is easy to sce that p < o, ¢ < y, and pRy. O

Let = be a projection such that ={{z.y.2}) — (w2}

A path of a computation tree és canonieal derivation if the conjunction of the
conslrainl appearing in the path is canonical. A computation tree s conomical i
each path of the tree is canonical.

Theorem 10 (Soundness) For any canonical computation tree y in P there is
a solution tree & in W such that » Ry.

Proof Let g be any path of a computation tree y in P. We apply the canonical
compactness theorem Lo select a global solution f to the path ¢, Make a family
of solutions by restricting f to cach step ou the path of y. Write a system of
cquations

o= e, n)

5= {{‘ﬁu Mgt }}
far i > 0 such that yo = ¢, Le. g is the solution to .
Apply the solution lemma to the following system of equations

Ty = [l:_.f!-fl*gi}:-“'t}

uy = {[TI*IJ""] ;I}

where f, is the above mentioned restriction of f to V{e;) U V(g;) for ¢ > 0. Then
let p be the solution to xg. It is clear that #%(p) = g. By Maximal Solution Tree
Lemma, there is a solution tree z such that p is a path of z. Hence by Simulation
Lemma o Ry, o

18

Theorem 11 (Completeness) For any solution tree ¢ there is a compulation
tree y i P such that xRy.

Proof By definition of <, zRx*(x) is true. DBy Maximal Solution Lemma
for T. there existz a computation tree y in P such that =*{z) < y. Therefore
rRyisobtained. o

Theorem 12 (Negation As Failure) Let g be a goal with variables £, -, z,
and q he the computation tree of g, i.c. ¢ = ((true,g),b) for some b. Assume that
an assignment [such that flz;) = & where £ € V4 ¢ 18 not a solution of g. Then
there is a finite constraint ¢ such that [is a solution of ¢ and that for any ¥ there
is wo romputation tree of the form ((c,g),b').

Proof For any path p < g such that
go = p = {{co,g0) {{yo. @)})

g1 = ((e1.m :l-{[.l"h'ﬁ}}:l!
gz = t(cibg?f]! {(TI?'}H}})!

where ¢ = Iruc, go = g, and 7o € dom{b), there is some g¢; in the path such
that no extension of f satisfies ¢, , for otherwise f can be extended to the solution
of 4. By applying the standard argument of Kénig's lemma, the set d of such
conslraints ¢, is finite:

d= ey, en}

for some integer n. Then by Solution Compactness Theorem we can give a finite
‘cover” constraint ¢ of (&,---,&) such that ¢ has no common solution with «;
above. It follows from the construction of the constraint ¢ that for any b there is
no compulation tree of the form ((c, 5).4") o

6 Towards Application to Term and Record

In this section we see that the following standard constraint languages are embed-
ded into L.

o Unification theory over (infinite) trees.
¢ Unification theory over (infinite) records.

The domains of trees and records are two special subclasses of Vy ., respectively.

Let us recall some notations: X is an infinite set of parameters. A is a finite
set of atoms. & is a positive integer. Vi .[X] is the set of bounded hereditary
linite sets with x over AU X

19

6.1 Term

Let T be a signature. Each symbol 0 € © is assigned a non-negative integer arity.
A function b i an assignment for a symbol o € X if dom(b) = {1,--- n} , where
n 18 the arity of «.

Let Te[X] be the least set M such that the following hald.

« X O A
o If # € ¥ and b is an assignment for o such that ran(d) © M then o € M.

Let T3[X] be the largest set M such that if 2 € M then one of the following
hold.

L X

* o= (objforsome 7 ¢ £ and and an assignment b for o such thal ran(b) ©

Af.

An element of TE[X] is called a ferm. An element of TR[X] is called a (first
order) finite term. An element of T3[X]\T5[X] is called an infinite term. An
clement of Te[d] is called a ground term.

6.2 Record as Hereditary Function

Let A, T be two finite sets of labels and constants, respectively. Let RY [X] be
the largest set M such that if f £ M then [is a function from a subset of A irito
FUX U M. Let By r[X] be the smallest set. M of functions f from a subsel of A
inte 'U X U M.

Elements of B ([X] and R4 r[X] are called o record and finite record respec-
tively. A non-finite record is called an infinite record. The null function ¢, i.e.
the emply set, is a record by definition. An elements of R plé] is a pure record.

A binary relation C is defined to be the largest refation between pure records
such that if # C y then the following hold.

o Ifeitherz e l'or y €T then » = g

¢ If 7 and y are functions then dom(r) C dom(y) and z(a) C yla) for any
a © domir).

It is clear that the sel of pure records is a partial ordered by . We call this
relation hereditary subfunction order. This fact is in contrast with that of the
hereditary subsct relation, which is not partial order relation on Vi .

6.3 Unification over Terms and Records (=, C)

The imput of the unification algorithm is a finite set of equations over parametric
terms aud records. The output is cither the set of sulved forms of the input if it
exists or undefined otherwise. The solved form is a system of equations.

The unification algorithm goes as follows: Given a set of equations, repeat the
following applicable steps 1o the set as far as possible until there is no applicable
one. When it terminates, check whether there is a conflicting equations or not.
It is easy to see that any sequence of these steps will always terminate. This
algorithm is an extension of the standard unification to the records.

(1) Il = z is in the set then remove it.

{(2) If £ = yis in the set then replace all the occurrences of y with =

20

(3) If w = = is in the set for a non variable u then replace it with z = u.

{(4) If &£ = w and 2 = v are in the set for non-variable terms u and v then remove
one of the equations whose size is not less than the other and add u = v.

(5) If flug, -, wa) = flvg.ooo) is in the system then replace it with the n
equations u;, = v; for L < ¢ < n.

(6) If {{ur, w1) - (an.n)} = {(a1,v1)- -1 (Gn,¥n)) is in the system then re-
place it with the n equations u; = v; for 1 <4< n.

A set S of parametric terms and records is called a conflict if one of the following
conditions hold.

¢ 5 has both a record and a non variable term.
e 5 has two terms with different prime functors to each other.

The equation u = v is called a conflict if the set {u,v} is a conflict. Tor ex-
ample. equations, 1 = 2, f(z) = {{a,¥)}, fla) = f(a.b) are conflicts, respectively.

6.4 UNION-FIND Based Unification

I'here is an alternative algorithmn based on UNION-FIND procedure. UNION-
FIND algorithm can be applied to the records unification. As a fact UNION-FIND
algorithm can be seen as computing minimum bisimulation relation generated by
the given set of equations. The unification problem for a set of equations can be
translated into a UNION FIND algorithm[2] in the following way, whick is well
known to have an almost linear complexity. First of all, we can assume without
loss of penerality that any argument of terms is either a constant or variable and
thal no equation has non—variable terms at the both sides. If there is an equation,
say & = {la,{{b,c)}),(d,€)}, which does not satisfy the assumption, we replace
the subterm {{b,c)} with a new variable y, and add the eguation y = {{b,e)} to
the system. It is clear that by repeating this replacements we obtain in a finite
number of steps a svstem of equations which satisfies the assumption. Also it is
clear that the number of generated variables is proportional to the ‘size’ of the
given problem.

Secondly, we transform the unification problem into the UNION-FIND prob-
lem by replacing each of the equations with UNION-FIND commands according
to the following rules.

& =1u = r=uwhere u is a variable,
* L= {[_ﬂ]-r""l}\"'lll:“ﬂ-.uﬂ]l} = A-RG:] = M’]ﬂ"'1"'!'3{:;2,.l = tig.
o 2= f(uy,.. un) = FUN. = fARGY = wy,---, ARGE = u,,.

where r and y are variables, u, u; are a variable or constant, ARGE and FIUN ﬂ
are new variables,

Let €1 be the set of variables and constants which appears in the final list of
commands. Tt is easy to see that both the size of 2 and the size of the UNION-
FIND commauds are proportional to the size of the input problem. Since it is well
known that UNION-FIND problem has an almost linear algorithm, it follows that
our unification problem has an almost linear complexity algorithm. Note that this
result does not depend on whether occur—check is performed or not.

21

6.5 Boolean Constraint

It is observed that constraint solving is often reduced to Boolean constraint, i.e.,
propositional calculus, The Boolean constraint may be useful in the case that the
constraint language is given as a non lorn theory, In the non Horn case the naive
closure method or saturation method will not work well, thongh these method
does work well in the standard unification. The constraint may Las negative or
disjunctive constraints. It is often the case that there exists some translation
method from the constraints into Boolean cornbination of atomic ones. We have
shown above an important idea of the elimination of functor or set notation. The
following example is to eliminate set expressions:

flapuy) e u)b T = uy Trfag he Ay, Loafay,

where complex expressions like r/a are treated a single variable, Fundamental
operations are the closure operation of the congruence relation such as hisimula-
tion. TINION FIND is one example of such kind of operation. Aunother important
one is the transitive closure operation of partial order relation like subsumption
on the domain of the records,

Many non-trivial class of constraint languages can be reduced to Boolean con-
straint language, For instance, Johnson's attribute-value logic[#] and Smolka’s
feature logic[13] are based on some translation from their logic into some sub.
language of quantifier free first order logic, i.e., ronghly speaking, propositional
calculus or Boolean constrainl. So we review a Boolean constraint language and
put here some necessary stuff in order from the point of conrstraint solving. By
doing so we show that our constraint langnape over non- well-fuunded sets can be
thought even as an implementable langnage of practical efficiency.

A Dovlean olyebre B = (D, A0y, -, 1.0) and a Boolean expression are defined
as usual. Also a Hoolean ring B = (E.-. +.1,0) is defined as usual.

Given a Beoolean algebra B = (1,4, v, =,1,0) we defiue the Boolean ring
ft = (D, +,1,0}) by the following equations.

LYy=r-y==xhy

Tty =z A oy)vi(~a)ay)
[t is easy to see Lhat the following hold,
Ny = lr byt oy
L |. I’ I
A Y=y

These rule gives a transiation = of Boolean expressions e into Boolean ring
expressions 7(e). Of course ¢ is satisfiable in B if and only if 7(¢) is satisfiable R.
In Boolean ring, the followings hold:

o If az = b then ab — b

o Ifar=>4then (1 +a)iz+b)+b=0u.

o Ilx =(1+a)y+bthen az = b,

As a corollary, the following conditions are equivalent.
® ar = b is sulisfable.

s ab = b is satisfiable.

22

o x = (14 aly+ b for some y.

Hence it is well nnderstood that there is a well known satisfiability check
algorithm of a Boolean ring expression based on variables elimination. See Dinchas
et al[6]. for instance.

7 Concluding Remark

By the use of non-well-founded sets and compact constraint, declarative and op-

erational semantics becomes essentially the same one. In this point, our semantics
is relaled Lo constructive type theory in the sense that elements of the semantics
of the queries are proof trees which are decorated by satisfiable (normalizable)
constraints at each node. A goal can be thought as a non-canonical constraint.

As an application of the present work,-I would like to use it for semantics of
meta predicates of logic programming languages, which is a related motivation of
this work to STASS(Situation Theory and Situation Semantics). Mela predicates
such as var or cul of Prolog is essentially defined operationally. 1 hope that the
clear structure of our semantics in AFA sets will provide a good new setiing for the
semantics of these meta predicates. A guiding idea is that meaning of commands
arc as constraints of computation states or sitnations on the trees as hypersets.
Also [feel that constraint logic programming can be safely renamed to be as Infon
Logic Programming by seeing constraints as infon or soa in the sense of the STASS
literature. For instance we would like (o see that the infon & = y is supported by
a phvsical computation state s, i.e.

sEL=,2,¥ P .

The situation or state s have variable cells for 2 and y with pointers from = to y.
However details are outside of the present paper.

Acknowledgments The author would like to thank Hideki Yasukawa,
Kaoru Yoshida, Makoto Imamura, Satoshi Tojo, Hideyuki Nakashima, Koiti Hasida
for giving useful comments on this work.

References

[1] P. Aczel. Non-well founded set theoy. CSLI lecture note series, 1988,

2] AV. Aho, LE. Hoperoft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison—Wesley, 1974,

(3] J. Barwise. The Situation in Logie. CSLI Lecture Notes 17. CSLI Stanford,
1959,

[4] J. Barwise and J. Etchemendy. The Liar: An Essay on Truth and Circular
Propasitions. Oxford Univ. Press, 1987.

(5] A. Colmerauer. Equations and unequations on finite and infinite trees. In
Proceedings of the Second International Conference on Fifth Generation Com-

puter Systems, Tokyo, 1984,

(6] Mehmet Dincbas, Helmut Simonis, and Pascal van Hentenryck. Extending
equation solving and constraint handling in logic programming. Technical
Report IR-L.P-2203, ECRC, 1987,

23

7

71). Jaffar and J.-L. Lassez. Constraint logic programmig. In Proceedings of
the Ljth ACM Symposium on Principles of Programming Languages, 1987.

i8] M. Johnson. Aitribute-Value Logic and the Theory of Grammar. CSLI Lec-
ture Notes 16. Center for the Study of Language and Information, Stanford
University, 1987,

[#] Peter J.Suckey. On the foundation of constraint logic programming. Technical
repart. Department of Computer Science Monash University, Victoria 3168,
Australia, Augnst 1987,

10| K.Mukai. A system of logic programming for linguistic analysis. Technical
leport TR-540, 1COT, 1990. To Appear also lrom SRI Tokyo series.

[L1] D. Park. Concurrency and automata on infinite sequences, In Proceedings of
the 5th GI Conference, number 104 in Springer Lecture Notes in Computer
Science. Springer, 1981.

[12] G. Smolka. Feature constraint logics for unification grammars. Technical
Report IWBS report 93, IBM Deutschland GmbH, 1954,

{13] G. Smolka. Feature logic with subsorts. Technical Report LILOG Report 33,
IWDBS, IBM Deutschland, Postfach 80 08 20, 7000 Stuttgart 80, W. Germany,
May 1989,

24

