ICOT Technical Report: TR-561

TR-561
Abstract A'UM Machine
by
K. Yoshida & T. Chikayama
May, 1990
©1990, ICOT
Mita Kokusai Bldg. 21F {U3) 456-3191—5

“ :D | 4-28 Mita 1-Chome Telex ICOT]3294
Minato-ku Takvo 108 Japan

Institute for New Generation Computer Technology

Abstract A'UM Machine
Kaoru Yoshida * and Takashi Chikayama

Institute of New Generation Computer Technology (ICOT)
1-4-28, Mita, Minato-ku, Tokvo 108, JAPAN

6 March, 1990

Abstract

AWM is a stream-based concurrent object-oriented programming language.
This report describes an abstract A"MA instruction set, called A"MA o |, and
its interpreter, called the abstraet A'LAM machine, The A4°LWA-o instruction set
does not require any special hardware: it can be implemented o any forn of soft-
ware, firmware or hardware. Key features of the A'WM-« instruction set are its (1}
merger-intensive design, (2) sequential control, (3) sender-subjective transmission,
(4) implicit argument handling, {5} implicit {reezing/melting of every built-in op-
aration, and (6) weremental garbage collectjon. I is shown thal a sofiware-naive
implementation of the abstraclt A'4A machine on a conventional von Neumann ma
chine has attained ressonable performance. With optimization and improvement,

higher performance can be expected.

1 Introduction

A'UM is a stream based concurrent ohject oriented programming language
[Woshida and Chikayama 838, Yoshida S0A].

This report describes an abstract A'UM instruction set, called A'UHM o , and its
interpreter, called the abstract A'UM machine.

*email address: yoshida] @icot jp, %icot jp@relay.cs.net }
Yernail saddress: chikayamal@icot jp, %icot jplrelay.csnet }

I INTRODUCTION 2

1.1 Objectives

The abstract A"UM machine has been designed with the following aims:

1. Abstractness and Portability.
The A'UM-a instruction set should be abstract enough for it to he implemented
in any form of software. firmware or hardware, The design should exclude machine-

dependent features as much as possible.

2. Efficient Sequential Implementation.
The abstract A"MM wmachine should run efficiently, especially on conventional von
Neumann machines in which efficient sequential control can be exploited. For effi-

clency, sumne resirictions and extensions are introduced to the language.

The present design described in this report assumes the use of a single processor.
Just one schedule table is prepared. Considerations for parallel execution contral,
snch as load-balancing, have not been made vet. Parallel implementation will be

our future work,

3. Lrtensibility to Shared Memory Parallcl Implementations.
Although the abstract A"2M machine is currently implemented on a single proces-
sor. it should be possible to extend the design for future parallel implementation on

a shared-memory multiprocessor,

1.2 The A'UM Computation Model

We briefly surmmarize the A'U{M computation model so that this report will be self-
contained. For more detail. see [Yoshida 90A].

The A'UM computation model is the reduction of a directed graph which consists of
a finite set of arcs and a finite set of nodes. Each arc is a pair of terminals, called the
indel (head) and the outlet (tail), and represents the relation that the nodes ahead of the
inlet should preecde those behind the outlet.

When an arc s created, its two terminals, inlel and outlet, are both undefined. Each

terininal 15 later instantiated to one of the four kinds of concrete nodes:
1. objects, each of which has an incoming arc
2. messages, each of which has an outgoing arc and an incoming arc

3. jomnts, each of which has an outgoing arc and two incoming arcs

I INTRODUCTION 3

4. nils, each of which has an outgoing arc
An incoming arc to a node is an arc whose head designates the node: an outgoing are Lo

a node is an arc whose tail designates the node.

O#ﬂu— {—O‘l—" 4—1_ J—[:}

p

v
™
{a) object (b} message o {d) nil

{c) joint '

We call a sequence of messages each connected by ares a stream, and a structure composed
of streamns and joinls a tree of streams. A tree of streams is formed toward cach object,

Objects and messages may contain terminals of arcs. These terminals are undefined.
The terminals in a message may be instantialed to concrete nodes when the message
arrives at some object. The terminals in an object may be instantiated (o conerete no ies
when the object is activated. These arcs are used for connecting one tree of streams
toward an object, with another three of sircams toward ancther object. Tlence. as a
whole, a directed graph, which is composed of trees of sireams each toward an object,

cxists during computation.

Lach joint represents an ordering relation of two incoming streams. There are two

kinds of joints: append joints and merge joints.

® An append joint is a relation in which the messages from the first incoming stream
should precede those from the second incoming stream and should follow the ot

going stream.

* A merge joint is a relation in which the messages from the two incoming streams

should follow the outgoing stream in any order.

Instantiating an undefined terminal lo a concrete node is called chaining; releasing a
concrete node from a terminal of an arc is called unchaining.

Operationally, cach joint unchains the two incoming streams, chains a stream that
should keep the above ordering relation, and connects it to the outgoing stream.

When the inlet of the outgoing arc of a message or nil is instantiated to an object,
the object may be activated. When au object is activated, it unchains the message or nil,
creates new nodes and ares, and chains them.

Thus, the reduction consists of create, chain and unchain operations. Given a graph,

the graph is reduced until it contains no more arcs with undefined terminals.

I INTRODUTCTION 4

For intuitive understanding, we name the basic chaining and unchaining operations as

follows:
e send: chainiug the outlet of an arc and the inlet of another arc to a message
o close: chalning an arc to a nil
® VEOFITE 1]”(']'IHi.]!-ITIE: A 'I'I'IF‘HHHEF‘ frnm Arl Are
o s_closed: unchaining a nil from an are

Hereafter. we nse the word. object, in a different meaning. We will refer to what has
been called an object as a genemfion. Among those nodes which a generation may create,
there is at most one representing its wert generation, called self. A sequence of generations

will be ralled an object.

1.3 Characteristic Features of A l{M

The A'l{M computation model 15 characterized by three features:
L. Object Oricnlation.

e (bjecls communicale with each other via message-passing.

¢ Fach object consists of generations

o Ohjects may hold terminals of streams in their slots.

s Primitive objects such as integers are treated in the same way as abstract
objects,

¢ Conditional branching and looping are both realized in the same framework of

an ohject, called a volatile object.

& Multiple class inheritance is supported for the purpose of minimizing the source

prograi code size.
2. Stream Compulation.

o Transmission of messages hetween the sender object and the receiver object
are explicitly represented as a scquence of messages, called a stream. For each
object, the stream toward 1t is split as the number of senders increases. As a

result, a tree of streams is formed toward each object.

i INTRODUCTION b

e Every time a stream is split into two, the joint of the two branch streams
represents either of the two kinds of binary stream operations: append and
merge. If the joint is append, the messages from the first incoming sireau
arrive at the destination object earlier than those [rom the second incoming
stream. If the joint is merge, the messages from from the two incoming streams
arrive at the destination object in a nondeterministic order.

Note that in either joint, the order of the messages in each incoming stream 1s

preserved in the order of their arrival at the destination object.

» Messages may contain lerminals of streams as their arguments. Such a mes-
sage that contains terminals of streams as its arguments works as a stream
connector. When a message arrives at an object, each argument terminal is

connected to a stream in the receiver’s scope.
3. Relational Programming.

o P'rograms can he declaratively read. How to execute a program is independent
of how to write a program. A tree of streams can be constructed [rom any
part, whether from the part closer to the destination object or from the part
farther from the destination object. 'I'he destination object may be created at
any time, whether earlier or later than the construction of the trec of streams

toward it

In the implementation of A4'2M | we should consider how to implement the following

efficiently:
& Cenerations

Slot access

Primitive objects and built-in operations

Volatile objects

e (Class inheritance and class management
e Sireams and joinis (especially mergers)

Relay and transmission mechanisms

I INTRODUCTION 6

1.4

Key Features of A'l{M-a

The A'14M-a instruction set is characterized by the following features:

1.

bz

Merger-infensive Design.

lach rommunication path between the sender and the receiver is constructed of
mergers. Each merger is a relav which buffers messages while the destination s
undefined. and forwards them when the destination is determined. The merger

function is also embedded in each ahject,

Sequential Control.
The A'LM-n instruction exploits sequential and efficient control. which imposes

some restrictions on the language specification.

la) Lecewtion Ceder Dependent,
The vrder of messages which should be seut to the same destination is deter

mined by the execution order of sending instructions.

(b Sequentiol reculion of Generations.
For each object, no more than one generation is created. Concurrency assuming
the existence of multiple generations 15 restricied. Those programs in which
a past generation of an ohject waits for a future generation of the object to

return some result will fall inte deadlock (Fignre 1),

(] Sequential beeculion of Conditional Objects.
Conditional (volatile immutable) objects appearing in a method are executed
sequentially in the order in which they occur in the method. Concurrency
assuming the parallel execution of creator objects and their conditional objects
i restricted. Those programs in which earlier appearing conditional ohjects
wail [or the result of later appearing conditional objects will fall into deadlock

[Figure 21

3. Sendev-Subjective Transnrission.

The sender actively delivers each message to the receiver, rather than the receiver

itself trving to draw messages toward it.

Implicd Argument Handling.

Whien an object is activated by the arrival of a message, the arguments of the
message are already loaded on registers, Creation and setting-up of a message is
embedded i message-sending mstructions. There are no instructions to explicitly

handle the arguments of messages.

=T

I INTRODUCTION

5. Implicil Freezing/Melting of Every Built-in Operation.
Any built-in instruction is implicitly {rozen (converted to a message) while the
destination is undefined, and melted (converted to the built-in instruction) and
execuled when it i3 determined.

6. Incremental Garbage Collection.
The garbage collection funclion is embedded in cach communication mstruction.

class @arryl.

cdpid=X, 7Y, I} =>
:de2(X, B, "2} % 1do2* is executad sarlier than do3
-403{Y, "R}.

ide2("X, TR, TD =2
(K » 0 /% (R == ok} 7 { % waiting for B to be daterminsd
sterue =» ok = TL;
stfplme => no = "E;
1.

Apd(=¥, R} =>»

¥ = “R. % R is connecled to ¥ hare in "dod’.
and

Figure 1: Deadlock caused by restricted concurrency (case 1}

class porry?.

del"X, ¥, "L, R} =*

(L =m gl T % rupnable aftar § 48 datarmined.
s'trua - £ = TR O
ifaise =» T = "R

jl‘

(Y == ok) 7 (% Q is determinad here.
sitrue -» ok = °Q
fales -* ne = 0

and ,

Figure 2: Deadlock caused by restricted concurrency (case 2)

1.5 Organization

This report is organized as follows:
Section 2 describes the system architecture, including the systern resource management
and the top level of the abstract A'UM machine.

[INTRODUCTION B

Section J§ describes the data representation: what kinds of data may reside in the
memory and how they are represented.

Section 4 describes the A"UM-a instruction set, focusing on how the basic instructions
are executed.

We have been implementing a software emulalor of the abstract AWM machine,
which s wrilten in C++ and runs on the Sequent Symmetry S81 (CPU 80386, write-
hack cache) machine, Section 6 shows the basic performance of the latest version of the
implementation.

Finally, Section 7 concludes this repart, listing several problems left unsolved or under

consideration, and stating our future research plans.

2 SYSTEM ARCINTECTURE
2 System Architecture

2.1 System Overview

A runtime environment of the abstract A’ UM machine is illustrated in Figure 3.

ClassTable “registers? FrotoecolTable
e - i
I . | | |
b | =4 —casman= | ==
ScheduleTable | CurrentDbject CurrentClass CurrentMessage |
$emmmmmmmmma= + | w=—— + * = i —————— i
| « |11 | | ¥ | | = | I
brmmmm e [| Ao e | o4 #om—ammma et A ————— |-+ I
|===={ | I | I
femmsa== + | | pmmmmmm—— + + _———— 1
I + | | elass template I I
1 class table | +==+-2[HEADER B B *
| #=5[size 1 11 1 [nase 1 | | protocal table
| [fulloass 1 11 | L versian 1 1 *=>[gize]
| [3 1 11 | [supera 11 [: 1
| [entry J=+1 | | [#ina / Soues] | PID®2[aricy/name 1
| [: T 111 1 [eeferances 1 1 [mades 1
|+ *I 1 | T slet dict. 11 []
| I elass infermsation | | | [methad diee.] |
11 table I I | [code module 1 1
| +=*| HEADER | I O |
| L name] 1| #e—————eesemsoe + |
| [maxt 1 1 I |
| [class 1-=1-+ abject | |
| [subs 1 +-»[HEADER 11 | messaga
| [back refersmces J | [M8G | first Jelmmmmmpme [H3G | ezt]-—-3
| | [m&d | last ==k L FID 1
| gchudule table | [0BX | ;ext J-1-+ | [arg 1
#==3] size 11 I class I-+ 11 [:]
[] 1 1 L prierigy 1 | |
antry[0B] | first J==+ [glebal] | === last messige
[i] [oBI | last 1-—+ [creater 1 |
L i 11 Eluts 1 #--=% mext object
|
+=» last ohject
oRREENCS =

Figure 3: A runtime environment of the abstract A'{M machine

2 SYSTEM ARCHITECTURE L0

Table 1: Special Registers

| Local Registers Content
ScheduleTable pointer to the schedule tahle
CurrentPriority the priority of the eurrently executed object
MaximumPriority the highest priority of the executahle ohjects
CurrentObject puinter to the currently execated abject
CurrentMessage pointer to the currently cxecuted message
CurrentClass puinter Lo the class template of the currently executed object
CurrentClassName class identifier of the currently executed object
CurrentCode puinter to the top of the currently executed method
InstructionPointer | pointer of the currently executed instruction
LocalleapTop pointer tu the top of the local heap
LocalHeapBottom pointer to the Lop of the local heap
FreeBlockTable pointer to the free block table
Global Registers Content
ClassTable pointer to the class table
ProtocolTable pointer to the message pratocol table
GlobalHeapTop pointer to the glabal heap
GlobalHeapBottom pointer to the global heap

2.2 Registers

The following set of general registers and special registers, each of which is 32 bit long,

are prepared.

(1) General Registers
32 registers, RO, R1, ... R31, hold temporary information during the execution of a met hod

of an object.

(2) Special Registers

The lollowing set of registers holds the current execution environment and some global

information used beyond methods and objects.

2 SYSTEM ARCHITECTURE Ll

2.3 Memory Management
2.3.1 Memory Space

The following memory space is assumed:

¢ Byte Address: The maximum {or implementable) memory space is 4G bytes in

which a 32-bit address is given to each byte.

e Word Access: Memory access is done for every 32-bit word. The least significant

two bits of cach word are masked.

¢ Word Alignment Allocation: As for memory management. there 15 1O Con
straint except that memory area is allocated with word alignment. An allocated
block of memory may be of any size. The most significant 28 bits are reserved for

the ellective address.

¢ Full Address Space: The entire address space is accessible. that is, the whole
32-bit address is available.

2.3.2 Memory Allocation

Memuory space is managed 1n a heap-based manner.
(1) Global Heap

All processors share a single memory space, called the global heap. compaosed of pages of
fixed length. Lhe top and hottom of the global heap are kept in registers, GlobalHeapTop
and GlebalHeapBottom.

(2) Local Heap

For each processor, the memory space it can privately consume is called the local heap,

whose top and bottom are kept in registers, LocalHeapTop and LocalHeapBottom.

1. Initial Allocation: Al start-up time, a certain number of pages are given to each

processor [or its local information such as a schedule table.

2. Dynamic Allocation: During executivn, when a processor attempts to take some

arca from the local heap, if the [vllowing condition holds:

LocalHeapTop + (Requircd Amount) > LocalHeapBotton

2 SYSTEM ARCHITECTURE 12

then a sufficient number of pages are taken from the global heap.

S ——
| LacalHeapTop . |
L T e |-+

I | SRS RS AT |

I | AT used S0 0400

I 1 FAFREFREF TR FLEEE |

| L &

Rt | I

] unused |

— |

| B e e -+

LT —— P,

| LocalHeapBottom » |

-

2.3.3 Free Block Management

The free block table is a table to manage free (or garbage) memory blocks, listed according
to size. Hegister FreeBlockTable points Lo this table.

e L L T T — Y

| FroaBlockTable = |

$m e —————— | =+
i L et
#====3 |RCIFTEH | black size |
T Ty
| entryli] A >
A}
| |
el T T
| entrylil e
B
I 1
e +*
| antey[m] ——————e >
Fomrmm—— e ————— Y
| athars | firsg #====== -]
| bmmm———— +
i | lagt #=====s »
] e —————
I | min size |
1 e ————— +
I | max mize |
o ———— o s . e

where entry[n] points the first one of 2° word free blocks
others keep a list of free blocks longer than 2™ words
first points to the first element
last points to the last slement

min the minimum of the listed free blocks sizes
min the maximum of the listed free blocks sizes

2 SYSTEM ARCHITECTURE 13

2.4 Scheduling Control
2.4.1 Schedule Table

Executable objects make a queue according to their priority. A schedule table is a table

to manage this qucue. Register ScheduleTable points to this table.

o o e e e
| SchaduleTable = |
e ————————— | =
] Pmmdma o —————— =
pmmm— *IRCISTE | Bleck aize |
T L SR
| antrylo] |
— v
I |
e e
1 | first s----- b
| sntry[i] #====c=ac=k
1 | Last ®=--—- ¥
B
| I
e m e ———————
i entry [MAXCPR] I

—

where each entry, antry[i], consists of two fields:
firast the first one of the executable objects with priority 4.

last the next field of the last one of the executable objects with
priority i, where the next object will be placed,

2.4.2 Priorities
The following two kinds of priority control are provided:
& Ohject priority
e Message priority
2.4.3 Object Priority
Object priority decides how an object will be scheduled, and is of the range:
0 < P, < MAXOPR

Executable objects are put in an appropriate queue in the schedule table according to
their priority. The higher the priority an object has, the earlier it is scheduled. An object

priority is given Lo an object when it is created.

2 SYSTEM ARCHITECTURE 14

2.4.4 Message Priority
Message priority P, is a priority given to a message:

{ (t for normal messages
™m

1 for express messages

The message priorities are identified by message tags.

(1) Normal Message
When a normal message is sent to an object or a joint, the message is enquened at the
end of the message queue of the object or joint, thal is, the last field of the object or

juint points to this message.

(2) Express Message
When an express message is sent to an object or a joint, the message is enquened af
the beginning of the message queue of the object or joint, that is, the first field of the

object/joint points to Lthis message.

2 SYSTEM ARCHITECTURE 15

2.5 A'liM-a Interpreter

An A'UM program is translated into a sequence of A'UM-a instructions. The A'4M-
a interpreter, that is the top level of the abstract A'2M machine, interprets and executes

the sequence of the A"UM-« instructions according o the following algorithm.

Algorithm 2.1 (A'UiM-a Interpreter)

Stepl (Initinlization)
Make the maximum priority the curvenf prieridy.

Loopl (Top Loop)

Luop2 (Execute Objects with the Current Priority)
Step2l {Set Current Object)
Try io take one abject from the object queus with the current priority.
If there is an ohject, then make it the curren! object:
otherwise, exit. Loopl.
Step22 (Set Current Class)
If the class of the current object differs from that of the last executed object, then make
it the ewrrend class,
Loop3d (Execute Messages of the Current Object)
Step3l (Set Current Message)
Try to take the first message from the message queue of the current object.
If there is a message, then make it the current message;
ot herwise, exit LoopZ.
Stepd2 (Detect Closing)
Ii the interface stream is already closed, then regard (he closing (NIL) as the current
message.
Stepdd (Search for Method)
Search for a method corresponding to the current message and execute it
Step34 (Check Maximum Priority)
f the maximum priority is higher than the current prioniy,
» make the maximum priority the current prionty, and
o if there is one of more message enquened to the current object or if the message
queue is closed, then put the current object back on the achedule table.

{end of Loop3d)
(end of Loop2)
Stepll (Find Next Highest Priority)

Find the next highest priority after the current maximum pricrity.

{end of Loopl)

o

4 DATA REPRESENTATION 16

3 Data Representation

In designing the data representation described in this section, the following considerations
have been made:

(1) Meanings and Representations

1. Meanings.

There are two kinds of entities to represent:

* objects/joints

L] MF‘RSEEE'S

They are exclusive: objects/joints do not appear wherc message do and vice versa.
For instance, as will be mentioned later, objects may be put in the schedule table
or pointed from the destination field of joints, but messages may not; messs oes
may be put in the message queue of objects, but objects may not. Those which are
exclusive can share the same representation for different Meanings.

2. Representations.

Among the entities,

¢ some can be represented in a single word, and

o others make a structure,

LT'he former is called a constant entily and the latter a structured entit Y. A structured

entity can be represented as a pair of a structure and a poinfer to il.

(2) Structure Tags
For a structured entity, there are two ways of putting tags:

L. Pointer Tag Method: to put a lag in a pointer.

R e el A s e e e

| Tag | meeeoeeoy |

L T S — | |

3 DATA REPRESENTATION 17

2. Object Tag Method: to put a tag in a structure.

fmmm——————— & e e L s
| Bemmemm—— = T-E-] 1
[SRR —— P +
I I
rmmm——————————

I'he pointer tag method is faster by one reference in detecting the type of the pointed

structure, though the tag size 1s more limited.

Placing more importance on quick access, we have adopted the pointer tag method.

3.1 Cells
A cell is a word consisting of a value part and a tag part, both of flexible length,

o e

| walune | tag |

o e o e e e i e i e e
3z n o

where wvalue constanl data, address [pointer)
tag object type, message type, ete,

3.2 Pointers

Those cells whose least signilicant two bits are either 01, 10 or 11 are peinters. Taking into
account the byte address, word access property of memory space, the least significant two
bits are used to represent pointers. There are pointers to object struetures and pointers

to message structures,

P s
| pointer JxXl XX = 01, 10, 11
e e e e e s e s "

31 20

3.2.1 Object Pointers

There are three kinds of pointers to objects:
1. poinlers to merge joints
2, pointers to general objects

3. pointers to built-in structured objects

3 DATA REPRESENTATION 18

mnemonic
+ -— +——+
| mergs joint ([[miET | +]
e e e e e e e i
- e e e o o
| ahieer |10 [ugi | = 3
R e T
I built=in akjact 111 [Bael | & 1]
e —_———— L £l
a1 20

Note that it is assumed thal append joints will not be used often, thus they are
implemented as built-in ohjects.
3.2.2 Message Pointers
There are two kinds of messages according to their priority:

1. normal messages

2. express messages

A message s identified as normal or express by the tag of a pointer o it, so it can be
recognized quickly withoul accessing the message itself.

mT emand G
dmmmmm - $-—t
| mormal massage il Msg | +]
D T T - mmmmmms=ms=ss==ssfasd
| “Ipress mossaga |1 [m5ax | = 1
i mm m m mmm mm mm
kb 0

3.3 Constants

Those cells with 00 in Lheir least significant two bits are constants.

+ e e
| constamt data |m—tmg | 00|

T S Y

az n 20

where m-tag is a minor tag to categorize constant types.

(1) Integer
Tf the minor tag is 0, it represents an inleger object. The data part i is an integer
which is represented in a two's complement method using 28 bits, that is, —2°% <
1< 2% 1,

3 DATA REPRESENTATION 19

moemanic
fmmmmmmm——m—mmmEemmmm b=}
| incager | o] [zt | 4]
e e mm—— + #
32 3 0

(2} Single-Precision Floating-Point Number
If the minor lag is 11, it represents a single-precision floating-point number. The
data part £ is a hexadecimal normalized floating number with a 21-bit mantissa (1

bit for the sign and 20 bits [or the absolute value) and a 7-bit exponent.

mpemanis

mmmm———— —— -+

| shert fleating | 11l [BFLT | 1

s o e ey e e

Az 4]

(3) Atom
If the minor tag is 001, it represents an atom (a symbol). The data part a is an
atom number {a symbol identifier) which is zero or a positive integer represented in
97 bits, that is, 0 < a < 2*7 — 1, where [ATOM | 0] is reserved for NTL.

mnemonic
------------- P
I atom lopyoo| [aToM | =]
e e e e i . e 0w =
a2 B a

(4) Bool
Il the minor tag is 0101, it represents a boolean object, either a true object or a

false object.

1. [BOOL | ¢] represenis a true object.

2 [BOOL | 1] represents a false object.

moemanic
T e e
| baal [[30380T [BoOL | &]
pn i ———————— ——— *
32] o

(5) System Objects
If the minor tag is 1101, it represents a system object.

There are three kinds of system objects:

1. [S0BJ | 0] represents a sink object which works for garbage collection.

3 DATA REPRESENTATION 20

2, [80BJ | 1] represents an initial outlel. When a message is sent to an initial

outlet, it is collected ag garbage or an error is raised.

3. [SO0BJ | 2] represents an initial indel. When an initial inlet is referred to, an

error 15 ralsed.

mEeEoRic
R T aepap——

| systen object j1aoiea) [soBr | =]
L T E—
32 =]]

3.4 Structures
As introduced in Section 3.2, there are two kinds of structures pointed by pointer cells:

1. chjects

2. messages

3.4.1 Object Header

The following header is provided in the first cell of the structure for objects (including
merge joints, general objects and huilt-in objects and class templates).

BnERonic
Frm s e ———————
| B-tag | LODCE | R | [HEADER]
B A S 1
az 24 16 o

where B-tag built-in vbject tag to detail built-in types, or 0 for those
other than built-in objects,

LOCK lock field prepared for parallel implementation
RC reference count

(1) Lock Field for Parallel Implementation

This systcmn is assumed to he extended for parallel iinplementations using multipro-
cessors. In the parallel implementation, more than one processor may access the same
ubject. To control mutual exclusion between processors, the lock funlock mechamsm 1s

assumed; the LOCK field is prepared for this purpose.

3 DATA REPRESENTATION 21

(2) Reference Count Management for Stream Merging
The abstract A'UM machine adopts the following reference count method for both

stream-merging and garbage collection:

1. [nitiation. At creation of a general object or a merge joint, its reference count is

-

2. Merging. When merging a stream, the reference count of its destination object or

set as follows:
1 for a general object

2 for a merge joint

merge juint is incremented.

3. Closing.
merge joint is decremented. When the reference count of an object or a merge joint

When closing a stream, the reference count of ils destination object or
becomes 0, that is, RC = 0, the object or merge joint may be collected as garbage.

3.4.2 General Objecls

General objects, including external, immutable volatile and mutable volatile objects, are
those of user-defined classes. They are concurrent computation units to be scheduled.

When they are executable, they are enqueued in the schedule table.

fogy | * ¥ -----> [O|LOCK| RO 1
[m8G | first 1 —=- » firat measage
[last 1
[ORT | mext] == » next object
[claas] == » class template
L priovity]
[slnhal 1
[creater]
[alate] ===== » glot table
where
I. Communication Parl
first pointer to the first message of the message queue
last pointer to either the first message when no message is

coming, or the next field of the last message
2. Scheduling Parl

next pointer to the next object enqueved with the same priorily
class pointer to its class template
priority object priority which is a positive number. Enquened with
this priority in the schedule table
3. Siots
global a global object or joint
creator its creator object if it is a volatile ob ject
slota pointer to a slot vector

3 DATA REPRESENTATION 22

3.4.3 Built-in Structured Objects
The following built-in structured objects are provided:
1. strings
2. lists
3. vectors
4. double precision floating numbers
5. class objects

6. message objects

(1) String

[BOBJ | » 1 —--—- > [+STRILOCE|] RS]
[siza]
{ alamant]
[:)

where #5TR = BSTR hit string
CSTR byte string
WSTR double byte string

size number of elements
element. packed representation of the string content
(2) List
[BOBY | &] ——=== » [VECTILOCK| RC]
[car 1
[cdr 1

where car an object or a merger for the car part
cdr an object or a merger for the cdr part

(8) Vector
[BOBY | *] -----3 [VECTILOCE| &C]
[nize 1
[alemant]
[:]
where size number of elements

element an object or a merger for each element

3 DATA REPRESENTATION 23

(4) Double Precision Floating Number

[BORI | *] --—=-> [BFLT|LECK| BRG]
[wordl]
[ward2 1

where wordl,2 packed floating number

(5) Class Object

A class object exists only when it must be an object, such as when 1l 15 passed as

an argument of a message to an object.

[BOBT | *] ===== » [cLE JLoCE] BC]
[class } - ¥ class template

where class pointer (o a class template

(6) Message Object

A message object is created only when it has to be an object, such as when a default

message is specified in a method.

[poBy | &] —===- » [Wec |LOGE|] RS]
[mEsEage] ---== » massoge

where message pointer Lo a message

3 DATA REPRESENTATION 24

3.4.4 Joints

A joint is a relay to hold messages whose destination is not deterinined yet. As soon as
the destination is determined to he an object or another joint, these buffered messages
are forwarded to the destination object or joiut.

There are two kinds of joints:

o merge joinls (or mergers)
& append joints (or appenders)
(1) Mergers

A merger accepts messages from two inlets and forwards them in a nondeterministic

order to the destination.

[MTOT | #] --=--» [o0|LOCE| RC 1
[destination] =---—=¥ objuct/merger
M35 | first] =====3> first L LT
[last 1]
where RO reference counl

destination pointer to a destination objoct/merger

first pointer to first message of those bufered, or © at initiation

last pointer to the next field of the last message, or the above

first field at initiation

(2) Appenders

An appender accepts messages from two incoming streams and forwards them to the
destination. All messages from the first incoming stream are forwarded hefore any message
from the second incoming stream.

An appender is implemented as a built-in object, for the sake of tag capacity, which
takes the first inlet as its interface stream and holds the second inlet and the destina-

tion. When the first incoming stream is closed, it connects the second stream to the

destination.
[BoB) | &] —— * [AJETILOCE| RO 1
[destination] ==-=- ¥ object/marger
[Tfirst] - * firet mossage
[Last 1
[eecond stramm] ---——- » merger
where destination pointer to a destination object/merger.
first pointer to first message of those buffered, or 0 at initiation.
last pointer to the next field of the last message, or the above

firet field at initiation.
second stream pointer to a merger for the second incoming stream.

3 DATA REPRESENTATION 25

3.5 Messages

According to their structural differences, there are two kinds of messages:
e atornic messages
e componnd messages
According to their priority, there are two kinds of messages:
e normal messages with tag MSG
& express messages with tag MSGX
(1) Atomic Messages

Atomic messages arc those which contain no arguinents, such as integer, atou, bool,

vector messages. They are also registered in the message protocol table.

[Mads | ®] -—=== > [M8G | mext] -=---% next message
L FID 1
[waine]

where next when a message is enguened in Lthe message queue of an
ohject or a merger, il puints to the next message.

PID message protocol identifier given to an atomic message
value constant value representing an atomic message

(2) Compound Messages
Compound messages are those which contain a message name and argurmenis.
Mmsce | » 1 =-=-—- = [M53 | mext] ——-——* to tha next message

[PID]
[ATE 1

L ; 1
where next when the message is engueued in the message queue of an
objecl ur a merger, it points to the next message.

PID message protocol identifier which is an offset in the message
protocol table.

arg arguments of the message

3 DATA REPRESENTATION 26

3.6 Classes

A class object has a class template as its value, which contains inheritance information,
slot information and method information.

A built-in class object is created only when a class has to exist as an object, for
instance, when an object creales a class object and passes a stream to the class ohject
as an argument of a message to another object. Otherwise, a class template is directly

pointed to from the class field of each instance.

3.6.1 Class Table

The class table is a hash table to search a class template from a class name. The open-
hash method 15 used for searching; when the number of registrations gets larger than twice
of the hash table size, then a new table of double size is created and reconfigured.

[ClageTable] =====3 [Bize]
[fullnass]

[*=ll". chain] ----- » class informatien chaim
r)
where size the table size
fullness the number of registered class templates, which is used

as a guide for reconfiguration

class chain pointer to the first class information of a chain of class

information

3.6.2 Class Information

A class information keeps the information which is necessary for updating a class but not

for execution, as follows:

o List of subclasses which inherit this class.
When a class is relinked, all the classes which inherit this class must be updated.
As long as there is an instance of these subclasses, it might traverse its inheritance
list to reach this class. To keep them running correctly, the current version of
these subclasses should be kept without destruction. Hence, when a parent class
is relinked, itz children classes are copied, so that the execution of the new version

does not interfere that of the old version.

o List of reference classes which refer Lo this class.
When a class is relinked, all the classes which refer to this class must be copied for

the same reason as the above,

3 DATA REPRESENTATION 27

[ClassTable]
I class table
#==—-3 [: 1
[class chain] ===== *» [HEADER 1
[: 1 [name 1
[naxt 1 ===== »* next clasa information
[class] =mmm— » clage template
I subs] s==== » eabclass table
[back referemces] -----3 back-refarsnce clase table
where name class name (atom)
next pointer to the next entry of a chain of class information
whose rlass names have the same hashed value. (0 for the
last entry)
class painter to a class template
subs pointer to a subelass table

back references pointer to a back-reference table

(1) Subclass Table (subs)
A subclass table is a table of sub classes which inherit this class. When this class is

relinked, the contents of this list is copied.

[sohs] ===-- s [size 1
[clé:.u] ===== » glazs template
I 1

whers size table size
class pointer to a class template of each subclass which inherits
this class

(2) Back Reference Class Table (back references)
A back reference class table is a table of classes which refer to this class. When this
class is relinked, the contents of this list is also copied.

[back refarances] =--== [size 1
[class] -——-% class template
[1 1

where size lable size
class pointer to a class template of each reference class which
refers to this elass

3.6.3 Class Templates

A class template contains only the class inheritance information, slot information, and
method information which is defined in the class. Slots and methods are retrieved by
traversing the inheritance tree; for quick access, slot caches and methods caches are pro-
vided.

3 DATA REPRESENTATION 28

[clase] -—— > [HEADER]
[ATOM| mame]
[wvarsion]
[supars] =====» supar class table
[#ins/#outs]
[referancas] -----3 reference clazs table
[slat digt] -==== * slot dictiomary
[mathod dict 1 ==-== * mothod dictionary
[code modola] ---—- * code module
where name class nawe {atom)
version version number of the class template (inleger)
supers pointer to a super class tahle

#ins/#outs the number of inlets and the number of outlets. both of
which are directly defined in this class

references pointer to a reference class table
slot dict pointer to a slot dictionary
method dict pointer to a method dictionary
code module pointer to a code module

(1) Super Class Table (supers)
A super class table is a table of class templates and slot bases of the super classes that
this class inherits.

[supers] ===--» [gize]
L slot size]

[class] =--——> class tamplata
[BARE]

L - 3
whers egize table size

slot size the number of slots defined in this elass and its supers. This
information is used when a slot vector is created.

class puinter to the class template of a super class which this class
irtherits,
BASE a slot base position in the slot table, which is an offset where

the first slot of each super class is stored. Any slot is accessed
with the base of its own class and the offset given to the slot
within the class.

(2) Reference Class Table (references)
A reference class table is a table of all elasses which refer to this class. When this class

15 relinked, the content of this list is copied, too.

Lrefaremces] —-—-» [gize 1
[-l:ll.uu.u] w====» glase template

ro

3 DATA REPRESENTATION 29

where aize table size
class pointer to the class templale of a class to which this class
refers

3.6.4 Slot Information

(1) Slot Dictionary
A slot dictionary is a hash table to obtain a slot offset in the slot Lable, using a slot

name as a key.

[alet dict 1 ==-=-—- 3 [gira b |

hash{name sizalde? ==3[slot nams]
[SENT 1

t .]

where =slot name slot name
SENT slot offset from the base

(2) Slot Table (slots)

A slot table is a table of all the inlet and outlet slots that are defined for an ohject in
its own class and super classes. For each slot, an offset (SENT) in its own class is uniquely
given; for each super class, a base (BASE) in the slot iable, which is where the first one of
its slots is stored, is uniquely given. Hence, a slot is accessed with the base and offset al
the position of BASE + SENT.

[slota] ===== > [eize 1
’ -

| [1

¥ =mmmem——————ssses slots for clana x

bama (HASEY [: 1
I 9
v i

offeat (SENT) [slot] -----* glass tamplate
[: 1
L : 1

where size table size
glot either an inlet or an outlet. At creation, each inlet is set
to an initial inlet; each cutlet is set to an initial outlel. Al
termination, each inlet is connected to a sink object; each
outlet is closed.

3 DATA REPRESENTATION 30

3.6.5 Method Information

Method code defined in a class is grouped together to be a code module. Fach method
1s identified with a message profocol identifier which is a nnique number determined by
the message name, arity and modes. Each method code enlry is at an offset in the code

module, which is determined from the message protocol identifier.

(1) Method Dictionary
A method dictionary is a hash table 1o obtain a method code offset in a code module,
using a message protocol identifier, PTD.
[mathod dice] ---—3 [shzw 1

hashiPID, eizels == | PID 1
[MEET 1

[:]

where PID message protocol identifier
MENT method entry offset in a code module

(2) Message Protocol Table
A message protocol table is a global table which keeps the message name, arity and
maodes (argument dircctions) of each message with its message protocol identifier, PID.
A message protocol identifier PID is an offset from the top of this table.

[ProtocolTable] ----= [size]

PID » 2 mmp[lua..-" arity |
[modas

L :]
where name message name

arity oumber of arguments

modes a hit array whose every bit represents the stream direction
of an argument

(3} Code Module
A ecode module is a block of method code which is defined in a class. For each method,

its cutry oflset MENT is registered in the method dictionary.

[code module | =—====3 [size]
| [1

L :
HENT ==>| method coda]

[1
[' 1

4 A'UM-a INSTRUCTION SET 31

4 A'lUM-a Instruction Set

The A'U4UM-a instructions are categorized according Lo their derivations as follows:

1. Send/Close Instructions

(a) General Send and Close [nstructions (Table 2)
(b) Built-in Function Instructions (Table 4)
(¢} Optimized Conditional Instructions { Table 5)

(d) Slot Access Instructions (Table §)
9. Connect, Instructions (Table 3)
3. Create Instructions {Table T)

4. Descend and Other Instructions (Table 6)

In addition, there are pseudo instructions which are issued to the assembler and linker,

not the machine itself, as listed in Table 9.

We describe below the outline of the A’ M-« instructions: the execution mechanism
of the abstract A'UM machine.

4.1 Instruction Format

Fach A'WUM-a iustruction is of flexible length, with any number of operands.

et
|0F coda | Operands I
pasmmmmmgmmmmmam m e s e e f e e e =

where cach operand may be one of the following:
Ri general register
vr immediate value {constant)
Lx immediate value (lahel)

4 A'lUUM-o INSTRUCTION SET

32

Table 2: A"liM-a Instructions (general send & close)

[Op eode operands

Sfunction

send instructions

send Robj, Vpid, RO,

send_express Robj, Vpid, RO,

send._self Vpad, RG, ...,

i of the message queue of the destination.

creates a message with Vpid as its P10 and RO to Rn |
as ils arguments, and sends it to the destination, ki,
in mormal mode: the message 13 appended at the end
of the message quene of the destination,

creates a message with Vpid as its PID and RO to
En os its arguments, and sends it to a stream, i, in
express mode: the message 15 added to the beginning

creates a message with Vpid as its P and RO to Rn
as its arguments, and sends it o the current object
{self). The message is prepended at the beginning of
normal messages of the message queus of the current
ohject.

close instructions

close Ri

closes stream Ri. If Ri poinis Lo an object or a joimt,
this instruction decrements the reference count of Ri
by 1.

Table 3: A"UM-a Instructions (connect & split}

Op code eperands [functian

connect instructions

connect Rout, Rin

connects the inlet, Rin, of a joint to the outlet, Rous,
of an object or a joint. When Rout points to either
an ohject, a volatile object or & joint, the messages
buffered in Rin are forwarded to Rout. When Rout
points to a built-in object, the messages buffered i
Rin are immediately executad.

split ki
splitn Ri, Vn

increnwents the reference count (RC) of R4 by 1

increments the reference count I[RCJ of ki b;-' Vo

4 A'UM-a INSTRUCTION SET

Table 4: A'WM-a Iustructions (built-in operations)

|_ (hp code operands | funcuun
arithmetic/logieal operations - -

minus Robj, Rres takes the 2% complement of & number Rebj, Rres
holds the outhet of a stream toward the resubling
number {cormon to each below).

add Robil, Robj2, Rres | adds number Rebj2 lo number Robjl.

sub Robji, Rebj2, Rres | subtracts number Rek)2 from nuriber Robjl,

mul Robji, Robj2, Rres | multiplies number Robjl by number Rebj2,

div Robjl, Rebj2, Rres | divides number Robjil by number Rebj2.

mod Robjl, Robj2, Rres | divides number Robjl Ly mumber Robj2, and takes
the residue. i

shtr Hobji, Robj2, Rres | shifts number Robjl to the right by the number of
bits Robj2.

shtl Robjl, Robj2, Rres | shift nurnber Rebjl to the left by the numiher of bits
Robj2.

not Robj, Hres negates Robj.

and Robjl, Rebjz, Rres | takes conjunction of Rebj1 and Robj2.

or Robil, Bobj2, hres | takes disjunciion of Rebj1 and Rebj2.

xor Robjl, Rahj2, Rres | takes exclusive disjunction of Robj1 and Rebj2.

L5 Robji, Hobi2, Rras | tests whether the value of Rebjl is equal to that of
Robi2: if so, Rres holds a true objeci; otherwise, a |
false object (common to cach below).

| neq Robjl, Robj2, Rres | tests whether the value of Robji is not equal tu that
of Robj2

1t Robj1l, Rebj2, Rres | tests whether the value of Robjl is less than that of
Robj2.

gt Robj, Robj2, Eres | tests whether the value of Robj1 is greater than thal

(many others)

of Robj2.

list. operations

CAT
cdr

Rlist, Rras
klist, Rres

 refers to the car of a list Rlist.

refers to the cdr of a list Rlist. B

universal built-in operations

¢lass

who

Robj, Hres
Robj, Kres

takes the class of object Robj; Rres hulds the class
asks Robj “who are you"; kres holds the inlet of the

INCOITIRE stroatn.

33

4 A'UM-a INSTRUCTION SET

M

Table 5 A"UM-o lustructions (conditional)

operands

| Op code

function

! optimized conditional instructions

if equal Rebjl, RebjZ, Ltrue, Lfalse
iflt Rebil, Rebj2, Ltrue, Lfalse
if gt Robjl, Rehi?, Ltrue, Lfalse
if_true Robj. Ltrue, Lfalse

| Robj2, jump to Ltzue; otherwise jump to Lfalse

When it is aleeady know that Rebjl is equal to
Robj2, jump Lo Ltroe; otherwise jump to Lfalse.
When it 15 already known that Robji is less than
RebiZ, jump to Ltrue; otherwise jump to Lfalse.

When it is already known that Robji is greater than

When it is already known thal Rebj is trie, jump to
Ltrue; otherwise jumnp to Lfalse.

branch.on who Rebj, Vae

entry va, Lo or atom, jump to one of the labels, Li corresponding
to the content of Rabj, where Voo is the number of

entry ¥m, Ln entries.

When Robj is already determined 1o be an integer

Table 6: A'UM a Instructions (descend/control)

|_(};J code aperitds I fun::twn

descend instructions

_

1

descend

terminate

{end of mtthcd} enters a new scheduling cyele {re- |

turns control to the top-level interpreter),

(=nd of ebject) completes all the slots, releases the ob-
jeet, and returns control to the top-level interpreter.
This imstruction is issued when the internal termina
Lion message is sent to the object,

other instructions

jump Vliabel

wait

activate Robj

move Ri, Rj

| nstruciion is used when a volatile object resumes the

jumps to the label Viabel

suspends the execution of the current ebject, With

this instruclion, the object becomes dormant; it is
awakened when the activate instruction is executed.
puts the object, Robj, on the schedule table. This

exerution of ity croator object,

copies the content of ki to Rj

4 A'UM-a INSTRUCTION SET

‘T'able 7: A'UM-a Instructions (create)

I_ Op code aperands function _l
_pri,mitive..fhuilt-in object creation instructions B -
create.integer Robj, Vinteger Inads an integer Vinteger in Robj
create_atom Robj, Vatom loads an atom Vatom in Robj
create bool Robj, Vbeol loads a boolean Vbeol in Rebj
create_sfloat Robj, Viloat loads a single-precision floating number Viloar in
Robj
create sink Robj loads a sink cell in Robj i
creaate error Robj loads an error cell {an initial outlet) in Robj
create string Robj, Vbits, Vno, Vstring | creates a string with the content, Vstring which
| consists of number Rno of elements of Abits hits;
put the pointer to il in Robj
craate dfloat Rebj, VIileatl, Viloat2 creates o double-precisioned floating nurmber: pats
the pointer to it in Rebj
create list Robj, Rear, Redr creates a list whose ear holds Rear and cdr holds
Redr, puts the pointer fo it in Robj
create vector Robj, Vsize creates a vector of size Veize; puts the pointer to o
in Robj
create class Robj, Velass retrieves a class template for class name Yelass from E

the class tahle; puts the pointer to it in Rebj

general object creation instructions

create_instance Rebj, Veclass

create_instanceaf Reobj, Relstmp

creales an instance .D.[a class with class name,
Velass: puts the pointer to it in Hobj

creates an instance of class Lemplate designated by
Relstmp; puts the pointer Lo it in Robj

volatile object ereation instruction

create_volatile febj, Rmjnt, Vclass

creates a volalile object of class Velass: puis the
pointer to it in Robj. Fvery volatile object has two
slols: one is an outlet slot toward its creator ohject;
the other is an inlet slot. When the volatile object
receives a message, it creates a buill-in object repre-
senting the received message, connects the inlet slot
to that object, then activates ils creator object.

joint creation instructions

createmjoint Rmjnt
creats ajoint Rajnt, Rmjnt, Rdst

creates & morge joint; puts the pointer to ik in Rmjnt
creates an append joinl with Rejnt as the sccond
stream and Rdst as the destination; puls the pointer
to it in Rajnt

4 A'UM-o INSTRIU

CTION SET

36

Table 8: A'UWAM-a Instructions (slot access)

Gjl coile

aperands . ,r.‘t-.u.nch'au

slot aceess instructions

get_inlet

set_inlet

gat_outlet

zet_outlet

Ei, Vclass'Voffset

Ri, Vclass!Voffset

Ri, Veclass!Voifsaet

Ri, Velass!'Voffset

retricves the content of an inlet slot at Voffset, in
Ri. By this instruction, the inlet slot is initialized teo
be an error state, so that no more than one contin-
uous retrieval is possible,

updates an inlet slot Ri at Voffset with Ri.
retrieves the content of an cutlet slot at Vaffset, in
Ri. This instruction issues the split instruction to
the outlet siot.

updates an outlet slot at Voffset with Ri,

get_inlet by name

gat_inlet by _name

get_outlet by name

set_outlet by name

ki, Velaszs, Vname

Ri, Velass, Vname
ki, Vclazs, Vname

Ri, Veclass, Vname

retrieves the content of an inlel slot pamed Voane.
in Ri. By this instruction, the inlet slot s mitial-
ired to be an ermer siaie, so that no wore than one
continuous retrieval 1= possible

updates an inlet slot Ri named VYname with Ri.

retrieves the content of an outlet slot named Vname,
in Ri. This instruction issues the split instruction o
the outlet slot.

updates an outlet slot named Vname with Ri.

Table 9: A'UM-a Pseudo Instructions

|_ pseudo ap arguments

| mearng

.class ClazasNamea

. BuUper SuperClazsName

.cleref ReferredClasalama

.outlet OutletSlotNams

.inlet InletSlotName

Lpid PIDlabel, PrintName, #args, mode
.method MethodRame, Printlame, #args, mode
- and ClassKame

declares the beginning of class definition
defines a direct super class name to be inherited
notifies a class name which is referred in the class.
defines a outlet slot name.

defines an inlet slot name.
defines a protocol identifier.

declares the beginning of & method.
declares the end of class definition.

1 A'UM-a INSTRUCTION SET B 1

4.2

Stream Manipulation

Merge joints play the central role of stream manipulation.

¢ Execution Based on Merge Joints: Merge joints work as relays. Mossages

4.3

which are sent to a merge joint are buffered until the destination of the merge jomnt
is determined. The merge joint function is also embedded in objects.

Creation of Merge Joint: A merge joint is created at the first occurrence of a
channel variable. For later occurrence, the split instruction is issued instead of Lhe
merge joinl creation instruction. This instruction increments the reference count of

the merge joint or ohject.

Sequencing of Messages: Sequencing of messages (production of a stream} is
performed by issuing a sequence of send instructions to the same merge joint. The

order of messages to the same merge joint follow the order of send instructions.

Forwarding of Messages: Those messages buffered in a merge joint are [or-

warded when the connect instruction is issued to the merge joint.

Incremental Garbage Collection: Incremental garbage collection is embedded
in the send, close and connect instructions. It is performed based on the refer-
ence count scheme. The reference count is incremented by the split and connect

instructions: it is decremented by the close and connect instructions.

When the close instruction is issued to an object or a merge joint. ils reference
count is decremented. When its reference count reaches 0, the object or joint is
scavenged. If the relerence count reaches 0, the reference connt of its destination is

decremented; so the closing is propagated as [ar as possible.

When the connect instruction is issued, the reference count of the source joint is
decremented, while the reference count of the destination joint or object is incre-

mented.

Append Joints as Built-in Objects: Append joints are created as built-in

objects.

Message Sending

Message Identification by PID: Each message is given a protocol identifier
(PID) from its message name and the number and mode of its terminal arguments,

The closing is also given a special PID during the method search phase.

4 A'UM-a INSTRUCTION SET 38

¢ Handling Normal/Express Messages: According to their priorities, messages
are divided into two: normal messages and express messages. When a normal
message Is sent to a merge joint or object, it is appended ai the end of the message
queue of the joint or object. When an express message is sent to a merge joint or
object, it i= added at the beginuing of the messaze quene of the joint or object.

4.4 Built-in Operations

A variety of built in operations are provided.

* Binary and Unary Operations: According to the number of arguments, there

are binary operations, such as add, and unary operations, such as minus.

¢ Commutative and Non-Commutative Operations: According to whether
it is commmutative or not, binary operations are divided into two: commutative

operations, such as add, and non-commutative operations, such as sub.

¢ Freezing and Melting of Built-in Operations: I'hc mwost characteristic feature
of the A"UM built-in operations, compared to those of other concurrent object-
oriented languages, is that the freezing and melting of built-in operations is required
in their execution, since operands may be undefined when built-in operations are
issued,
Stepl. When a built-in operation is executed. if the operands are already deter-

mined, the built-in operation is immediately executed. producing the result.

Step2. If the first operand is not determined yet (if it is a joint whose destination
is undefined), the built-in operation is frozen to be a message with the same name

as Op-code, and is sent to the joint.

Step3. When the joint is connected finally to an abject, the built-in operation
message is melled to be a built-in operation, and executed against the destination

object.

Stepd. When the second operand is undefined, the built-in operation is frozen
again and sent to the second operand, though there is a difference in the treatment
of the built-in operation. If it is a commutative operation (add/+- for example),
the same message (add/+-) as the above one is sent. If it is a non-commutative
operation (sub/+-), a message which represents a reverse function (rev_sub/+-) is

sent.

4 A'UM-a INSTRUCTION SET 39

4.5 Optimized Condition Handling

Optimized conditional instructions are provided.

¢ When Condition is Determined, No Volatile Object is Created: When the

conditions are already determined, no volatile object is created. Like convenlional
conditioning, such as if or switch. the current abject only jumps to an appropriate

label.

¢ Even When Created, Volatile Object is a Synchronizer:
Stepl. When the condition is not determined (for example, either X or Y is not
determined in X > Y}, an object creates a volatile object, and passes two pointers
to the volatile object: one is a pointer (A) to itself, and the other is a pointer (I3)

to a result. Then the ereator object becomes dormant,

Step2. The created volatile ebject works as a synchronizer. A volatile ohject has

Lwo slots;

= an outlet slot to hold the pointer toward the creator object (A}

— an mlet slot which will be connected to a built-in object (B} representing the

received message

Step3. When the volatile object receives a message or detects its interface stream
closing, it creates an appropriate primitive or built-in objeet (for example, [or an
integer message, 1, it creates an integer object, 1}, and connects the inlet slot {B}
to this object. Then, it activates the creator object designated from the outlet slot
(A], aud 1s scavenged.

Stepd. When the creator object is awakened, it is sure that the result is determined.

The creator checks whal the resull is, and jumps to a label appropriate for Lhe resull,

4.6 Slot Access

Slot access 1s done by the following slot access instructions.

» Immediate Execution, No Message Sending: Because of the sequential ex
ecution strategy, slot access instructions are immediately executed to the current

object, rather than sending slot access messages being sent to the object itsell.

4 A'UM-o INSTRUCTION SET 40)

4.7 Object Creation

The following object creation instructions are provided.

* Only General and Volatile Objects are to be Scheduled: Ounly general
and volatile objects are put on the schedule table. The others, including primi-
tive objects, built-in objects and merge joiuts, are immediately executed in specific

instructions.

¢ Volatile Objects with the Same Structure as General Objects: Volatile

objects have the samc structure as peneral objects.

5 EXAMPLES OF A'liM-a CODE GENERATION 41

5 Examples of A'UUM-a Code Generation

Here are Lwo examples of A'lUM-a code generation: one is the code for counter and the

other is the code for append-lisi.

(a) Counter

L L R T N NN NN AN AN

T class couRter.

) 1ap =» 'n+ 1= in.
% s dawn => n - L = |n.
z cgat ("N} =3 B = 'n.

T cshowi) -> I'n = §

% oend.

L N B N TN R L RN N R RN

.class #counter;
pid wp, “up”, O, Ox0;
pid dawn, “dewn" . &, Ouxl;
Pjﬂ tastf+t, aat™, 1, Oxl;
pid ‘show/-", "shouw", 1, Oxl;
methad up, “wp, @, O0x0;
up:
get_outlet El, Bcounter!m;
create inmteger RI, L;
add El, RZ, R4,
sat_outlet R4, #countar!n;
descend ;
-method down, “doen”, O, (=0;
down :
Ent_ﬂutl-t Ri, ®Booumter!n,
craate_imteger BRI, 1;
aub Ri1, B2, R4;
set_outlat R4, ¥Fcountar!n;
descend ;
.method tpat/f+t, “pet™, O, Oxl;
fgat et
gal_vutlet RO, Bconnter!nm;
descend |
tehowS ="
get_vutlet H1, ®counter!m;
connect Ri, RO; % in= "N
descend ;
cand Bcounter;

Y S

J EXAMPLES OF A'UM-a CODE GENERATION 42

(b) Append-list3n

L L L Ly
% clasp test_lisz
lint3iL) -»

[1.2.3,4,5,6,7,8,9,10,

11,12,13,14 16 16,17 18,19, 20,

1,22,23,24,25,26,77,28,29,30] = "X .

cappand_ list30 =
- -y,
#lise_mtility append(X, ¥, =1},
ETLENT I

T P 8 3 3E £ 3D B PR

% oend.
T L L M T Ly REERLERR Y

.clase #tost_list;

clageref Fliae _utality;

Spid FRISLIOS T "Lipgt30T, I, Ox1;

.pid appand_list30, "append_list30", O, Oxd;

Jpid ‘appendfee-' | “append™, 3, Oxé;

method "list30f+°, “lised0”, 1, 0x1;
"lastaAge .

create_atom B3, '[]': create_ integer RZ, 30; creste_list N1, B2, H3,
move i, BY; creatw_integer B2, 29; creats_list R1, R2, R2:
B3

move B, Create_intagar B2, 28: create_list Ri, R, E3.
. {abbr. from I7 to 4}

move Bl, R3; creatw_intager R2, 3; creats_list Ri, RZ, B3,

mave R1, R3; creale_integer R2, 2; create_list R1, R2, R3;

mave Bl R3; create_integer Ri, 1; craste_list Ri, A2, RA;

connact R, R ¥[rO....1==x

descend ;

method appamd list30, “appand_list30", O, 0z0;

appeand_ligt3:
craate_atom R, *[]*: T0=-¥x
crante_instance B2, #liet_utility; i #list_utility

craata_mjoint RO
create_mjoint R2;

clage RZ;

aand RZ, ‘appandS++=' RO, Ri, E2:
send_salf 'list30/+', RO;

descund;

cand Ptast_list;

E‘IHIIﬂlﬂlﬁtﬂHIﬂI.ﬂ'ﬁﬂﬂ:“ﬂ“!“lﬂlmnﬂmn“ﬂlﬂ“ﬁ“I“Iﬂiﬂﬂ.
% class list_ntility.

b4 cappand (°X, ¥ Z) =»

¥ { class _of ¥ == ljmt » 7 % X:class{"Cle}, Cla:agiliist, TorF)
1 "true =» ¥ = "7 .

4 ffalee => X:ear(E):edri{"X1},

3 [ElZ1] = g,

i cappend{X1, Y, “Zi1}

% i,

% end,
L L A L LT L
sclaws #lisc_utility:
.clasaraf ®'if_then_slse';
pid tcapf=r, "ear", 1, Oxl:
pid ‘edrf-', “cdr”, 1, Oxl;
-mathod ‘append/++=", “appand”, 3, O0x6;

*append/+4=:

5 EXAMPLES OF A'UM-o CODE GENERATION

claga RO, E3; % Kiclasel(“Cle)

create_atom R4, list;

if_ag B3, B, ‘append/++-7il_true’, ‘append/++-/il_false';
%

& R3, R4, RE; % Cla:eq(list, “TeorF)

who RS, RE: % TarF :eha(dhe)

create_mjoint R3; % slot result

crante_valatila R4, RX, Bif_then_elee:

connect R4, BG; % #if_zhen_slea = “Wha

gend_continue append/++-Si1_cent’, RO, Ri, R2, R3]

wait;

‘appendf++-/il_cont':
if_true R3, tappand/++-/il_true’, ‘append/te-/il_Talse®;
raine_arrar;

Tappend/++-fi1_true’
connact Ei, RZ .

descend ;

Tappendf/++-/il false®:

car RO, R3; % XLicar(~E)
cdr EG, RA; % Dicdr(~X1)
create_mjoint RO;

create_list RS, B3, RO; % [ElZa]
connect K5, RZ; % [El21] = "1
send_self Tappend fH-1, R4, R1, Rd;
descend ;

camd Flist_utility.

fommmmmmmmmmmsmmme s m———————— - - SV

.clags Bif_than_selse;

.imlet rasalt;
.outlaet croator;
.Pid Heruet, "'erue”, O, Oxd;
(pid tifalas’, " falae’, O, Ox;
“ttrue':
create_baslaan RO, ‘trua;
get_inlet Bi, #if_then_salse'resalt;
connect RO, RY;
Eot_ocutlet EQ, #if_thea_slse!creator;
activate RO
terminate;
“ifalant:
craate_baslean RO, ‘falae:
gat_inlet El, ®if_then_slse!result;
connech RO, RI;
E‘t_QuIll‘ ED, #il_then_slse!creator;
activate RO;
terminats ;
_and ¥if_then_ulse;

Yo cmm e ——————————— == ————— —

6 PERFORMANCE MEASUREMENT 44

6 Performance Measurement

We have been implementing a software emulator of the abstract A’ LM machine, which is
written in C++ and runs on the Sequent Symmetry S81 (CPU 80386, write-back cache],
We measured the basic performance {the cost of basic operations) of the current im-

plementation of the abstract 4'2{M machine againsl several benchmark programs.

6.1 Benchmark Programs

We measured the performance against the following five kinds of benchinark Programs:
. Counter Program

(a) Up100
This program creates a counter object, sets up the counter value to 0, and
inerements the counter value 100 times.

This benchmark program has been chosen to measure the speed of method invoca-
tiou and slot access.

2. Stream Manipulation Program

This contains two benchinark programs on stream manipulation:

(a) Append-stream30

This program appends an empty stream to a stream of 30 Messages.

(b) Reverse-stream30

This program reverses a stream of 30 messages,

This sct of benchmark programs has been chosen to measure the speed of stream
manipulation,

3. List Processing Program

This contains two benchmark programs on list processing:

(a) Append-list20)
This program appends an empty list ((3) 1o a list of 30 elements (see the
previous section).

(b) Reverse-list30

This program reverses a list of 30 elements.

6 PERFORMANCE MEASUREMENT 45

Note that each list 15 an A"M built-in list object. This set of benchmark programs
has been chosen to measure the speed of list processing.

Message Transmission Program
This conlains two benchmark programs on message transmission:

(a) Forward-iransmission
This program first creates an integer 3, connects to this integer 100 streams
one after another, and sends an addition message. add(4, ~Sum), at the end.
(b) Backward-transmission
This program executes an addition operation, X +4, connects 100 streams one
by one backward from the X', and finally creates an integer 3 ahead of the inlet

of the last connected stroanm,

This set of benchmark programs has been chosen 1o measure the speed of stream

connection and message transmission.

Arithmetic Opevation Program
This containg two benchmark programs on arithmetic aperation:

{a) & + { {simple addition)
T'his program executes an addition, 3 + 4, 100 times.
by X + Y [stream-indirect addition)
This program executes an addition, X 4+ ¥, 100 times, where X 15 a stream

toward an integer 3 and 1" is a stream toward an integer 4.

This set of benchmark programs has been chosen Lo measure the speed of built-in

arithmetic operations.

6.2 Measurement Procedure

We measured the performance as follows:

1.

For each benchmark program, two kinds of methods in its class definition are pre-

pared: one is an original method; the other is a dummy method.
The original method and the dummy method are executed independently.

The difference between the execution time spent for the original method and that

spent for the dummy method 15 regarded as the effective time.

6 PERFORMANCE MEASUREMENT 46

class benchmarkl.

tdoit —->
fcounter:set(0)
TUpuprupiupiupiupluptupiupiup
IURIURIUPIUPIUPIUpIUpIupiupIup
CUpIUpIUp QP UpIUp: upiup iupiup
TUP U UP QP Up I up i upiup cupup
CUP U UP I GR: Up OGP upiupiup:up
UpUplUp IO UPIUP I LR Up IURIUp
TURIUp I UPIWRUP WP Up: upiup:up
:up:up:up:up:up: UPIHPZLIP:UFIIJP
IUpiupiUpiupiapiap i upi Up I Up:iup
TUPIURIUP iU IUPIUR I UPIUp WP Gp.

sdummy =>
foountar:set(0).

Figure 4: Benchmark-1: counter program

Note thal the erecution time is the time which is spent from when the abstract

A" UM machine is initialized until all objects are terminated.

For example, for the counter program, we prepare the class definition as shown in
Figure 4.

Let I'l be the tine which is spent for the execution of the original method:
#benchmarkl:doit.

Let T2 be the time which is spent for the exccution of the dummy method:
#benchmarkl: dummy .

Let T he the time spent for the cxecution of sending 100 up messages, then it is
expressed as follows:
T=T1-T2.

In the actual measurement, we have executed a number of invocations of the above
test methods, so that the figures, T'l and 1'2, should be big enough to be measured.

Let n be the number of invocations of a test method. Then the time measured for
testing the original method is T1" = n x T1; the time measured for testing the dummy

method is 12" = n x 1'2. The difference hetween these figures is:

T =T —-T1'=nxT.

6 PERFORMANCE MEASUREMENT 47
Let m be the number of methods invoked during the time, 7. Then the average timc,

t, spent for the execution of each method is expressed as follows:

1

1
t=T x — x —,
il T

The number of methods which are executed in one second, j, is the reciprocal of £,

1
f

We use this figure, s, as a unit, MPS (Methods Per Sccond), and refer to 1000 MPS as

o=

EMPS (kilo MP5).

Note that we have performed three trials for each measurement and have taken the
average time of the three results. Fvery other benchmark program has been measured

similarly.

6 PERFORMANCE MEASUREMENT 48

6.3 Measurement Result

We shows the result of the performance measurement in Figure 10.
Note that for the number, m, we count only user-defined methods. Built-in operations.
such as car (X) in the list processing programs and add (¥, “Z) in the arithmetic operation

programs, are not included.

Table 10: Performance of Benchmark Programs (time unit: s

benchmark program areginal dummy difference | # invoca- | # meth- | (KMPS)
| tioms ods
T | T2 ' =|n i m I
T -7 |

Counter program

Uptoo 3918 164 3754 200 100 533

Stream manipulation i .

Append-stream3o 3414 188 3226 400 30 3.72

Reverse-stream3(4831 196 4635 400 30 2.59
| List processing -

Append-list30 4371 831 3540 200 31 1.75

Reverse-list30 d185 38 3147 10 496 1.58
| Message transmission

Forward-transmission 4674 224 4450 200 100 4.50

Backward-transmission | 4698 218 4480 200 100 4.46

Arithmetic operation

344 3535 191 3344 400 1 0.120

X+Y 4174 186 J988 400 1 0.100

7 CONCLUSIONS AND FUTURE WORK 19

7 Conclusions and Future Work

The work we have completed to date shows that a software implementation of the ab-
stract A'{M machine on a conventional von-Neumann hardware machine has attained
reasonable performance, The implementation of some parts of the described design are

still underway. Among them are:

1. Alteration from Bytecode of Threaded Code.
In the current implementation, we adopted the bytecode emulation scheme. We
are revising the implementation based on the threaded code scheme, so that the

mstruction dispatching cost should be reduced.

2. Implementation of Mcthod and Slot Caches. For quick access to method code and

slots, we will implement a method cache and a slot cache.

3. Implementation of Foreign Language nterface.
We will introdnee another built-in object to the design, a forezgn object which should

wark as the interface to a foreign language.

In parallel, we have found several problems in the current implementation. We are

now revising the design to solve these problems.

1. Introduction of Message Objects.

In the A' UM computation model described in ihis report, messages and objects are
at different levels. For each message, its exact message pattern has to be specified

in the program.

Mainly for the purpose of message delegation, it is expected to allow a message to

be designated using a variable, that is, to treat a message as an object,

A message object is now under design. This object is envisioned as a higher-order
message that encapsulates a first-order (or internal) message and allows retrieval
of the message name and arguments of the first-order message. Along with the
introduction of message objects, a object-message conversion mechanism, providing
for the construction of higher-order messages and conversion to first-order messages

will be introduced.

2. Introduction of Object Groups.
In the A'UM computation model, each tree of streams connects to a single ob-
ject, so one-to-one communication and many-to-one communication are available.

7 CONCLUSIONS AND FUTURE WORK 50

For one-to-many communication, it musl be expanded to a number of one-to-one
communications,
In order to deal with one-to-many communication as easily as one-to-one commu-

nication, the notion of an object group will have to be introduced.

Besides the above implementation and revision, two types of parallel implementations

and a full implementation will be our future work.

1.

S

3.

Shared Memory Parallel Implementation.
The abstract A'M4M machine described in this report is a sequential implementa-
tion using a single processor, though it has been designed assuming extensibility to

parallel implementation.

The extension of the design for parallel implementation, which coneerns mainly

memoery management, is under progress; the parallel implementation will be realized

in the near futurc.

Also, object priority and message priority have been introduced in the abstract
A'M machine. Along with their manipulation, we will have to study load halane-

ing schemes and parallel debugging schemes.

Full Implementation,
The A"UM-o instruction set has heen designed for a subset of A"2{M, which has

some sequentiality restrictions placed on conditionals and sending messages to self.

Also, more specifically, the adoption of the pointer-tag method rather than the
object-tag method as a mecthod to identify structure types resulted in hmiting the
ability of object mutation.

Hemoving these restrictions and redesigning the abstract instroction set which will
deal with the full set of A'UM and make available the full parallelisim without loss
of efficiency will be a theme for future work.

Local Memory Dhistributed Implementation.

The abstract A"HM machine has been designed assuming a shared-memorv multi-
processor as a target machine. T'here 1s a limit on the number of processors which
can be connected to a shared-memory.

The design and implementation of 4'UM on distributed processors with local mens-

ory and a common communication line will be a big future theme.

REFERENCES Al

Acknowledgments

Akihiko Konagaya, Tsutomu Maruyama, Kouichi Konishi, Shinji Yanagida and Satoshi
Ovyanagi participated in the design and implementation of the abstract .4'2{M machine.
We would also like to express our thanks to Kazuhiro Fuchi, the director of ICOT, and
Shun'ichi Uchida, the manager of the fourth rescarch laboratory, fur their valuable sug-

gestions and encouragement.

References

[Yoshida and Chikayama 88B] Kaorn Yoshida and Takashi Chikayama: “A'UM - A
Stream-Based Concurrent Object-Oriented Language -, Technical Report
TR 388, ICOT; In Froceedings of Infernational Conference on Fifth Gen-
eration Computer Systems (FGOCS'SR), pp.638-649, TCOT{OHM/Springer-
Verlag), November 1988,

Yoshida 90A] Kaoru Yoshida: “A"{M @ A Stream-Based Concurrent Object-Oriented
Programming Language”, Ph.D) thesis, Keio University, March 1990.

