ICOT Technical Report: TR-558

TR-558

A Parallel Problem Solving Language
ANDOR-II and Its Parallel
Implementation

by
K. Takahashi, A. Takeuchi & T. Yasui
(Mitsubishi)

May, 1990

©1990, 1COT

Mita Kokusai Bldg. 21F (03) 456-3191~5
'[:D | 4-28 Mita 1-Chome Telex ICOT J22964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technolog;

A Parallel Problem Solving Language ANDOR-IT

and Itz Parallel Implementation
Fazuko TARAHASHT Akikazu TAKEUCHI Terumasa YASUI

Central Research Laboratory
Mutsubishi Electric Corporation
&-1-1 Tsukaguchi-Honmachi
Amagasaki. 661, JAPAN

Abstract This paper presents a parallel problem solving language A NDOR-IT and its paralicl
implementation. Qur purpose is 1) to realize a full combination of AND- ard OR-parallelizm
suitable for a parallel problem solving, and 2} to find & clase wilich can he transfornmed inlo
KL1. ANDGR-IT is born for parallel problem solving on concurrent svstems which consist of
determinate, indeterminate and nondeterminate components interacting cach other. Problem-
on these systems are eomplicated since the number of possible bahaviors of some companent=
may increase dynamically, and a behavior of some component may affect its own bebavior in
futnre. ANDOR-TT p[UVi.dE‘-S the declarative dESl:rI:p'['inn for that sopt of]J[U]]]C[llﬁ. The execu-
tion of ANDOR-II exploits both AND- and OR-parallelism based on a coneept of a “color.”
Each possible behavior is associated with a distinet color and a color may be refined as com-
putation proceeds. The fork of nondeterminate processes occurs eagerly, which provides a fine
grain parallelisin. A program written in ANDOR-IT is transformed into that in K11 so that
OR-parallelism in ANDOR-I is compiled into AND-parallelism in the object code by means
ol a stream-based compilation. Both the compiler and runtime system are written in K11 and
they are now running on Multi-PS[system (without processor allocation).

1. INTRODUCTION

Recently a lot of researches are being undertaken on parallel logic programming. As
one of these rescarches, design and implementation of a new language which supports bigh
parallelisin together with programming paradigms and program transformation techniques with
these languages is vigorously studicd.

Committed-choice languages play main roles in these rescarch areas[Clark and Giregory
§4][Shapiro 88][Ueda 86a]. They ate originally investigated to realize a parallel execution of
conjunctive goals {AND-parallelism), and in compensation, they gave up the funciion of all
solution search (OR-pacallelism) which Prolog provides as the strong backirack mechanism
Namely, in committed-choice langnages, once sume clause is selected. the alternatives are 2han-
doned. In order to handle the full parallelism. a language which comprises both feautures is
desizable, and several researches have currently appeared aiming at a language which takes
advantage of both of Prolog and committed-choice languages. That is an amalgamation of
AND-parallelism and OR-parallelism [Yang 86][Naish 87)[Clack and Gregory 87)[faridi ot ai.
88

In general, a new langnage designer mainly discnsses the follow LILE ISSTI0S,

{1} description

The language has simple and well-formed structure. covers a large class of problems. and

its computation model can be well-defined
{2V implementaion

The compilerfinterpreter is casy to implement.

(J) execntion

[t can provide high performance.

Chu parallel programming languages, one more factor is added.
{4} parallelism
It can provide an “appropriate” granuality of parallelism.

These factors are interacting with each other deeply. In general, the more expressive power
a langnage has, the more the performance decreases: in order to get high performance, many
annoying contols are added to a description language, And an “appropriate” granuality of
parallelism depends on a target problem and a machine architecture, Each language considoer
a different factor as the most significant point. In fact, in case of a langnage which comprises
both AND- and OR-parallelism, languages such as CP and Andurra have splitted into a varions
classes [Shapiro 88][Haridi 89]. On considering the abave four issues in designirg that class of
language. one of the focus is the elegant and efficient treatment of nondeterminist. That is.
wihen 2 nondeterminate process is invaked and how it is extended.

ANDOR-II was born on these background [Takeuchi et al, 87). Owr purpose iz 1) 1o
realize a [ull combination of AND- and OR-parallelism suitable for a parallel problem golving,
and 2) to find a class which can be tranlated into KL1. 12

Originally, the target i1s the problems on concurrent systems which consist of many de-
terminate, indelerminate and nondeterminate components. The hehavior of these components
have many possibilities depending on the series of actions taken by them. Furthermore. these
possibilities increase dynamically when such components take actions repeatedly. From the
point of view of computation, handling of nondeterminate components comprises simultaneous
consideration of many possible worlds which may grow dynamically,. ANDOH-IT has given a
solution to this problem by realization based on “colored world,”

t

KL1 is a language, developped at [COT, which is identical to GHC with several controls,

2

In the execution of ANDOR-IT , possible worlds are created 2l each choice point. Euch
world is painted by distinct color and computation is executed on this eolored world., Fach
data is also colored by its own color. If and only if a pair of dils are painted by the same coler,
then they belong to the same world, and the computations between them can be executed. [f
multiple solutions are possible these solutions associated with the distinet color are packed in
a vector form. Some goals has an extra cover called “shell” to handle these typues of data,

Thus, ANDOR-1I employs an eager exploitation of nondeterminate forks. Several forks
may take place at the same time. There is no meta-calls nor special controls on the invocation.
such as defay declaration or when declaration. This makes a language very simple and provides
a fine grain parallelism. Althongh lazy nondeterminate forks might save search spaces, it canses
much suspension and bencfits little in handling such problems on concurrent svstems as stated
above.

Both the compiler and runtime system are written in KL1. We adopt the approach of the
transfomation into KL1 code rather than that of a dircet im plementation to machine cade. It
makes an implementation easier to embed some useful mechanisms of KL1 hoth in compiler
and runtinie system.

The system is now running on Multi-PSI svstem. However, it iz ruuning only on a si-
gle processor, since the cnrrent operating system on Multi-PSI do not suuport an antomatic
processor allocation 2. We could obtain a reasonable performance, which is a gond chart 1o g
realization on a multi-processor machine.

This paper is organized as follows. In the next section. the overview of the language feature
and basic idea of execution model are presented. In section 3. detatl compilation technigues are
explained, and some optimization is discussed in section 4. In section 5, the result of evaluation
and discussion are shown. And in section 6, the conclusion and futnre works are described.
This paper assumes the familiarity with Prolog[Sterling and Shapiro 86) and GHC[Ueda 8§a).

f2 Multi-P51 is & machine with mulliple processor elements develaped at [COT. For dedail explanation on KL1 and pseude
Multi-PSL see [Uchida et al. 88]

2. LANGUAGE ANDOR-II

2.1. Syntax

The syntax of ANDOR-IT is similar to committed choice languages, especially GHC, and
can be read in the same way as GHC except for the OR-predicate.

In ANDOR-II | a program is a set of AND-predicate definitions and OR-predicate defini-
tions. An AN D-predicate definition consists of a mode declaration and a set of AND-clauses.
An AND-clause has the same syntax with that of GHC. An OR-predicate definition consists
of a mode declaration. OR-relation declaration and a set of OR-clauses. An OR-clause has no
guard goals. A predicate defined by an AND(OR)-predicate definition is called an AND(OR)-
predicate. A clanse of either type can contain both AND-predicates and OR-predicates in its
body part. A goal in a guard part is restricted to a test predicate.

Mode is attached to each argument of cach predicate. User must declare at the top of a
program. and each predicate has a unique mode declaration. There are three modes: input.
ountpul and newiral

Before giving the definition of mode, we will introduce a concept of inspect.

Definition {inspect)

Let 4 be an argument of the head goal of a clause. If either of the following conditions
holds. then it is said that this clause inspects the argument A.

(1} A s & nonvaniable term.

{2) A s a variable, and there exists a variable that appears both in 4 and in some guard
goal.

{3} A is a variable, and there exists a variable that appears both in A and in the right
hand side of the body goal in the furm of Ihs = rhe.

Definition (mode)
Let A be un argument of a predicate P and Dy, Dy, .., D, be clauses defining P.

(1) input mode
If there exists such D:(1 <1 < n) that satisfies either of the followings, then the mode of
A s input,
(i} D; inspects A.
(i) A is a variable V, and there exists a body goal in which V appears in an sIgument in
an mmput made.

(2} outpot mode
[fin all D1 <+ < n), there exists a goal called directly or indirectly in the body of the
clause that instantiates A to a nonvariable term, then the mode of A is output.

{3} mentral mode
If all D:(1 < 1 < n) satisfy all of the followings. then the mode of 4 is newtral,
(1} Dy does not inspect A
(if} 4 is 2 variable V' and there exists no hody goal in which 1/ appears in an arguient in
an input mode.
{iii) There exists no goal called directly or indirectly in the bad v of the clause that instan-
tiates 4 to a nonvariable term.

Intuitively, the input mode and the output mode in ANDOR-II have the same meaning
with those in Prolog, respectively. Neutral mode appears when a process creates a cons-cell in
& stream. Detail discussion using an example is shown in the next section.

Note that the mode of an argument is decidable, and the argument whose mode cannot be

defined by the above definition is prolibited. Therefore, user must not write a clause such as
plf(X)) :- true | X=a.
since the mode of the argument of p is both input and output. This restriction is required for a
simple implementation. Input mode, output mode, nentral mode are denoted by "+°, "~ and
' respectively. and we call arguments in these mode input argument, output argument and
neutral argument, respectively.
The following is an ANDOR-IT program of compute. For a given inpnt list X, compute
picks up an arhitrary element and returns the sum of its squared value and cubed value.

Example 1.

%4 Compute

:= mode computel+,-), pickup(+,-), % mode declaratien
square(+,-), cube(+,=), add(+,+,-). %
:;umpute('.(,z,'! = true | % AND-clause

pickup({X,Y), square(Y,¥2), cube(Y,¥3), add{(¥2,Y3,2}. ¥

:= or_relation pickup/2. % OR-declaration
pickup([X|L],¥) = ¥=X. A OR-clause
pickup([_IL].¥) :- pickup(L,Y}. % OR-clause

square(X,¥) :- true | Y:=Xa«X. % AND-clause
cube(X,Y) := true | ¥:=X+Xs*X. % AND-clause
add(X,¥,Z) = true | Z:=I=+Y. % AND=clause

22 Computation Model

The computation rele of AND-predicates is similar to that of GHC [Ueda 86a]. That is.
two rules are imposed: rule of suspension and rule of commitment. And only rale of suspension
is iposed on the execution of OR-predicates.

ANDOR-IT supports both AND- and OR-parallelismn, that is, all the conjunctive gouls
are executed in parallel {AND-parallelism). And for an OR-predicate, clanses whase heads
are unifiable with the OR-predicate are executed in parallel (OR-parallelism). In order to
coordinate both AND- and OR-parallelism, the notion of a coelor is introduced. The idea is
that when an OHR-predicate is invoked and possibly returns several answer substitutions, they
are attached with distinet colors so that basic computations such as unification and arithmeue
operations are applied only to a tuple of data sharing the same color.

Fig. 2.1 shows the computation model of compute in the Example I.

Suppose the execution of compute with the list [1,2,3]. Similar to the other committed-
choice langunages, each predicate can be regarded as a process and each shared variable can be
regarded as a communication channel among processes. When compute is invoked with the
list [1.2.,3], picknp is invoked with the list [1,2,3]. FPieknp is a nondeterminate process and
has three possible ways of generating the valoes of 1, 2 and 3 depending on which definition
is selected. They are painted by distinet colors and packed in an arbilrary order in a vector
form. It is passed to two processes square and cube. ['hese processes Lave extra covers called
“shell.” When these processes receive the vector, the shell generates computational worlds for
each element of the vector, A world is painted with the same color as that of the corresponding
element, Computation for each daia is executed in this colored waorld. The outputl of each

>
2 Gavare
v2 2=(2,12, 38)

X=[1,2,3]

m

Fig 2.1. Computation model of compute

world is painted by its own color and all these colored values are recomposed inte a vector
form. A process add receives vectors from two processes square and cube. By the shell of add.
twu vectors are preprocessed to make a set of pairs with the same color. and for each pair of
the set, the computation is executed in the corresponding world.

Here, we give a furmal definition of color and colored value.

Definition [primitive-color,color colored-value)
primitive color ::= (clause-number,branching-point)
eoler rr= [1 |
[primitive-celearlcolor]
colored-value ::= y(value,color)

where branching-point is a unique identifier of an invocation of an OR-predicate. and clause-
aumber is the identifier of a selected clause at the branching point.

When an OR-predicate including a variable, say X, is invoked in a world, conceptually
the world splits into several worlds along OR-clauses. In coloting scheme, instead of actually
creating new worlds, a new color C; is generated for each OR-clause. In compntation of each
OR-clause whose associated color is C;, the variable X might be instantiated to a value V7.
Such multiple binding to the variable X is realized by instantiating X to a vector of colored
values, denoted by {v(Vy,C)), v(Va, Ca), ..., v(Va, Cp)} We use a lerm colored vector or simply
vector Lo denote the data of this type and distinguish it from the stream, which is a different

o

concept for stream programming. A data without a color {i.c. simple value) is called scalar.

Definition {same.orthogonal productive)

Fur a pair of colors € and Cs, one of the {ollowing three relations holds,

{1} If there exisis a branching point bp such that (nl,bp) is included in) and (w2 bp) is
included in €5 where #1 # a2, then € and Cs are defined to be orthogonal.

{2) Let bpe(e = 1...., k) be a branching point appearing both in & and Co and let n; and m,
be associated clause numbers in € and Cg, respectively. If ny = my for all s = 1, L)
then € and €5 are defined to be the same.

{3) f C; and Cs share no branching point, ©; and T« are defined to be productive.

Intuitively, values with the same celor have selected the same clanses at common hranching
points and valwes with the orthogonal colors have selected the different branches at the common
branching points, and values with productive colors have no common branching point.

Definition(consistency)

For colored values »(V1, C1) and oV, Ca), if €7y and s are elther the same or prodactive,
then Oy and 5 are said to be consistent. For colored values o{ V3 Cy) vl Vo, Ca), el Ve, Cu .
il for any 1,7(1 # j). € and ©; are consistent, then €, Cy, .., C, are said 1o be consistent,

Definition(joint color)

When a goal receives the set of colored-values o{ Vi, €y) v{Va, Ca), v w{Vy, ©o), each of
which is received via different input arguments, and €\, Ca, ..., Cy are consistent. then the goal
is applicable to the values ¥, Vo, ..., ¥,. Let R be the result. Then, the color associated with
K is defined as the union of €'y, Ca,...,Cy. It is called joint color.

Color is not asscoiated only te & ground term but alse to a variable in a newtral argument.
Let us show another example of ANDOR-IT .

Example 2.
%% Simple Cycle

i= mode simple_cycle, pi{+,-), p2(+,-}, multi(+,-),
square(+,-), cube(+,=), add(+,+,=).

simple_cycle := true [pi([2IX],Y), p2(Y,X).

pLOIXIXL],Y) := X>20 | Y=[stop].
plOLXIX1],¥) == K=<20 | add(X,1,A), Y=[4|Y1], p1(X1,¥1}.

p2((stopl,¥} :- true I y=01.

p2([XIX1],¥Y) := X\=stop | multi(X,A), ¥Y=[A|Y1], p2(X1,Yi).
:= or_relation multi/2.

malti(X,Y) :- square(X,¥Y).

multi(X,¥) :=- cube{X,Y).

square(X,¥Y) :- true | Y:sXsX.
cube (X,Y) - true | Vi=X=Xs=X.

add(X,Y,Z) :- true | Z:=X+Y.

In the clavse defining sémple_cycle, processes pl and p2? form a cyelic structure with the
communication channels X and Y. pl receives the stream via its first argument, increments
the element of the stream by 1, and sends the value to p? via its second argnment. p? receives
the stzeam via its first argument, cxecutes the goal mults on the received element, and sends the
results to pl. In this way, the values put onto each cell of the stream X and Y are determined
incrementally by affecting each other.

Pay attention to the goal Y=[A|YI] in the second clause of p2. Receiving an input via the
channel A from the process multi in a vector from, this process generates the vector of variables
assoclated with its own color onto the channel ¥Y'1. However, each variable is not instantiated
to a nonvariable term hy this process but by the other process (its conjunctive goal} p2. Tt
means that this process only creates a slot on each colored world and another process puts the
values onto this slot. This goal is regarded as a special goal of anty 3 make_Slot{ ¥, 4. Y10,
whose mode 15 (= ,=+,7),

3. COMPILATION

An ANDOR-IT program is compiled into a KL1 program using & coloring scheme, OR-
parallelism in A NDOR-IT is realized by AND-parallelism in the object program, whereas intrin-
sic AN [D-parallelism among conjunctive goals is preserved. In this section, we will show the de-
tail compilation techniques. The fundemantal idea is described in [Takeuchi et al. 87)[Takeuchi
et al. B8

The main joh of the compiler is an analvsis of shell types and their creation. The cover
af “shell” is put onto the goal that might receive a veetor type data, There are some kinds of
shells depending on the data type, Compiler analyzes the goal which needs a shell and itz shell
types. Fach goal is transformed to the one covered with a proper shell.

In the following subsections, we will show how each clause is transformed and what 1ype
of shell is created.

3.1, Creation of an OH-manager

OH-clauses are transformed into determinate AN D-clavses. In a resultant clawss, OR-
parailel execution of OR-clauses are realized by AND-parallel execution of goals cotresponding
to their computations. And their solutions are collected as a colored vector by the fair merge
technique agaln.

Consider the OR-predicate pickup appearing in the Example 1. The Program I shows its
translormed code (K11} pickup_Core ¥ and prebup_Core 2 correspond two definition elanses
of pickup, respectively, and they are transformed similatly with AND-clauges. As K11 has o
modulurity, andor:geal in the program denotes the call of goal in the module andor.

Frogram 1.

pickup_Core(X,¥,w(C) ,BP) :- true |

EP=[EPO|EPs], % getting the ID of branching point
BEPs={BP1,BP2}, % dividing branching point stream
andor:set_Coler(C, (c1,BPO)},C1), % refinement of the color

% for the first clause
pickup_Core_1(X,¥1,w(C1),BP1), U computation of the

% first clause
andor:set_Color(C,(c2,BP0),C2), % refinement of the color

% for the second clausec
pickup_Core_2(X,Y2,w(C2),RF2), } computation of the

% zecond clause.

andor :merge (Y1,Y2,Y).

In this example, two arguments are added to the predicate pickup in ANDOR-IT . The third
argument is for current color which is annotated with the goal, and the fourth is for the stream
to ohtain the identifier of branching point. For each branching point, a unique number should be
assigned. However, the exenction of OR-relation goals may happen in parallel in a distributed
environment. Therefore, some manager is required who gives the identical number to each
branching point. Manager expands streams called branching point stream to each process that
may call an OR-predicate, and each process requests the manager to give its own number via
this stream.

A manager is defined below.

Program 2.

bp_handler([BPiStrml ,N} :- true |
BP=N, N1:=N+1,
bp_handler (Strm,N1).

bp_handler([],N¥) :- true | true.

The top level of the transformed code consists of the lop level of ANDOR-II source program
and this handler. For example, the top level of the transformed code of the Example 2 is as
follows.

Program 3.

simple_cycle_Top :- true |
simple_cycle_Corel{w([]),BP),
bp_handler(EF,0).

2.2 Transformation of Clauses

Next, we explain the transformation of each clause. Roughly speaking, cach clause is

transformed according to the following ruie.

(1) Add the argnment for color information to the head goal and te all the body goals whose
predicates are neither ‘=" nor ©=."

(1) Add the argument for branching point stream to the liead goal and all the goals that may
call an OR-predicate directly or indirectly.

{3) If the argument for branching point stream is added to more than two hody goals, then
add the body goal which divides hranching point stream.

(4} Call body goals directly or with a cover of a shell, depending on the analysis.

The following example shows the transformed code of two clauses defining p2 in the Exampie
2. The sccond clause contains two shells: make_Slot_ N Shell and p2_AShell. In the wext
subsection, we will discuss about these shells,

Program 4.

p2_Core{[stop] ,Y,w{C),EP} :- true |

Yi=[], % single selution in this world
Y=[w(¥1,C)], % solutieon Y1 is associated with
W its color C
BP=[]. % closing the branching point stream
p2_Core([X|X1],Y,w(C),BP) :- X\=stop |
BP={BP1,BP2}, W dividing branching point stream

multi_Core{X,A,wi(C),BP1},
make_S5lot_NShell(Y,A,¥Y1,m(C))}, Y% normal shell for

* a goal of cons cell
p2_AShell(X1,Y1,w(C),BPZ). % abnormal shell for p2

Shell

Shell is created in order to handle a set of data when a nondeterminate process creates multiple
solutions. Several types of shell are introduced. The shell for input vector is called “normal
shell” and for output vector is called “abnormal shell.” Considering a synchronization, “passing

10

shell” is introduced. The goals which need these shell types are determined by the static
data flow analysis at a compile time, and for the goals whose 1/0 data type are dynamically
determined at a runtime, “bilingal shell” is introduced.

3.3.1. Normal Shell

Normal shell is a basic shell structure which handles a set of input vectors. It decomposes
a set of input vectors into a tuple of values, passes them to the corresponding core processes,
amd puts the outpet values together into a set of vectors again. Each rore process corresponds
tu computation with one celor. Core processes are executed in parallel. Some core processes
may succeed and return solutions, while others may fail or deadlock and return no solution, Ta
principle, solutions are put into output channels as soon as they are generated hy fair merge
operators, so that all the solutions are obtained without being disturbed by failure or deadlock
in some worlds.

Program 5.
%% normal shell for add in the Example 1

add_NShell_2_1¢[v(X,Cx)]X=],Y,Z,w(C0) ,BP) :-

true |
BF={ BP1,EP2 }, s dividing branching point stream
andor:censistent_Color({[Cx,C0],R}, % check of color consistency

{ R=success(C) -»
add_NShell_2_2(X,Y,Z1,v(C) BP1) ;
R=fail -> Z1={], BP1=[])J,
add_NShell 2 _1(Xs,Y,Z2,«(C0),BP2),
andor :merge(Z1,22,2). % merging solutions
add_NShell_2_1([),.,Z,.,BP) :- true | 2Z=[], BP=[].

add_NShell_2_2(X,[v(Y,Cy}[Y¥=],2,={C0) ,BP)} :-
true |
BP={ EP1,BP2 1}, % dividing branching point stream
andor:consistent _Celer([Cy,C0],R), ¥ check of coler conaistency
{ R=successz(C) ->
add_Core(X,Y,20,w{C),BP1), % call of core processz
Z={v{Z0,C)1; % solution Z0 is
% associated with its
x color C
R=fail -> Z=[], BP1=[]),
add_NShell_2_2(X,Ys,Z2,w(C0),BF2),
andor:merge(Z1,22,2). % merging solutions
add_NShell_2_2¢(_,[1,2,_,BP) :- true | Z=[1, BP=[].

The above example shows the normal shell for the proecess add in the Example I. It has two
input vectors via its first and second argnments. add_Shell_2_1 and add_Sheil_2_2 extract
the single data from these input vectors, respectively. If the colors associated with the both
input data and the color associated with the goal itsell are consistent with one another, then
each pair is passed to its core process add_Core, otherwise, no data is generated.

11

3.

3.2, Passing Shell

Normal shell is invoked with a set of input data in a vector form. It causes an nnex-
pected synchronization, which does not exist in an ANDOR-IT source program. Let us show
an example.

i= mode coat_of_pli+,-).
coat_of _pl(X,Y) :- true | X=[2{X1], p1(X,Y).

This clause is expected to commit immediately withont synchanization. Consider the execution
of the Example 3 which is gained by replacing the clause simple_cyele shown in the Example
r

Example 3.
%% Coated Simple Cycle

1= mode simple_cycle, pl(+,-), p2(+,-), multi(+,-),
square(+,~}, cube(+,-), add(+,+,-),
coat _of _pii{+,-}.

simple_cycle :- true | coat_of_pi(X,Y), p2(Y,X).
coat_of _p1(X,Y) :- true | X=[21X1], p1(X.Y).

pr{[XIXL], YY) := X>20 | Y=[=top].
PLOMXIXLY,Y) o= X=<20 | add(X,A), Y=[AlY1], p1(X1,¥1).

p2{[stop],¥) :- true I ¥=[].
p2CIXIX1),Y) := X\=stop | multi(X,A), Y=[4|¥1], p2(X1,V1).

- or_relatien multi/2.
multi{X,Y) :- square(X,¥).
multi(X,¥) :- cube(X,¥).

square(X,Y) :- true | Y:=X=f,
cube(X,¥) t= true | V:=X#X#X.
add(X,Y,Z) :- true | Z:=X+V,

At first, the cycle is expecied to start when X is instatiated to [2]X] by the goal of
coat_of_pl. However, it is judged that x a variable X in simple_cyele might be bound 1o a
vector, since p2 calls an OR-predicate multi. Therefore, an input shell is put onto the goal
coat_of_plin simple_cyele. As a result, the core process of coaf_of_pl is never invoked until
1ts first argnment is instantiated to a nonvariable term. p2 is neither invoked until it first
argument is instantiated to a nonvariable term. Neither coni_of_pl nor p2 is invoked, and the
computation of simple_cycle falls into deadlock. Actually, shell should not put onto the goal
coatof_pl, but onto the goal p1 called from its body part. In another word, shell should be
put onto the goal which has a definition clause inspecting the argument.

We put a virtual shell onto the goal receiving a vector, and real shell should he put onto the
innermost goal which needs a synchronization, Virtual shell does nothing other than passing

12

the input data to the lower level. This shell is called “passing shell”. The passing shell of the
coul_of_plin the Example 3 is as [ollows.

Program f.
coat_of_pl_Pass(X,Y ,w{(C) ,BP} :- true | X=[2[X1], pl_NShell(X,Y,w(C),EF).

Let us consider the behavier of the passing shell on an OR-predicate.
Example 4.
Wh Complicated Cycle
:= mode complicated_cycle, pl(+,-), p3(+,-), multi(+,-),
square(+,-), cube(+,-}, add(+,+,-},

or_merge(+,+,-}, distribute(+,-,-).

complicated_cycle :- true |
pl([3aix1],v1), p3([31x2],Y2), or_merge(Y¥1,Y2,Y), distribute(Y,X1,X2).

pl([x]x1],Y) :=- x>=20 | Y=[stop].
pt{{XI1X11,Y) :- X<20 | add(X,1,K), ¥Y=[AlY1], p1(X1,Y1).

pallxixil,)
p3(IXIXx1],1)

X>=20 | Y=[stop].
X420 | multi(X,A), Y=[AIY1], pacX1,Y1).

distribute([stop],¥1,Y2) := true | Y1={],¥Y2=[].

distribute{[X[X1],Y1,Y2) :- X\=stop,X»>=10 |
Yi=[X|Y¥1z], distribute(X1 ,Y1is,¥2).

distribute ([X[|X1],¥1,¥2) :- X\=step,X<10 |
Y2=[X1¥23], distribute(X1,¥1,Y2s).

t= or_relationm multi/2.
multi(X,¥) :- square(X.¥).
multi{X,¥) :- cube(X,Y).

square(X,Y) :- true | Y:=X=X.
cube (X, 1) 1= true | Y:sXsXsX.
add{¥,Y,2) :- true | Z:=X+Y,

(- or_relation or_merges3.

or_merge([XI1X1],Y,2) :- Z=[X1Z1], or_merge{X1,Y,Z1).
or_merge([], Y,2) = ZI=Y.

or_merge(X, [YIY¥1],2) :- Z=[Y|Z1], or_merge(X,¥1,Z1).
or_merge(X,[], Z) = Z=X.

or_merge in this example is o nondeterminate merge. or_merge can be invoked if at least
either of first or second argnment is instantiated to a nonvariable term. The first two clanses
need a synchronization on the first argument, while the others need on the second argument.
When or_merge is judged to have a passing shell, OR-manager is embedded in it while normal

13

OR-predicate has the OR-manager in the core process level.
The passing-shell of or_merge is shown below,

Program 7.

or_merge_Pass{X,Y,Z,w(C),BP} :- true |

EP=[EP0|BPs], % getting the ID of the branching point
EPz={BP1,BP2,EP3,HP4}, % dividing branching point siream
andar:set_Coler(C,(c1,EP0Y,C10, % refinement of the color
% for the first clause
or_merge_Pass_1{(%,Y,Z1,%{C1) ,EP1}, % computation of the first clause

andor:set_Coler(C, {c2,HBF0},C2),
or_merge_Pass_2(X,Y,22,w(C2) ,BP2),
andor:set_Color(C, (c3,BP0),C3),
or_merge_Pass_3(X%,Y,Z3,w(C3),BP3),
andor:set_GColor(C, (c4,BP0),C4),
or_merge_Pass_4(X,Y,Z24,w(C4) ,BP4),
andor :merge ([Z1,22,23,241,7) .

or_merge_Pass_1(X,Y,7,w{C),BF) :- true |

oT _merge NS3hell 1{X,¥,Z,w(C),BP). % NShell for the first argument
or_merge Pass_2(X.Y,I,%{C),BF) :- true |

or_merge NShell 2(X,Y,Z w(C),RP). % NShell for the first argument
or_merge_Fazs_3(X,Y,I.w(C}.BP) :- true |

or _merge_NShell 3(X,Y,Z,%(C),EBP). % NShell for the second argumen:
or_merge Pazsz 4(X,Y,2,w(C) ,BP) := true |

or_merge _NShell _4{X,Y,Z,=(C),BP). % NShell for the second argument

or_merge N Shell_i{i = 1,2,3,4) is a normal shell which calls each corresponding clause as a

i

Cole pIOCceEss”t.

3.8, Abnormal Shell
Abnormal shell is a shell for handling output vectars,
See the Example 2 again. In the second clause of p2, The goal Y=[A|Y1] receives an input
via the channel A from the process mulii in a vector form, so a normal shell is pul onto this
goal. This process generates the vector of variables associated with its own color onto the

channel Y1, This goal is regarded as a special goal of arity 3 make_Siot. Normal shell for
make_Slot is shown below,

Frogram 8.

make_Slot_NShell(Lout,[v(H,C)|Hz] JTout ,w(Cpl) :-
true |
ander:consistent_Color{[C,Cp].R),
(R=succezs{C1l) =->»
L=[HIT], % core process
Ti=[w{T,C)], % tail part with its coler C

1

Ay passing shell does nothing, these four definition clauses can be eliminated by unfelding.

11

Li=[w(L,C}] ¥ ; % cone-cell with its ecolor C

R=fail =» L1=[],T1=[] 1},
make_S5lot_N5hell(L2,Hs,T2,w{Cpl),
andor :merge(T1,T2,Tout), % vector of variables
andor:merge(L1,12,Lout). % output vector of coms-cells
make_Slot_NShell(L,[1,T.,.) :-
true |
1=01, L=0[].

Therefore, the conjunctive goal p2 has an output channel which is instantiated to the vector
of variahles. Abnormal shell decomposes these output vectors into a world with its own color

and checks its input whether it has a consistent color or not. The abnormal shell for p2 is as
follows.

Program 3.

%% abnormal shell for p2 in Example 2

p2_A3hell(Xs, [v(Y,Cy)|Ys] ,w(CO) ,BF) :- true | % C is the celor for one strcam
gp={ EF1,EF2 }, % dividing branching peint stream
andor:consistent _Color([Cy,C0],R), W check whether

A the color with the input
% data is consistent with that
% of the prepared world
{ R=success(C) =>
p2_NShell(Xs,¥,w(C),BP1) ;
R=fail -> Yi=(],B8Pi=[]).
p2_AShell(Xs,¥s,w(C0},BP2).
p2_AShell(Xs,[1,_,BP) :- true | EP=[].

p2 N Shell called from p2_AShell is defined in a normal way.

Program 10,

p2_NShell{[v(X,Cx}|Xs],Y,w(C0},BP} :- true |

BF={ BP1,EP2 }, % dividing branching point strean
andor:consistent _Coler{[Cx,C0],.R), % check whether the coler

h with the input data is

% consistent with that of

% the prepared world

{ R=success(C) -» p2_Core(X,Y1,w(C).EP1) ;
R=fail -> Yi=[],BP1=[] },
p2_NShell(Xe Y2 w{C) EBPF2),
andor :merge(¥1,Y2.7).
p2_NShell([1,Y,_,BP) :=- true | Y=[],BP=[].

p?_Core called from p2_NShell generates an output in a vector form again, which means a
prepared slot in each colored world is stuffed with a vector again. This slot is created by a
core process of make_5lot as the tail part of each cons-cell. Therefore, the output of the rore
process called from make_Slot_ N Shell is instantiated to a vector of streams whose head is an

15

integer and the remaining part is a vector. Therefore, the two channels X and }* connecting
two processes in simple_cyele have data form of layered vector.

3.3.4. Bilingal Shell

We will prepare yet another shell. Consider again the Example 2. According to the above
discussion, the input of core process of pl is a vector of streams whose head is an integer and
the remaining part is a vecior. As the body goal pl called from pl recursively receives the
remaining part, shell should he put onto this goal.

It is difficult to judge which goal has sneh an input, since it requires a compilcated data
flow analvsis crossing clauses. In general, the goal that has an argument of the tail of a siream
might receive the vector type data, and we put the shell called bilingal shell onto those goals.
since it can handle both scalar tvpe and vector type data,

Biligal shell judges input data type at a runtime, and calls the coorresponding process.
For example, the bilingal shell for a goal p1 called from pl recursively is shown below,

Program 11.
p1_BI(X,Y,w(C),BPF) :- true |
andor:type(X,Typel, % judgement of data type
{ Type=vector -> pl_NShell(X,Y,w(C) ,BP); % calling the corresponding
% shell
Type=scalar -> pl_Core{X,Y,w(C),BF}). % calling core process

3.3.5. Judgment of Shell Type

It is determined at a compile time which shell should be put on each goal. Multiple shells
may be put onto a goal. In that case, passing shell is the outermost shell, and the order 1s
passing shell, bilingal shell, abnormal shell and normal shell from the outside. Therelore, and
normal shell is sometimes called from abnormal shell or from passing shell, and so on.

The basic rules lor judgment of shell types is as follows:

First of all, the channel which may have a vector type data flow (namely, the variable
appearing in ANDOR-IT program which may bound tw vector in the execution) is detected
according to the following rule,

Rules {vector type channel)

{1} Variable appearing in an output or nentral argument of an OR-predicate is bound to vector.

{2) Variable appearing in an cutput or neutral argument of the predicate that calls OR-predicate
directly or indirectly s bound to vector,

{3} Variable appearing in an output or neutral argument of the predicate which has a variable
bound to vector in an input argument is hound to vector.

Shell types are judged nsing this result.

Rules [shell type)

{1} If a variable in an input argument of a goal G is bound to vector, and no definition clause
of the corresponding predicate inspect the corresponding argument, then & has a passing
shell.

{2) If a head goal has an input argument of [Car|Cdr] where C'dr is a variable, and a goal &
has Cdr as an input argument, then G has a bilingal shell.

{3) If a variable in an output argument of a goal & also appears in an neutral argument of

18

another goal in the same clause, and this variable is bound te vector, then & has an
sbnormal shell.

{4} If a variable in an input argument of a goal G is bound to vector, then G has a normal shell

4, Optimization

Next, we will show some optimization technique used in the compiler.

4.1. Uulization of *shoen”

We utilize & convenient function of “shoen”™ in KL1. Shoen is a group of the exceution of
the program. It controls the execution such as start and aburl jobs, manages the resonree. and
processes the failure case. Shoen can call children shoen recursively, and the failure in some
shoen does not affect the omtside. We make use of this function in prunning. If a conjunctive
goal fals. all the siblings fails. They need not to be computed any more. On the other hand.
a goal in Olt-relation fails iff the computation in all the colored worlds fail. These treatment
of failure is realized by shoen in the following way.

At a brarching point, the world manager is created, which controls a set of shoens under
it. A set of new shoens 1s created, each of which corresponds 1o each colored world and has a
report siream to the world manrager. Each shoen expands report streams to its child processes.
IT & conjunctive gual fails, then it sends a failure message to its parent shoen. Receiving the
message, the parent shoen suicides with killing all their child processes. At the same time. it
reporis the faifure to the world manager. I a goal [ails in some world. failure information -
passed to the world manager. If the world manager receives failure messages from every world
forking at that Lranching point, then it snicides, sending a message 1o its upper manager. [
weans that the OR-predicate fails, The use of shoen prevents a failure on some world from
affecting the computation en the other worlds.

4.2, Clustering

The compiler 15 based on coloring scheme. But in coloring scheme it is expensive to
decompose/reconstruct vectors and to check calor consistency, It is possible to combine several
nodes together in a cluster which has a comman shell.

See the Example 1 again. It is easy to combine processes of AND-predicates such as LI
cube and add in the same cluster in a naive manner. However, can we combine the process
of OR-predicate pickup in this same cluster? We can do it if we apply 2 continuation-hased
compilation method in the cluster.

Continuation-based compilation technique is proposed by Ueda [Veda 86¢]. The main idea
Is constructing the data of the solution in a bottom-up manner. It does not sufler [rom the
copy environment since & creation of variants when collecting solutions is UNNeCessary.

In this method, OR-parallelism in the original program is realized by AND-parallelism
in the transformed program, while the intrinsic AND-parallelism is executed sequentially by
passing a continuation around. Moreover, stronger restriction on the input/output data is
imposed compared with stream-based compilation with colored vector! |

We adopt continuation-based method in a cluster. In another word, the PIoCesses 1o
which continuation-based method car be applied are combined in the same cluster. Originally,
continuation-based method is developed in order to make a Prolog program including nonde-
terminism determinate one. The restriction imposed on input/output in the original program
is that they should be ground ferms. The nentral argument in ANDOR-I! clearly does not
satisfy this condition. This occurs when more than two processes which have channels connect-

t

BT It is realized by stoticaily determining scheduling of coroutines by compile-time analysis of & source progeam. Hawever, in

Ueda also proposed the extension of cuntinuation-based transformation to & nondeterminale program with coroutine [Ueda

his method, only vue communrication rhannel is allowed for generator and tester, 50 the program such as Example 2 cannct be
treabed.

18

ing with each other constitute a loop structure. shown in Example 2. [n our compiler, only the
predicates that satisfy the condition can be comhbined as the cluster.

Clustering is performed at the beginning of the compile procedure. First of all, the compiler
reads the souree program and makes the basic data structure DFG(Data Flow Graph) and a
common information table PL(Prediacte List). DFG is a graph representation for a clause in
which nodes correspond to goals appearing in the clause and edges to shared variables. PL is
a table which information such as mode and shell type is put on or get from hy hashing with
a key of a predicate name. Then extract the goals which ran be bound in the cluster with a
comimon shell.

We partition all the predicate in ANDOR-IT into two classes, C-based and 5- based. accord -
ing to the following rule. C-hased predicate is the one which can be combined in a cluster and
continuation-based compilation is applied. S-based predicate is the one to which stream-hased
compilation nsing colored vector is applied.

HRule {partition of predicates)

{1-1}loup constituent]
If & goal has such a variable that constitute a loop, the corresponding predicate of thit
goal is S-based.

(1-2)[downward propagation|
If a goal shares the variable appearing in ontput argument of the head goal which may
satisfy the condition (1-1), the corresponding predicate is S-based.

{2-1)[neutral mode]
[T a predicate other than make_Slof_i has a variable in 2 neutral argument, the predicate
is S-hased,

{2-2)[propagation to the writer]
If a predicate has the variable in an output argnment which alse appears in a nentral
argutient of ancther goal in the same clanse, then the pradicate is S-based.

2-3)[propagation to the reader]
Il a predicate has a variable in an input argument which also appears in an outpul argument
of the goal whose predicate is S-based in the same clause, then the predicate is S-based.

(3}upward propagation]
If a predicate has such a definition that there is a body goal which calls directly or indirectly
a goal whose predicate is S-based is S-based.

{4) The predicate which satisfies neither (1),(2) nor {3) is C-based.

For example, pickup, multi, square, cube and add in Example 1 is Judged to C-based and
they are combined into the same cluster,

C-based predicate satisfies the input/outpnt restriction. Input/output argument of a C-
hased predicate in ANDOR-II can be regarded as a ground input/output in the meaning de-
scribed in [Ueda B6c). As for neutral mode, only a predicate of cons-cell creation, that is.
make_5Slot_i is posssibly judged to C-based. Let a variable in a peutral argument he V. If
there is mo goal that has the variable V in an culput argument in the same clause, then ¥
must be exported. It means that V appears in a neutral argument of the head goal and in this
case, make_Slot_1 is judged to S-based. If there is a goal that has the variable V in an output
argument, it is the writer on that variable. Then V can be regarded as a ground input in the
meaning described in [Ueda 86c], under the scheduling where make _Slot_i is performed after
the writer process. In this case, make_Sloi_i is judged 1o C-based.

In stream-based compilation a large class can be handled and massive parallelism can he
induced in a object program, while continuation-based compilation provides higher efficiency.

1%

Utilization of the continuation-based method in & part of the com piler preserves both advatages.
4.3, Other Technigues

There are some other techniques to increase efficiency.
{1) Runtime support
Actual transformed code includes calls of runtime support routine such as core. pass, shel]

and so on. This prevents the object code from becoming exravagant. and provides an ease of
maintainence.

{2} String realization of color

Check of color consistency is expensive and it happens frequently, To rednce the overhead.

color is actually implemented as a fixed-length string. Thus. it needs a constant time at eaci
check.

20

5. DISCUSSION

The compiler runs on multi-P5I, and the transformed code in KL1 can be compiled by
KL1 compiler. AMulti-T'STis a machine with multiple processor elements developed at ICOT.
However, it is running only on u single processor with 12MW memory, since the current operat-
ing system on Multi-P5I do not support an automatic processor allocation. Currently, neither
compiler and the ohject code has a part which imposes explicit allocation on multi processors.
We show below the result of the execution of the example 1 and fault dignosis of a circuit of
hall adder which is shown in the appendix.

Compute(Example 1)

| Length of | CPU time | number of solutions | number of reductions |
| Input Data | (ms) [[|
————————————— i 3 - - - o ———— e
! 10 I 173 | 10 | 1581 !
I 50 I 83z | =0 | 10387 I
I 100 [1935 ! 100 | 28356 I

D L R e e e e e e e

Fault Diagnosis of a Circuit(Appendix)

Input data :
(a) haC [{1,771, [1,0] 1, Answer)
(b} haC [['?*,*7'], [1,0]], Answer)
{c) ha([[*?*,*7*], [0,0]], Answer)

| Input | CPU time | number of solutions | number of reductions |
| Data | (ms) | | !
----------- A e e e e e e e
| (a) I 204 | 6 | 2353 |
| (b) I asT | 12 | 4839 |
I () | 3ag | 4 | 4815 i

o o o o v o L o S e e e o e

5.2 Comparison with Other Works

Design and implementation of a new language which has both features of AND-parallelism
and OR-parallelism are studied intensively.

Haridi [Haridi et al. 88] proposed the language Andorra which is aimed at a supersei of
both OR-parallel Prolog and a committed choice language. Andorra and ANDOR-II share
many features. One of the main differences is that invocations of nondeterminate goals are lazy
in Andorra, while they are eager in ANDOR-II . Also scheduling of a nondeterminate gual is
infinitely unfair in Andorra, though this is for compatibility to Prolog. Implementation is also
different. ANDOR-II adopts a compiler approach, while they are designing a new machine for
Andorra.

21

Clark and Gregory pointed out the importance of further rescarch in these areas and they
suggested the combination of PARLOG and Prolog [Clack and Gregory 27]. One of the outcome
1s a new langnage Pandora [Bahgat and Gregory 89] whose semantics is based on an Andorra
maodel,

Yang proposed a language P-Prolog which subsumes both AND- and OR-parallelism [Yang
$7] and achieves true mixture of both parallelism. In this respeet, P-Prolog is closely relatod to
ANDOR-IT . One of the main differences is synchronization mechanism. In I’-Prolog, clauses
are divided into single-neck and double-neck clauses and for single-neck clauses exclusiveness
plays a central role in synchronization, while in ANDOR-IT mechanism similar to that of GHC
ts adopted. Other main difference is implementation. We designed ANDOR-IT so that it cau
be compiled into a committed choice language, while P-Prolog seems to be designed together
with a new implementation scheme,

Naish proposed a parallel NU-Prolog which is an extension of NU-Prolog [Naish §5). It can
express AN D-parallelism together with nondeterminism. A nondeterminate code can call A ND-
parallel code which (in restricted way) can call nondeterminate code. However, nondeterminism
is only handled sequentially.

Saraswat handles both parallelism in a framework of constraint. He proposed a langue:e
cp(ll&) as one of the CP family [Saraswat 87]. It emplovs an eager invocation of nondeter
minate forks. The basic idea resemhbles to our system: each possible selection of a clau-r is
expressed in the binding itself as a constraint while it is expressed as a color associated (o the
data in our system: and early cut of fatlure world by constraint solver is realized by shoen
mechanism in ANDOR-IT .

Program transformation from a nendeterminate program Lo a determinate program which
collects all the solutions is also intensively studied [Ueda 86h][Tamaki 86][Okumura and Mat-
sumoto §7) [Bansel and Sterling 88). A good result can be oblained using the proposed tech-
niques for a certain class of programs such as generate-and-test Lype prograts,

In comparison, the main characteristics of ANDOR-II can be said as follows. A NOGOR-I
has no execution control other than OR-relation declaration and mode declaration. Execution
controls such as when, delay, where and so on are subrogated by various types of shell. It makes
a description language simple and friendly. In ANDOR-[T . eager fork of nondeterminate goals
can explore fine grain paralelism, at the same time, it may cause a combinatoriul explosion.
However, we will take advatage in the execution on multi-processor machine, rather than the
execution hy lazy fork with a lot of suspensions.

6. CONCLUDING REMARKS

To sum up, our contribution is as follows:

(1) Design of a logic programming language with AND- and OR-parallelism. In other words a
parallel programming language with nondeterminism.

(2) AND/OR parallel execution model based on coloring scheme.

{3) Compilation to a committed choice language.

There are some remaining prohlems for future works.

Relization of meta-functions is an important problem. That is to share the result of
computation in the different worlds. Logically, computation in different worlds are independent,
But frum the pragmatic point of view, the knowledge discovered in a world could benefit other
worlds. It is desirable to utilize such cross information flow over worlds.

Another issue is the realization with processor allocation. KL1 is embedded as a firmware
of multi-PSI muchine, We can expect a much more efliciency by putting a goud allocation both
on compiler and ohject code. A version with processor allocation is now under development.

ACKNOWLEDGMENTS

This research was done as one of the subprojects of the Fifth Generation Computer Systems
(FGCS) project. We would like to thank Dr.I.Fuchi, Director of ICOT, for the opportonity uf
doing this research and Dr. K. Furukawa, Viee Director of ICOT, and also Dr. R, Hasegawa,
the Chief of First Luboratory, for their advice and ENCOUTRgement.

3

REFERENCES

[Bansel and Stering 88] Bansel A.K. and L.S.Sterling, “Compiling Enumerable-and-Filter Pro-
grams for Ellficient Execution under Committed-Choice AND-Parallelism.” Proc. of Inter
natinal Conference an Parallel Processing, pp.22-26 1988,

[Bahgat and Gregory 89] Bahgat,R. and 5.Gregory, “Pandora: Non-deterministic Parallel
Logic Programming,” Proe. of 6th Internatinal Conference on Logic Programming, pp71-
486, 1989,

[Conery and Kibler 85] Conery,S and F.Kibler, “AND Parallelism and Nondeterminism in Logic
Programs,” New Generation Compnuting, Vol.3, No.1, pp.43-70, 1985,

[Clark and Gregory 84] Clark,K.L. and 5 Gregory, “PARLOG: Parallel Programming in Logic,”
Research Report DOC 81/16, Imperial College of Science and Tech nology, 1984,

Clark and Gregary 87) Clark, K.L. and S.Gregory. “PARLOG and Prolog United.” Proe. of
4th Int. Conf on Logic Programming, pp 927-961 1957,

(Maridi et al. #8] Handi,5. and P.Brand, “ANDORRA Prolog - An Integration of Prolog
and Committed Choice Languages.” Proc. of Internatinal Conference on Fifih Generation
Computer Systems, pp.743-754, 1988,

(Haridi and Jansor 89] Haridi,5. and S Janson, “Kernel ANDORRA Prolog and Its Compuiz-
tion Model,” SICS Research Report, 1984,

[Kliger et al. #8] Kliger,S., E.Yardeni, K.Kahn and E.Shapire. “The Language FOP{ 73" Proe.
of Internatinal Conference on Fifth Generation Computer Systems, pPr.T63-TT3. 1958

[Naish 87] Naish,L., “Parallelizing NU-Prolog,” Proc.of Logic Programming, pp.1546-1564.
1984,

[Okumura and Matsumoto 83] Okumura,A. and Y Matsumoto, “Parallel I'rogramming by
Layered-Stream Methodology,” pp.224-231 Proc.of Symposium on Logic Programming, 1987,

[Saraswat 88] Saraswat, V., “CP as 2 General-purpose Constraint-Language,” Proc. of National
Conference on Artificial Intelligence, pp.53-58, 1987,

[Shapiro &3] Shapiro,E.. “A Subset of Concurrent Prolog and [ts Interpreter,” [COT TR-003,
1983,

[Takeuchi et al. 8§7] Takenchi A, K.Takahashi and H Shimizu, “A description Language with
AND/OR Parallelism for Concurrent Systems and Its Stream-Based Realization,” [COT
TH-229,1987.

[Takeuchi et al. 89] Takeuchi,A., “On Parallel Problem Solving Language and Hs Applicaion,”
[COT THR-418, 1985, also in Concepts and Characteristics of Krowledge-based Svstems.
M.Tokoro, Y. Anzai and A Yonezawa{eds.), North-Holland, 1990,

(Tamaki 86] Tamaki L., “Stream-based Compilation of Ground 170 Frolog into Committed-
choice Languages,”™ Proc. of 4th Int. Conf. on Logic Programming, pp 376-393,1987.

(Ueda 86a] Ueda K., “Guarded Horn Clauses,” PhD. Thesis, The University of Tokvo, 1986,

[Ueda 86b] Ueda,K., “Guarded Morn Clauses: A Parallel Logic Programming Language with
the Cuncept of a Guard,” ICOT TR-208, 1986,

[UVeda 86c] Ueda, K., “Making Exhaustive Search Programs Deterministic,” Proc.of 3rd Inter-
national Conference on Logic Programming, LNCS 225, Springer, pp.270-282, 1986,

[Ueda 87] Ueda.K., “Making Exhaustive Search Programs Deterministic, Part I1” Proc.of 4th
International Conference of Logic Programming pp.356-375, 1987.

[Yang and Aiso 86] Yang,R. and H.Aiso, “P-Prolog: A Parallel Logic Language Based on
Exclusive Relation,” Proc.of 3rd International Conference of Logic Programming pp.255-
268, 1084,

24

APPENDIX

%4 Fault diagnosis of the Circuit of Half Adder
o

Ah A circuit contains a faulty element.

#h Given unknown input and chserved output,
W find a possible faulty elements.

:= module ha.
i= public ha/2.

= mode hai+,-), circuit(+, =),
element (+,+ ,+ + - -}, elementDoubt (+,+,+,-,-),
primitiveElement {+,+,+,-), inverter (+,+, =),
and? (+,+ -3, or2{+,+,-),
setInput (+,-), setln{+,-),
setUnknownIn(-), checkDutput (+,+,+,-),

check(+,+,+, -],
hm————- top level predicate definition —----=-=—=eeemm-——______________

ha([Dataln,Datalut] ,Answer) :- true |
setInput (Dataln,Input),
circuit (Input,Qutput),
checkﬂutput{lnput,Dutput,Dataﬂut,ﬂns?er}.

hmm———— half_adder circuit definition --—==mm-meommmooo o mmeo

circuit([In1.In2],0utput) :- true |
E]Hmﬂnt(invl,in?erter,carract,[[nl],Gutl._}+
E]ement(invifinverter,correct,[Inﬂ].ﬂuti._),
element{audl,andz,dnuht,[lni,ﬂutZJ,Uuta,Statelj,
element{andz.andﬂ.duubt,[ﬂuti,InE].ﬂuti.StateEJ.
alenﬂnt(anda,andE.duubt.[Inl.InE],DutE,StateE],
elemcntiarl.arz,cnrrnct,fuuts,ﬂutij,Uutﬁ,-},
Output=[[0ut6,0us5],[Statel,State2,Stated]].

h=—mm- element definitien ===-comm oo .

elementEHane,Type,dcuht,Input,ﬂutput,ﬁtate} 1= true |
elementDoubt (Name, Type, Input,Output ,State) .
elemant{Hamn.rype,State,Input,uutput,5tate1} :— State’\=doubt |
primitiveElenent(Type.Stata,lnput,ﬂutput},
Statel=(Name, State),

= or_relation elementDoubt/5.

ElenentDnubt(Hane.Type.Input,ﬂutput.ﬂtate} =
elament(Hame.Iypn.currect.Input,ﬂutput.State].

25

elementDoubt (Name,Type,Input ,Output,State) :-
element (Name, Type ,error, Input,Output,State) .

B L L L T R e

Ymmm—— primitive element defimnition ——----

primitiveElemant(inverter,Statq,Input‘nutPuL; i= true |
inverter(State,Input,Output).

primitiveElement(andz.State,Input,uunput} 1= true |
and?(State, Input,Output).

primitiveElement (or2,State, Input,Output) :- true |
or2(State, Input,Output).

inverter{correct,[0] ,0ut) :- true | Out=1.
inverter(correct,[1],0ut) :- true | Qut=0.
1nvcrter(errur.[0] ODut) :- true | Qut=0,
inverter{error, [1],0ut) :- true | Out=1.
and? (correct, [0,0],0ut) :- true | COut=0.
and2{correct,[0,1],0ut) :- true | Out=0.
and?(correct,[1,0],0ut) :- tree | Qut=0.
andEfcarruct.[J 1],0ut} :=- true | Out=1.
and2({error,[0,0],0ut) :- true | Outei.

and2(error, [0,1],0ut) :- true | Out=1.
and? (error,[1,0],0ut) :- true | Out=1.
|

and2{error,[1,1],0ut) :- true | Out=0.

or2{correct,[0,0],0ut) :- true | Dut=0.

or2(correct, [0,1],0ut) :- true | Out=1.

or2{correct, [1,0],0ut) :- true | Out=1,

orZlcorrect, [1,1].0ut) :- true | Out=i.

or2(error,[0,0],0ut) :- true | Qut=1,

or2lerror,[0,1],0ut) :- true | Out=0.

or2{error,[1,0] ,0ut) :- true | Tut=0.

or2{error,[1,1],0ut) :- true | Out=0,

ﬁ ____________________________________ L o i B i

setInput([Dataln|Datalns],Input) :- true |
setIn(Dataln,In),
setInput (Datalns, Inputl),
Input=[In|Inputi].

setInput ([],Input) :- true | Input=[].

setIn(DataIn,In) :- Dataln='?’ | setUnknownIn(In).
setIn{DataIn,In) :- DataIn\='?' | In = Dataln.

1= or_relation setUnknownIn/1.
setUnknownIn{In) :- true | In=0.
getUnknosnIn{In) :- true | In=1.

26

checkOutput (Input, {I:Iutput .State] ,Datalut ,Answer) :-
true | cneckfﬂutpuL.ﬂataﬂut.[Input,ﬂutput.ﬁtate]*hnswarJ.

check([0lOutput], [DiDataOut] ,RET ,Answer} :- 0 = D |
check(Dutput ,Datalut ,RET,Answer) .

check([ﬂl[]utput] . [DIDatalut] RET,Answer) :- 0 V=D
Answer = [],

check([],[],RET,Anawer) :- true | Answer = RET.

27

