ICOT Technical Report: TR-550

TR-550

GHC Program Diagnosis Using
Atom Behavior

by
M. Ueno & T. Kanamori (Mitsubishi)

April, 1990

© 1990, ICOT

Mita Kokusai Bldg 21F {03) 456-3191~5
'CD | 4-28 Mita 1-Chome Telex ICOT J32964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

GHC Program Diagnosis Using Atom Behavior
Machi UENO ‘Tadashi KANAMORT

Central Research Laboratory
Mitsuhishi Electric Corporation
811, Tsukaguchi-Honmachi
Amagasaki, llvogo, JAPAN 661

Abstract

This paper presents a diagnosis algorithm for flat GIIC programs. The diagnosis al-
gorithm finds two types of bugs (wrong clanse instance and wrong suspension atom) by
comparing an aspect of actual computation with that of the intended one. Roughly speak-
ing, the aspect abstracted and compared here, called an atom behavior, is a set of pairs
{Ar, Ar) such that atom Ae can be instantiated to atom Ar when Ae is executed as far
as pussible along a given course of computation. What behavior of GHC programs is in-
correct and what bug is responsible for the incorrect behavior are explained based on this
notion. Then, the disgnosis algorithm for GHC programs is presented. IHuman progiam
mers just need to answer “Yes/No” to the quertes which the diagnosis system asks Lhem
while tracing the abstracted computation process in a top-down manner. The power aud the
implementation of the algorithm are dizcussed as well.

Keywords : Program Diagnosis, Program Debugging, GHC.

Contents

1. Introduction
2, Flat GHC
3. Ao Behavior
3.1 Atom Behavior in Cieneral
3.2 Computation Tree
3.3 Behavier Tree
4. Incorrect Flat GHC P'rograms and their Bugs
4.1 Computed Interpretation and Intended Interpretation
4.2 Incorrect Flat GHC Programs
4.3 Bugs in Incorrect Flat GHC Programs
5. Diagnosis of Flat GHC Programs
5.1 Querics [ur the Diagnosis
5.2 A Diagnosis Algorithm Using Atom Behavior
5.3 Two Examples of the Diagnosis
. Soundness and Completeness of the Diagnosis Algorithm
- Implementation of the Diagnosis Algorithm
. Discussion
8. Conclusions
Acknowledgements
References

oo =] O

1. Introduction

One of the reasons logic programming attracts one's attention is that it shows the pos-
sibilities of more sophisticated programming environment in future. The “algorithmic de-
bugger™ by Shapiro [20],]21] has been widely known as a sucressful example for the diagnosis
of (pure} Prolog programs. While tracing (or backtracing) the execution of Prolog programs,
his debugger asks the programmer whether each procedure (predicate) call just traced has
returned a correct resnlt or what answer should have been returned if the program is the
intended one. The programmer just needs 1o answer the queries according to his/her declar-
alive knowledge about each procedure, ie., hefshe docs not need to follow the operational
behavior of the execution in his/her mind. Moreover, due to the antomatic database capa-
bility for recording the previous answers and utilizing them for answering the same gqueries,
he/she needs to answer much less queries. Shapiro’s approach has heen further extended
in various directions by varions researchers so far [2],/3],[4),[5),[8].[13],[15],[16].[17].[18]. Baut,
what have made his approach work so well?

Ohie reason is the declarative character of the semantics of {pure) Prolog programs.
Although the style of his debngger seems drastically novel at first glance. it is just antomati-
cally providing the locations at which we need to check the results so that it is not completely
discontinuons with the debugging which the programmers usually do by following the cxo-
cution traces. However, owing to the declarative character, whether the computation result
Is correct or not ean be checked at each location in the execution trace independently of the
other locations. It is also the declarative character that enables us to ntilize the previous
answers in the database independent of the locations in the cxecuation (races.

The other reason, which is taken for granted when the diagnosis of Prolog programs is
considezed, is that the Prolog execution is search complete due to the backtracking mechanism
as far as the execution terminates. When the execution of an atom is intended to succeed,
but the program at hand is wrong, the execntion of the atom using the program actually
does [ail (as far as the execution terminates), heave we can have a wrong execntion trace for
the diagnosis.

Simultaneously as Prolog has been widely accepted, more ambitious attempts have
been made for designing Prolog-like langnages suitable for parallel execuiion. Guarded Horn
Clauses (GHC), as well as Concurrent Prolog and Patlog, is a programming language orig
inated from such attempts [27],[28]. As for GHC, two remarkable features brought by the
notion of guard distinguish GHC from Prolog.

One remarkable feature of GIIC is the suspension (and synchronization) mechanism in
the guards by prohibiting the instantiation of the variables appearing in caller goals. Because
of this mechanism, the execution of a goal consisting of several atoms proceeds by importing
and exporting the instantiation information, su that some goal can suceeed when other goals
co-exist, even il il never succeeds as a single goal. In general, svme goal behaves in a quite
different manner according to the behavior of co-existing goals, hence, if only the final form of
the execntion as a single gual is considered, the execution result of the goal is not necessarily
synthesized from the execution resnlts of the individual atoms in the goal.

The other remarkable feature of GHC is the committed-choice mechanism by throwing
away alternative courses ail passing the guards. Becanse of this mechanism, once we have
found a clanse to which the execution of a goal is committed, there ocenrs no backtracking.
So, even if there exist several solutions to a goal, anly one of themn is obtained as its solution.
Moreover, even the same initial goal with the same final form might sueceed, fail or he
suspended depending on to which clanse the execution is committed.

As for (so called} concurrent logie programming lunguages Concurrent Prolog, Par-
log and GILC, several attempts have just begun to apply Shapiro’s approach to those lan-
gquages [6],10),[11],j12],[11],[19],[23].[24].[25],[26]. The two remarkable features mentioned
ahove, however, make the attempts for GHC not necessarily easy.

The first feature of GIC makes it more difficult to understand GHC computativn
by directly tracing the execution process than to understand Prolog computation using the
“prace” command of DECI0 Prolog, since we usually cannot focus our attention on locul
intermediate goals without considering the effects of other goals for GHC programs, while
we can do it for (pure) Prolog programs. It is not easy to check the computation result at
each location independently of the other locations. And worse, even il a usual trace of the
whole execution process is given, understanding GHC computation {rom the execntion trace
is not easy. { This problem leads us to a notion, called an atom behavior, in Section 3.

Example 1.1 Let Py be a GHC program consisting of the following clauses:

'y: t-and-c(0,5) :-] tailer(D,S), customer(0,5).

Cs tailer(0,s) :- | tailer(1,0,5).

Cy: tailor(N,[order|Onext],5) :- N<3 |

S=[suit|Snext], tailor(N+1,0next,Snext).

C,: tailor(N,0,5) :- N=3 | S=[1.

Oy tailor(W,[1,8) = | 8=[1.

Ca: customer([erder|0], [suit|S)) :- | customer(0,5).

g customer(n,[1).
Here, “17, “2", *3" and “N + 17 are ubbreviations for “sue{zere)”, “suelsue{zere))”,
“suc{suc(suc{ zera)))" and “sue(N)", respectively. The predicate “loand-c® denates the
world consisting of a tailor and a customer (clause C;). The tailor makes suits in responsc
to orders. He is a proud artisan so that he never tailors the same suits more than 2 (clauses
'y, Cg), and he stops his work when the order is stopped (clause Cs). The customer receives
each tailored suit confirming the correspondence between the orders and the suits (clause
), and he gives up receiving the suits when the tailor stops his work (clause C7).

Let P, be u GHC program consisting of the same clauses as Py except that 5 is
replaced with the ollowing C5:

C,. tailor(K,0,5) :- N<3 |
D=[order |Onext], S=[suit|Snext], tailor (K+1,0next,Snext).

The tailor defined using €5 won't wait until the next order comes, and he tailors 2 suits
expecting that there are 2 orders unless he notices that the order is stopped. (Note that,
if the commitment operator “|" is considered just the logical conjunction “A,” these 1wo
programs P, and P are logically equivalent.) Consider a query

7- t-and-c{[erder|01],5}.

which denotes the state that one suit is ordered (and other suits may be ordered). The
execution of this goal in P, is suspended with an answer

t=and-c{[order|01], [suit|S51])
while the execution of the same goal in Fa succeeds with an answer
t-and-¢{ [order,order|02], [suit ,zuit]).

Suppose that Py is the intended program. Then the success in Py is incorrect. It is due to
the success of the atom tailor(2,01,51) in P» which should have been suspended until the
variable “017 is instantiated, say, by substitution <01 <=[order|02]>.

2

The debugging methods for (so called) concurrent logic programming languages in
[6].[12],[23],[24],[25] do not detect any bug for program P, becanse those methods consider
only the final form of goals, and the execution of the goal in the final form

7- t-and-c([order,order|02], (suit,suit])
with answer
t-and-c([order,order|02],[snit,suit])

conforms to our intention. We, however, would like to detect an instance of clanse € as the
wrong clause instance containing a bug.

The sccond feature of GHC makes it impossible to guarantee that some counrse of
computation can happen or cannot happen by (repeatedly) executing a GHC goal, since
only one specific course of computation is considered when the GHC program is executed,
while all courses of computation can be enumerated when a Prolog program is executed.
(This problem leads us o a farmalization of the correctness of GHC programs in Seclion 4.}

Example 1.2 Let ; be the (meaningless) GHC program consisting of the following clauses:

Cq: =s(X).
O ss(X) :- | always-suspend(X).

Then, the execution of goal
7- sslX).

in (; either succeeds or is suspended depending on to which clause the execution is commit-
tedd.

Lot Qs be a GHC program consisting of the same clanses as Q) except that € i3
missed. Then, the execution of the same goal in @7 is always suspended.

Now suppose that @, is the intended program. Though the execution of ss{ X'} never
succceds in €z, the snspensivn in ¢ itself does not contradict our intention. Moreover, how-
ever repeatedly the execution of the goal may be tried, we cannot judge from the superficial
hehavior whether @5 is wrong so that the intended success never occurs, or the execution
has chosen a wrong path accidentally so that it has not sncceeded.

This paper presents a diagnosis algorithm for flat GHC programs. The diagnosis al-
gorithm finds two types of bugs (wrong clawse instance and wrong suspension atom) by
comparing an aspect of actual computation with that of the intended one. Roughly speak-
ing. the aspect abstracted and compared here, called an atom behavior, is a set of pairs
(Ao, A7) such that atom Ae can be instantiated to atom Ar when Ag is executed as far
as possible along a given conrse of computation. What behavior of GHC programs is in-
correct and what bug is responsible for the incorrect behavior are explained based on this
notion. Then, the diagnosis algorithm for GHC programs is presented. Human program-
mers just need to answer “Yes/No” to the queries which the diagnosis system asks them
while tracing the abstracted computation process in a top-down manner, The power and the
immplementation of the algorithm are discussed as well.

The rest of this paper is organized as follows: Section 2 explains flat GHC programs
and their execution. Section 3 introduces the notion of atom behaviors to represent (some
abstracted aspect of) the execution in flat GHC programs. Section 4 defines incorrect flat
GHC programs and two types of bugs in incorrect flat GHC programs. Then Section 5
presents a diagnosis algorithm for flat GIIC programs. Last, Section 6 and Section T discusses
the power and the implementation of the algorithm.

k1

2. Flat GHC

This section explains GHC mosily [vllowing the explanation of Ueda [28]. Symbals
beginning with uppercase leiters are used for variables, and ones beginning with lower case
letters for constant, function and predicate symbols, following the syntactic convention of

DECsystem 10 Prolog [1].
(1) Program

A clanse is an cxpression of the form:
H'GI-G21---IG:H|B‘I'-.B'E'-----Bﬂ [mnzﬂi,
where #, G;’s and B,’s are atoms (1 €1 < m,1 < j < n). K is called a clause head, the
Gy's are called guard atoms, and the B;’s arc called body atoms. The symbal “|” is called a
commitment operator. The part of a clanse before “|* is called a guard, and the part after
“|" is called a body. (When m = n =0, “-" and “|" are omitted. Note that the clause head
i5 included in the guard.)

One primitive {infix) binary predicate “=" for unifying two terms is predefined by the
language. Other primitive predicates are predefined using a {possibly infinite) set of clauses
such that

o each clanse is of the form “H - |By, Ba,..., B," (n > 0),

o I is not unifiable with the head of any other clause in the set, and

* each body atom B is an equation of the form “s; =1," {1 <) < n)
The primitive predicates used in practice are not excluded by this condition. Atoms with
primitive predicates are called primitive atoms.

A clanse is called a flat clause when each guard atom (; is a primitive atom (1 < 7 < m).
A program is a finite set of flat clanses.

Example 2.1 Let P, be the set of the following Nlat clanses:
€y t-and-c(0,8) :- | tailor(D,5), customer(D,S).
Cg: tailer(0,8) :- | tailer(i,0,5).
Cs: tailer(N,[order!Onext],S) :- W<3 |
5=[guit|Snext], tailor(N+1,0next,Snext).
Cy: tailor(W,0,8) :- N=3 | 5=[].
Cs: tailor(N,[1,5) :- | 5=[1.
Ce: customer([order|Onext], [suit|Snext]) :- | customer(Onext,Snext).
Cy: customeri{n,[1).

Here, “<” is a primitive predicatc. Then, P, 15 a Prograin.
{2) Goal

A goal is an expression of the form:
FE S R ¥ (k>0
A goal is called an empty goal when k is equal to 0.

Example 2.2 The following are GHC goals,

?= t-and-c([order|01],5).
7- tailor([order|01],8), customer([orderi0i],S).

4

(3} Execution

The execution of a GHC goal with respect to a given GHC program tries to solve the
goal, ic., reduce the goal to the empty goal, using the clauses in the GHC program in the
same way as Prolog but possibly a fully parallel manner provided that ihe following “rules
of suspension” and “rule of commitment” are observed.

Rules of Suspension

(a) Unification invoked directly or indirectly in the guard of a clause called by an atom
G {i.e.. unification of G with the head of € and any unification invoked by sulving the
guard atoms of) cannot instantiate the atom G

{b) Unification invoked directly or indirectly in the bady of a clause C called by an atom G
cannol instantiate the gnard of € or & until € is selected for commitment (see below).

A piece of unification that can succeed only by causing such instantiation is suspended nntil
it can suceeed withont causing such instantiation.

Rule of Commitment

When some clause © called by an atom (7 succeeds in solving its guard, that clause €
trics to be selected for subsequent computation of G. To be selected, € must first confirm
thut no other clavse in the program have been selected for G. I confirmed, € is selected
indivisibly, and the execution of G is said to be committed to the clanse €.

Example 2.3 The execution of goal
?= t-and-c([order|01],5)

in P is snspended with answer
t-and-c([order|01], (suit|51]}.

(4) Success, Failure and Suspension

Let A be an atom and € be a clause called by 4. When the guard of C is solved with
answer substitution, say @, for the variables appearing in the guard of ” without instantiating
4. then the execution of 4 is said to succeed in the gnard of clause €' with substitution 6.
Ortherwise, the execution of A4 is said o be suspended in the guard of clanse €. (The latler
case includes two cases. One is the case when the unification invoked, either direcily or
indirectly, in the guard of C instantiates the atom A. The ather is the case when the gnard
cannot be solved even il the instantiation of A is permitied. Though it might look unnatural.
we will nat make a distinetion between them hereaflter.)

Note that, due to the restriction on the primitive predicates, the execution of atom A
can succeed in the guard of a clanse € with subsiitution & by committing to appropiiate
clauses in the guard, if and only if the execution of atom A does succeed in the guard of €
with # by committing to any committable clauses in the guard. Similarly, the execution of
goal A can be suspended in the guard of clanse ', if and only if the execntion of goal A is
suspended in the guard of clause C.

An atom A is said to succeed immediately in program I' when

e A is an eqnation for iwo wnifiable terms, or
o there exists a clanse € with no body atoms in P such that the execuntion of A succeeds

in the guard of C.

An atom A is said to be suspended immediately in program P when the execution of A4 is
suspended in the guard of any clause in P. An atom A is said to fail immediately in program
P when A is an equation for two non-unifiable terms.

Notice the difference between the suspension in the guard of a specific clause and the
immediate suspension in a program. Note also that the execution of non-primitive atoms
can be still non-deterministic, though the execution of primitive atoms is deterministic.

Example 2.4 Let A be an atom of the form
tarlor(1, [order|01], S).
Then, the execntion of A succeeds in the guard of clawse Cy, while the execution of A is
suspended in the guards of clauses (7, and s,
Let B be an atom of the form
tarlor(2,01,51).
The execution of B is suspended in program F,.

Remark. The execution of a GHC program may continue infinitely in some cases. In this
paper, we will focus our attention on the cases in which the execution terminates finitely,

3. Atom Behavior

In this section, a notion, called an atom behavior, is introduced for representing an
abstracted aspect of how the form of an atom have been changed (i.e., instantiated) during
the execution of the atom until it sueceeds, fails or is suspended with its final form. The
actual computation process of the atom is represented by a tree, called a compulation tree,
based on the nun-deterministic sequential exccution. (Note that, though we will nse the
non-deterministic sequential execution to formalize the necessary notions, most of the final
notions formalized are independent of the sequentiality. See Section & for the details.) A
more abstracted aspect of the compntation process is represented by a tree, called a behavior
tree.

The following sections assume familiarity with the basic terminology of first order logic,
such as term, atom (atomic formula), formula and so on. Syntactic variables are X, ¥, Z for
variables: 5.t for terms; € for clauses, possibly with primes and subscripts. “=" is used to
denote the syntactical identity of iwo expressions.

A substitution is defined as usual, and denoted by
{:Xl ‘-*!].1-]1-2'&‘2_-1-1 |-'j:|’.".'=n >,
where Xy, Xa, ..., X} are distinet variables. A substitution is called a renaming substitution

when it assigns a distinct variable to each variable. Substitutions are denoted by o, 7, 4, v, 8,0,
and the empty substitution is denoted by <>,

An atom is defined as nsual. Atoms are denoted by A, B, possibly with primes and
subscripts. Two atoms are considered identical when they are identical up to renaming of
the variables in the atoms.

An atom 4 is said to be less instantiated than or equal to an atom B, and denoted by
A < B, when there exists a substitution # such that A# is identical 1o B. An atom A is said
to be less instantiated than an atom B, and denoted by A < B, when A < Band B £ A.

6

3.1 Atom Behavior in General

Supposc that a given atom Ap is executed together with other atoms. Then, the
variables in the atom might be instaniiated by the execution of the atom itsell (and the
alom exports the instantiaiion to the other atoms). Ot, the variables in the atom might be
instantiated by the execution of the other atoms (and the atom imports the instantiation
from the other atoms). Suppose that the initial atom has succeeded or been suspended
with the form Ap possibly after the interactions with the other atoms, where we assume
Ap < Ap. Then, let Ar be an atom such that Ap < Ag < Av, and let us exccute the
atom Ar as far as possible separately from the other atoms along the same course as the
execution of Ag mentioned first. Then, since Ag cannot import the instantiation from the
other atoms, it would teach an atom At such that Ar < Aw, and stop there. Then, the
pair (As, A7) denotes an interval the atom can pass antonomonsly. Let us collect all such
intervals {Ae, AT} such that Ae < Ar and there exists no other such interval subsuming it.
I'hen, the set will represent some structure of the execution of Ap mentioned first. (Recall
Example 1.1 in Section 1 for the reason such a sel is considered.)

Definition Atom Pair

A pair of atoms (Aer, A7) is called an atom pair when Ag < Ar. Two atom pairs ate
considered identical when they are identical up to renaming of the variables appearing in the
pairs,

Definition Atom Behavior
A finite set B of atom pairs is called an atom behavior of Av when
« for any atom pair (4e, A7) in B, there holds At < Aw,
« for any two atom pairs (Ao, Any) and (Ao, Arp) in B, if there exists A# such that
Am < Af < Arp and Aoy < Af < Ay, then Ar and Ar are identical, and neither
Ao, < Amg nor A < Aey, and
o B is marked “success,”™ “failure” or “suspension.”
An atom behavior is called & suecess atom behavior (resp. failure atom behavior, suspension
atom behavior) when it is marked “success™ (resp. “failure,” “suspension™). Atom behaviors
are denoted by B, possibly with primes and subscripts, when it is necessary to explicitly
show Aw, and simply by B when Aw is obvious from the context.

T yvs .‘ Aal
Ary Ary fo4qr
| Aoz | Ary Aoy
Az Aty PoAm
| :.
| Aedy Ay, Aeay, :
‘d'—r"' ATy oA

Figure 3.1 Success, Failure and Suspension Atom Behaviors

Though an atom hehavior is, in general, a partially ordered set, most of the atom
behaviors in this paper are totally ordered. (The precise definition of the partial ordering
is irrelevant to the following discussion so that we will omit it.) Hereafter, success atom

T

behaviors arc depicted by arranging their component pairs lengthways (upside down w.r.1.
the instantiation ordering, hence the lower a pair is located, the more its second atom is
instantiated), and by surrounding them with doubled lines. Similarly, failure atom behaviors
are surrounded with thick lines, and smspension atom behaviors with dotted lines. TFor
example, they are depicted as in Figure 3.1 above.

FExample 3.1 B, B; By, By, B; below are snccess atom behaviors,

t-and -C_IZ-[O.[dli‘Ili:}]].S) |
t-and-c{ [order|01],[suit{S1]) |

B,

| tallor(jorder|OT],5) ‘ || —_]
i |

! tailor{[erder| Q1] [suit|S1]) _ I

H: HH

[wilor(zforderfon] S1)] !\ tailor(3.02,52) |

|I tailor(2,[order|02],[suit]) | | tailor(3,02[]) ||

- —| == i |
B, B,

Though the atom hehaviors above consist of zeto or one pair, atom behaviors in general may
cousist of more pairs with more complicated partial ordering.

3.2 Computation Tree
In this section, we will introduce the notion of computation tree. (Cf. [7].)
(1) Labelled Tree

A computation tree is a special labelled tree. Hereafter, we will assume that
e each clause in program P is assigned a distinet clause identifier (12> 0),
¢ o unit clause “X = X (not in program P) is assigned a clause identifier Cy. and
® z special clanse idemtifier C» is prepared.

Definition Labelled ‘Iree
A tree T is called a labelled iree when
e the nodes of T are labelled with pairs of an atom and a clause identifier, and
e the terminal nodes of 7" are marked “success,” “failure” or unmarked.
The atom part of the root node label of T is called the root atom of T. Labelled trees
are denoted by T, possibly with primes and subscripts. Twa labelled trees are considered
identical when they are identical up to renaming of the variables appearing in the labels.

Example 3.2.1 T: below is a labelled tree. The superseript “o” denotes the “success” mark.
{The failure marks are denoted by superscripts “e.”)

8

tailor(1 Jorder|O 1] Jsuit|S1])
Cs
! S
[snit]S1]=[suit]S1]® tailor(2,01,51)
Ca C'_'

Ty below, consisting of only one root node, is also a labelled tree.

tailor(1,[order|01],5)
[

(2) Extension of Labelled Trees

Hy modelling the non-deterministic sequential GHC execution, the extension of labelled
trees is defined as follows:

Definition Tmmediate Extension of Labelled Trees
Let T and 7' be labelled trees. T is called an immediate extension of T o program P

when T is obtained from 7' by the following operation:
Case 1 : When there exist an unmarked terminal node v in T labelled with (s = ¢, (),

» replace the Jabel of the node with (s = 1, Cy),
When g and ¢ are unifiable, say by m. g, 8,

o modify the label (A", C") of cach wode in T to (A'8,C"), and

e mark the node v “suceess”
In thiz case, T' is called an immediate extension of T with substifution #. When s and ¢ arc
not unifiable,

o wmark the node v “failure.”
In this case, 1" 1s called an immediate extension of T with substitution <>,
Case 2 : When there exist an unmarked terminal node v in 7' labelled with {A,C>) and a
flat clause C in # of the form

H: G|, Ga,..., G, | By, By, ..., B,. (e, > 0)

such that the execution of A sncceeds in its guard with substitution #, then let ¥ be an
instantiation of & to 4, and

teplace the label of the node v with {4, C),

¢ add n child nodes of v labelled with (Bynd, Cr), (Bond, C-), ... {Bané,C:) to v, and

e it n =10, mark the node » *success™
In this case, T" is called an immediate extension of T with substitution 4.

Definition Extension of Labelled Trec
Let T and T' be labelled trees. Then, T is called an extension of T' with substitution

o in program /* when there exist labelled trees Ty, T3, ..., Tk (& > 0) such that

e This T,

o T is an immediate extension of T;_; with substitution &; in P fori=1,2...,k,

e T is ", and

e 7 is Myflg- 0.
In particular, T" is called a proper extension of T when k > 0.

Example 3.2.2 Labelled tree Ty below is an immediate extension of the labelled tree Ty of
Example 3.2.7 in the flat GIC program Fy.

tailor(1 [order|01],5)
Ca
/ !
S=[suit]531] tailor(2.011,51)
' s

The labelled tree Ty of Example 3.2.1 is an immediate exiension of Ty in Py, so that both T,
and Ty are extensions of T, in P,.

(3) Maximal Labelled Tree

Extending a labelled tree as far as possible corresponds to applying GHC execution as
far as possible,

Definition Maximal Labelied Tree
A labelled tree T' is called 2 maximal labelled tree in program P when there exists no

proper extension of T in P
Example 3.2.3 The labelled tree T of Example 3.2.1 is 2 maximal labelled (ree.

{4) Compntation Tree
A computation tree models the GHC execution applied to an atom.

Definition Initial Tree
A labelled tree is called the initial tree of atom A when it consists of & single unmarked
node labelled with (A4,0%).

Definition Computation Tree
A labelled tree is called a computation tree of atom A with solution A0 in program P
when it is an extension of the initial tree of A in P with substitution &

Definition Uncommitted Node and Committed Node
Let T' be a computation tree, and v be a node in 7. Then, v is called an wncommitted
node when the clanse part of the node label is Cy, and called a commitied node otherwise.

Example 3.2.4 The labelled tree T}, of Example 3.2.11s an initial tree, so that T; and Th are
computation trees. The right child node of T, is an uncommitted node, while the root and
the lefl child nodes are committed nodes.

(5) Clause Instance Used at a Committed Node

Definition Most General Atem for Commitment
Let © be a flat clanse of the form
H:G\,Gy....Gn | B, Bs,... B,
Av be an alom such that the exceution of Ay succeeds in the guard of &, and Ap be an
atom such that Ap < Aw. Then, atom Hy is called the most general atom for commitment
from Ap to Ar when
(&) Ap < Hy < Aw,
(L) Hy succeeds in the guard of € in the same way as Awr (i.e., using the same clanses for
primitive predicates), and

10

(¢} there exists no other Hy' satisfying (a), (b) and more general than Ifn.
If i 5 succeeds in the guard of € with snhstitution #, the flat clause instance
Hull = Gyl Ganb, ..., G | Bynd, Band,..., Bynd
is called the most general clause instance for commitment from Ap to Av.

Definition Clanse Instance Used at & Committed Node
Let T he a computation tree with root label (Ap, C'), Ap be an atom such that Ap < Aw,
be 4 committed node in T, and Cyf be the most general clanse instance for commitment
from Ap to Ar, where © 1s of the form
H -y, Gay... .Gy | By, Ba, ... Ba.
A clause [is called the clause instance used al v in T w.r.t. Ap when
w vis the root node of T, and D is Cyf, or
s ©isa node in some immediate subtree T, of T (1 < 1 < n), and D is the clause instance
used at v in T; w.r.l. Bigf.
Let T be a computation tree of Ag, and v be a node in T. Then, the clause instance used at
pin 1 w.r.t. Ay is called simply the clause instance used at v in T

Note that, due to the restriction on primitive predicates, the most general atom for
commitment is unigque up to renaming of variables, hence so is the clause instance used at
node #, when a maximal computation tree T s given.

Example 3.2.5 The clause instance used at the root node in 73 15
tailor(1, [order|O1],§) - 1 <3 [5= [surt|51], tatlor(2, 01, 51},

() Success Tree, Failure Tree and Suspension Tree

Depending on how the terminal nodes are marked, maximal compulation trees are
classified into suecess tree, failure tree and suspension tree,

Definition Success Tree, Failure Tree and Suspension Tree
A maximal computation tree 7' in program F is called
% a suceess tree in P when all terminal nodes in T are marked “suceess,”
e a failure tree in P when some terminal node in 7 is marked “failure,”
e a suspension trecin P ootherwise.

Example 3.2.6 T, is a suspension tree in Py T below is a success tree in Fy.

tailor(1,[order,ordec|02] [suit snit])

Cs
/ \
[suit suit]=|suit,snit]® tailor(2,[order|02],[snit])
Ca Ca
/ W,
[swit]=[suit]* tatlor(3,02,] |}
Ca Cy
i
[=[F
Co

(7) Extension Ordering between Computation Trees

1

The definition of computation tree naturally introduces a partial ordering relation
between computation trees. (Intuitively, this ordering means that computation tree 7' can
be extended to 7' when additional instantiation ¢ is applied 1o all the node labels of T}

Definition Extension Ordering between Computation Trees

Let T and T be computation trees in program P. Then, T is said to be extensible to
T" and denoted by T° < 7" when there exists a substitution @ for the variables in the atom
of the root label of T such that T is an extension of T8 in P, where T'# denotes the tree
obtained from T by applyving ¢ to the atom part of every node label.

Example 3.2.7 Ty and T= of Example 3.2.1, and T; of Example 3.2.4 are computation trees
in Py, and Ty < Ta < T5 holds,

3.3 Behavior Tree
In this section, we will define a more abstracted aspect of the GHC execution (Cf [9]).
(1) Maximal Subextension

Definition Maximal Subextension
Let T and 1" be computation trees in program / such that T < 7' Then, a compn-
tation tree T is called a maximal subextension of T in T when
{a) T" is an extension of T in P,
{b) T" is cxtensible to T in P, and
{c) there exists no other computation tree satisfying (a). (b) to which 7" is cxtensible in 2.

Example 3.3.1 T3 is the maximal subextension of Ty in Tk,
{2) Computed Atom Behavior

Definition Computed Atom Behavior

Let A be an atowm of the form p(Xy, Xo, .00, X)) where Ay, Xa, ..., A, are distinct
variables, and 7" be a maximal computation tree in program P with root atom Av. Then,
{Aeg, Ar)is called an atom pair of T in P, when the following conditions are satisfied:

() Ao < Ar < Ap.

(b} Let 75 be the initial tree of Ao, Then, there exists a maximal subextension of Ty in T

with solution Ar.

(c) There exists no other pair (As', A7) satisfying (a).(b) and 4o’ < 4o, A7 < 47"
The set of all atom pairs of T is called the computed atom behavior of T in P, A computed
atem behavier is called a computed success (resp. failure, suspension) atom behavior wlhen
it is a computed atom behavior of 4 suceess (resp. [ailure, suspension) tree.

Example 3.3.2 The set of alom pairs
{ (tatlor(1, [order|(], S), tailor(1, |order |(1], [suit]S1]),

(taflor{1, [order, order|02], S}, tatlor(1, [order, order|02], [sust, sust]) }
i5 the computed atom behavior of T,

{3) Behavior Tree
Definition Behavior Tree

12

Let " be a maximal computation tree in program P, and Ty, T5. ... T, be the imme-

diate subtrees of 7' (n > 0). A tree T with its immediate subtrees Ty, Ts, ..., T, is called a
hehavior tree corresponding to T when

e the label of the root node of T is the computed atom behavior of T, and

e each T, is the behavior tree corresponding 1o T; {1 £ < n).
If & flat clause [? is the clause instance nsed at the root of T, then [F is also said to he used
at the root of T. A tree T is called a behavior tree when there exists a maximal computation
tree T such that T is a behavior tree corresponding to T. If T has an uncommitted (resp.
committed) root, then T is said to have an uncommitted (resp. committed) root. Behavior
trees are denoied by T, possibly with primes and subscripts.

FExample 3.53.3 The trce T helow is the bahavior tree corresponding to the computation
tree Te of Fxample 3.2.4. The details of the atom behaviors of [antt, suit] = [suit, suit],
[saat] = Tsuit] and [| = [| are omitted.

tailor(1,[order|01].5) |
tailor(1,[order|01] [suit|51]) :
tailor(1 Jorder,orderj02],5) ‘
tailor(1 [order order|02] [suit.suit]) J
i I\ _] _
‘j] ' . " tailor(2, [order|(02),51) |
: [l;a.i]e;t['.h[u:de:ll}ﬁ],[sﬂil.]J i

/ !

‘ ’) tuﬂu:{s,ﬂlnlextﬁnﬂﬂ} |
| : | | tailer(3,02])) |
i . 1S - —

. |
— = —— |
Then, the clause instance
tailor(1,[urder|01],5) - 1<3 | S=[suit|51], tailor(2,01,51)
is used at the root node.

A behavior tree is an abstraction obtained from a computation tree by focusing on the
maximal autenomous transitions of the form of the root atom. Lach transition (Le., atom
pair) in the atom behaviors of child nodes is propagated to their parent node through the
clause instance used at the parent node, and all those propagated transitions (afler merging
overlapped transitions) constitute the transitions in the atom behavior of the parent node.
It is easy to see that, when all child atom behaviors are success atom behaviors, so 1s the
parent atom behavior, when some child atom behavior is a failure atom hehavior, 50 is the
the parent atom behavior, and otherwise, the parent atom behavior is a snspension atom
behavior.

4. Incorrect Flat GHC Programs and their Bugs

What bahvior should the execution of an atom in & GHC program show when the
program conforms to the intention in our mind? In this section, we will define what behaviar
of flat (iHC programs is incorrect and what bug is responsible for the incorrert behavior.

13

4.1 Computed Interpretation and Intended Interpretation

For our diagnosis, a program is characterized by a set of atom behaviors,

Definition Behavior Interpretation
A behavior interpretation is a set of atom behaviors, and denoted by 1. An atom
hehavior is sald 4o be froe in £ when it is in [, Otherwise, it is said to be false in [

Definition Computed Behavior Interpretation

A behavior interpretation is called the computed {behavior) interpretation of program
' and denated by O P), when it consists of all the atom behaviors that is a computed atom
behavior of a maximal computation tree in program P.

Definition Intended Behavior Interpretation

A behavier interpretation is called the intended (bhehavior) interpretation of P, and
denoted by M{P), when it consists of all the atom behaviors that represents the intended
execulion behavior for P, i.e., that conforms to the intention in onr mind.

Example 4.1.1 Let o be a program consisting of the same flat clauses as Py except that 5
is replaced with €'} as below:

Ty t-and-c(0,5) :- | tailer(0,5), customer(D,S).

Cg: tailer(0,S) := | tailer(1,0,5).

C4 tailor(N,0,5) := N<3 |

D=[order|Onext], S=[zuit|Snext], tailor(N+1,0next,Snext).

Cs: tailor(N,D,5) :- N=3 | 5=[].

Cs: tailor(M,[1,5) :- | 5=[1].

Cg: customer([order |Onext], [suit |Snext]) :- | customer(Onext,Snext).

- customeriO,[1).
Suppose that Py is the intended program for Py, ie., M(P) = C(P). Then, C() includes
a success atom behavior

{ (t-and-c(0,5), t-and-¢([order, order|02] [suit,suit])) },
while M Fs) does not includes the suecess atom behavior.

Example 4.1.2 Let Py be a program consisting of the same clanses as P, except that O is
miszed as below:

C;: t-and-c(D0,5) :- | tailoer(d,5), customer(D,S).

Uy tailer{(D,5) :- | tailer{1,0,8).

Ca: tailor(N,[order|Onext].S) :- N<3 |

S=[suit[Snext], tailor(N+1,0next,Snext).

Cq tailor(K,0,5) :- F=3 | s=[1.

Cg: customer(lorder|Onext], [suit|Snext]) :- | customer(0Onext,Snext).

Cr: customer{D,[7).
Suppose that Py is the intended program for Py, ie., M{(F3) = C(F;). Then, C(P;) includes
a suspension atom behavior

{ (t-and-c{[order],S},t-and-cf [order],[suit|S1])] }
but M{F;) does not include the suspension atom behavior.

4.2 Incorrect Flat GHC Programs

14

We will define the incorrectness of a flat GHC program as follows. { Rerall Example 1.2
in Section 1 for the reason “C{P) = M({F)" is not used.)

Definition Incorrect Program

Let {71") be the computed interpretation of program F, and M(FP) be the intended
interpretation of P in our mind. Then, P is said to be (partially) correct w.r.t. M{ P) when
C(FP) C M{F). Otherwise, P is said to he {partially) incorrect w.r.t. M(P).

Example 4.2.1 Suppose that we have written the program P hy mistake in place of the
intended program . As was mentioned in Section 1, the tailor defined using €7 won’t wait
until the next order comes, and he tailors 2 suils expecting that there are 2 orders unless he
notices that the order is stopped. Consider a query
?- t-and-¢{[order|01],5).
which denotes the state in which one suit is ordered (and other suits may be ordered). The
execution of this goal in P is suspended with an answer
t-and-c([order|01], [euit|851])
while the execution of the same goal in P succeeds with an answer
t-and-c{[order,order|02], [suit,suit]).
Then the success in Py is incorrect. It is due to the success of the atom tailor(2,01.51)
in P which should have been suspended wuntil the variable “017 is instantiated, say, by
substitution < O1<=[order|(2]> In fact, C(P;) includes the sueeess atom behavior
{{t-and-c(0Q,5), t-and-cf[order order|(22],[suit suit]) }},
while M{P;) does not include the success atom behavior. Hence, program P of Example
4.1.1 is incorrect w.r.t. M| Fs).

Example 4.2.2 Suppose that we have written the program P; by mistake in place of the
intended program P;. The tailor defined without g won't stop his work even if the order is
stopped. Consider a query

?= t-and-c([order],5).
which denotes the state in which only one snit is ordered. The execution of this atom in P,
succeeds with an answer

t-and-c({[order], [suit])
while the execution of the same atom in Py is suspended with an answer

t-and-c([order], [suit|51]).
Then, the suspension in Py is incorrect. It is due to the suspension of the atom tailar{[], 51)
in Py which should have succeeded with instantiation < S1<[|>. In fact, C(P;) includes
the suspension atom behavior

{(t-and-c{|order],S), t-and-c{{order],[suit}S1]})},

while M(;) does not include the atom behavior. Hence, program P of Example 4.1.2 is
incorrect w.r.i. M /).

In this paper, we will assume thai primitive predicates are correct with respect to our
intention from the beginning so that the diagnosis of primitive atoms is unnecessary.

4.3 Bugs in Incorrect Flat GHC Programs

When a program is incorrect w.r.t. our intention, what bug is responsible for the
incorrect execution” There are two types of bugs in incorrect programs.

15

(1) Wrong Clause Instance

Omne is the case when the execution of an atom i committed to some clause O and
the body of € succeeds (fails, or iz suspended) with some answer which conforms to our
intention, hut the success (failure, or suspension) of the head atom contradicts our intention.

Definition Wrong Clause Instance
A flat clause € n program P of the form
SH -Gy, Go, G | By Ba, BT
15 said to be wrong w.r.t. M({P) when there exists a bahavior tree in P such that
the root node is labelled with H, and H i not in M),
» the child nodes are lebheled with By, Bs, ... B,. and By By, ..., B, are all in M F).
and
a clause instance €' is nsed at the root node,
Then the clause instance C# is called a wrong clause instance in P w.ort. M{F).

Example 4.3.1 Let Py be the program of Example 3.3.1 consisting of the same flat clanses
as I except that) is replaced with 7). Then, the clause C} in Py is wrong w.r.t. M{ %"
and the clause instance
tailor(2,01,51) = | S1=[suit|Snext], Ol=[vrder!Onext], tailor(3 Onext,Snext))
is a wrong clanse instanee in /% wort. M(J%), beeanse the tree helow is a part of a behavior
teee in program Py, and
» the suceess atom bahavior
[(tailor{2.01,51), tailor{2,jorder|02],[suit]}) }
15 not in M{ P,
® the snecess: atom hehavior
[{ tailor(3,0Onext,Snext), tailor(3,0next,[])) }
is in M(P2) (and the atom behaviors of [sut|S2] — [surt|52]} and [order|02] =
|order|02] are assumed to be true in any M{P) from the heginning, since "=7 is a
primitive predicate), and
o ithe clause instance is used at the root node.

.! tailor(2,01,51)
f tailor(2,Jorder|02].[suit]}
S] \

Cotadlor(3,0next Snext) |
laili}![.ﬁ,ﬂ?,[]} :

|
L=t (N

]

The ather is the case when the execntion of an atom is not committed to any clause in
the program, but the suspension of the atem contradicts our intention. Then there must exist
a clause missed in the program to which the execution of the atom should be committed.

(2) Wrong Suspension Atom

Definition Wrong Suspension Atom

An atom A is called a wrong suspension wtom in program P ow.rt. M{FP) when the
execntion of A is suspended immediately in P, and the empty suspension atom behavior of
A 15 not in M{P).

16

Example 4.3.2 Let Py be the program of Example 3.3.2 consisting of the same clanses as
Py except that Cy is missed. Then, the atom “taslor(2,[], 51)" is a wrong suspension atom
in Py w.r.t. M{FP), because the emply suspension atom behavior of tailor(2,{], 51} is in
C(Pa), but not in M(F%s).

(3) Bug Detection Theorem

The following theorem guarantees that, when a GHC program shows an incorrect be-
havior, either wrong clause inslances or wrong suspension atoms are responsible for it

Theorem 4 {Bug Detection Thearem)

Let P be a flat GHC program and M FP) be an intended behavior interpretation. Then,
P is (partially) incorrect w.r.t. M{ P)if and only if there exists either a wrong clause instance
in P w.r.t, M(P)or & wrong suspension atom in F w.or.t. M(F).

Proof. The proof is divided into the “if” part and the “only if” part.
“If” Part: If there exisis a wrong clause instance “f = T | A" in P w.r.t. M{FP), some |
isin C{P), but not in M{ P}, hence P iz incorrect w.r.i. M),

If thers exists & wrong suspension atom A woat. M(P), some empty suspension atom
behavior is in [P}, but not in M| F), hence P is incorrect w.o.t. M{F).

“Only If" Part: Suppose that there exists an atom behavior in C(F), but not in M(F).
Then, consider the baliavior tree T whose oot label is the atom behavior. The proof is by
induction on the structure of T

If T"is a behavior tree with uncommitted rooi. then the root node is labelled with an
emply suspension atom behavior of some atom A, which is a wrong suspension atom in P
w.r.t. M{F)

If T is a bahavior tree with committed root and the labels of the child nodes are all in
Mi{F), then there exists a clause instance in # used at the root node of T, which is a wrong
clause wstance in P owort, M(F).

If T is & behavior tree with committed root and some label of the child node is not in
M(P), then, from the induction hypothesis. there exists either a wrong clause instance in P
w.r.t. M{F) or a wrong suspension atom in P w.r.t. M(FP).

5. Diagnosis of Flat GHC Programs

In this section, we will show a diagnosis algorithm assuming that a computation tree
is given. {The GHC system usually leaves a log-file containing the information about the
computation tree,)

6.1 Queries for the Dingnosis

The diagnosis algorithm in this section asks whether an atom hehavior is in the intended
behavior interpretation or not, and proceeds the diagnosis in response to the answers. We

assume that a device, called “oracle,” always answers correctly to the queries, ¢.g., 2 haman
programmer who knows the diagnosed program well.

To examine whether a anccess atom hehavior
{[AU-I i HT].]I {_Au-El Ar?}! v b{AEr.*! Arkj}

of Av is in the intended behavior interpretation or not, our diagnosis system needs to ask a
question which means

17

Until the execution succeeds with A, the following transitions have vecured:
Amy 1s instantiated to Ay by itself,
Amg 15 instantiated to Ara by itself,

A is instantiated to Ar, by itself
Does it conform to your intention? :
In the actual terminal sessions, the question is abbreviated for simplicity as follows:

Arp — Any
.nq.ﬂ'g —* .4.7'-2

Arp — Any

Ar 13 in success. 0.K.7
The answer to this query is either “yes” or “na.” The answer “yes™, or simply “y”, means
that the atom hehavior is in the intended behavior interpretation, while the answer *no”, or
simply “n”, means that it is not. As for failure or suspension atom behaviors, the questions
are the same except that the last line “Aw is in success™ is replaced with “Av is in failure”

o1 "Ar s in suspension”

Example 5.1 To examine whether the success atom behavior By of Example 3.1 is in M{EB)
or not, our disgnosis system asks as below:

tailor(2,01,51) — tailer(2,[order|02], [suit])

tailor(2, [order|021,[suit]) is in succesa. 0.E.7
The answer 1o this query is “no”, or simply “n”, because this atom behavior is not in M({F,).

5.2 A Dingnosis Algorithm Using Atom Behavior

The diagnosis algorithm “disgnese”™ receives a computation tree and an atom. When a
computation tree T of atom A is given, “diagnose(T, A)” returns either a bug or a message
“na bug is found.”

diagnose(T: computation tree; 4: atom): bug-message;
if the root atom of T is a primitive atom
then return “no bug is found”
else let B be the result of “compute-atom-behavior™ applied o T;
confirm whether B is true or not (1.e., it is in M(F) or not);
if it is true
then return “no bug is found”
else let 1), T, ...\ T, be the immediate subtrevs of T (if exist);
let By, Ba, ..., B, bethe body of the clause instance used at 77 root {if exists);
apply “diaynose” Lo each T, and H; (1 < < n);
if sume application returns a bug
then retarn it
else if T is a computation tree with uncommitted root
then return the atom A4 as a bug
else return the clanse instance used at the root of T as a bug

Figure 5.2,1 A Diagnosis Algorithm Using Atom Behavior

13

The auxiliary procedure “compule-atom-behavior”™ {naively) computes the atom he-
havior of a given computalion trec.

compute-atom-behavior(T: computation tree): atom behavior;

let Aw be the toot atom of T,

initialize Ay to {B | B < Av};

initialize By to { };

initialiae 1 to O;

repeat
select Ao in A, such that A is minimal in A;;
maximally extend the initial tree of Ao in T if possible, and let its solution be A7
let A4, be A; = {Blde < B < Ar});
if Ac = Ar then let By, be B; else let B, |, be B, + {(Ae, A7)}
increment @ by 1;

until .4; is empty;

return B5;;

Figure 5.2.2 Computation of Atom Behavior
5.3 Two Examples of the Diagnosis
Let us show two examples of the application of the diagnosis algorithm.

Example 5.3.1 Let us diagnose the behavior tree in the program Py of Example 3.3.1. The
tree below is a behavior tree in program Po,

' teand-c(Q,5) §
t-and-c{ [order order{ 2], [suit suit]) |
| — . =
tailor{0,3)

tailor(jorder order|02],[suit suit])
|

tailor({ 1,0,5) i
tailor(1,[order order|O2],[suit, suit]) !
I A 1
i _ ' tailor(2,01,51) 1 | |
: ‘ tailor(2,[order|O 2], [suit]) L !
) 7 I)

- . [tailor(3,0252) |
: | : | tailor(3,02(]) |

By traversing a path from the root node in the behavior tree, our system asks the programmer
as below to detect a bug. (The first prompt “diagnose?-" instead of “7-" denotes that the
execution is under the diagnosis mode.)

19

diagnose?- t-and-c([order|01],8).
succeeded with t-and-c{[order,order|02], [suit,suit]}.

YhY DIAGNOSTS STARTED YUY

t—and-c(0,5) — t-and-c{[order, order|02], [suit, sudt])
t-and-c[order, order|(32], [sust, susf]) is in succese. 0.K.7: n

tailor (0, 8) — tatlor([order, order|02], [surt, susl])

futlor{{order, order|O2], [sutl, suit]} iz in success. 0.K.7: n
tatlor(1,0,5) — tatler(], [order, order|01], [suit, suit])

tatlor(1, [order, order|()2), [suit, suat]) is in success. 0.K.7: n
tailor(2,01,51) — tailor(2, [order|02], [suit])
tailor(2,[order|02], [suit]) i3 in success. 0.K.?: n

tailor(3,02,52) — tailor(3,02,] |)
tatlor(3,02.[]) 12 in success. D.K.7: y

Wi WRONG CLAUSE INSTANCE %WW

tailor(2,01,51) :- 2<3 |
S1=[suit|Snext], O1=[order|Onext], tailor(3,0Onext,Snext).

Mote that the atom behaviors of primitive atoms are always in our intended behavior inter-
pretation, so that it is unnecessary to ask about the primitive atoms.

Example 5.3.2 Let us diagnose the behavior tree in the program Ps of Example 3.3.2. I'hen,
the tree helow is a behavior tree in program Fs.

t-and-c([order|01].5) .
t-and-cf [order|01] [suit|51]))
t-and-c([order],5) :

t-and-c{[order],[suit|51]) i
e N

" tailor([order| 01].8)
tailer{forder|O1],[suit|51])

1 tailor{ [order],3) :
: tailor(forder],[snit]|S1])

T tailor(1forder|O1],S) |
+ tailor(1,[order|01],[suit[51]) |
: tailor(1,[order],S) : :

— j\ 3 | ____________________________________ e

By traversing a path {rom the root node in the hehavier tree, onr system asks the programmer
as below to detect a bug:

diagnose?- t-and-c([order],S).

20

suspended with t-and-c([order],[suit]§1]).

Y% DIAGNOSIS STARTED WNA
t-and-¢{[order|01],5) — t-and=c([order|01], [suat]51])
t-and-c([order], §) — t-and-c([order], [surt|S1])
t-und-c{[order], [suit|S1]) is in suspension. 0.K.7: m
tatlor([order|01], 5) — tailor(lorder|O1], [suit|S1])
talor([order], §) — tailor([order], [suit|S1])
tailor([order].[suit|51]) is in suspension. 0.K.7: m
tailor(1, [order|01], 5) — tailor{1, [order|01], [suit|51])
tailor(1, [order], §) — tailor{1,lorder], [suil|51])
tailor(1, [order], [suit]S1]) i in suspension. 0.K.7: m

tailor(2,[],51) is in suspension. 0.K.7: =n
%% WRONG SUSPENSION ATOM WAN
tailer(2,[1,51).

6. Soundness and Completeness of the Diagnosis Algorithm
The soundness and completeness of our dingnosis algorithm is stated as below:

Theorem 6.1 (Soundness of the Diagnosis Algorithm)
If “diagnose” returns a clause C, then it is a wrong clause instance. If “diggnose”
returns an atom A, then it is a wrong suspension atom.

Proof Obvious from the definitions of wrong clause instances and wrong suspension aloms.

Theorem 6.2 {Completeness of the Diagnosis Algorithm)
If the root label of a behavior tree is not in M P), then “diagnosts™ returns either a
wrong clanse instance or a wWrong suspension atom w.r.t. M(P).

Proof. Obvious, since “diagnose” simulates the “only if” part of the bug detection theorem.
7. Implementation of the Diagnosis Algorithm

In this section, we will discuss several improvements of (and extensions to) the diagnosis
algorithm in Section 5.

(1) Diagnosis Using Truncated Atom Behavior

The atom behaviors checked in the diagnosis algorithm of Section 5 consists of any
atom pairs representing autonomous transition intervals that starts from any atom more
general than the final atom. For example, suppose that the execution of a top-level goal
“p([1,2,3,...,100],Y)" is diagnosed, and the program of “p" processes the first list argue-
ment from the first element one by one, and instantiate the second argument one by one.
Then, the atom behavior checked in our algorithm includes all the atom pairs of the form

(GX 1], Y), (21X 1], 1),

(p([1.21X2), V), p([1, 21X 2], 12)),

(p([1.2,...,100/X100],Y),p([2,2, ..., 100]X 200], t100)),

|

(p[1.2....,100], Y), p([1.2,....100],t)).
In the actual execution of the top-level poal, however, the partially instantiated atom
Splle e, i|X4])" never appears as far as we can assume that cach arguement is passed
all &t once (1 < ¢ < 100). To restrict vur atiention to the trapsition intervals that actually
occur, we will truncate the less instantiated atom pairs as follows:

Definition Truncated Atom Behavior
Let B, be an atom behavior and 4p be an atom soch that Ap < Ae. Then, a set of
atom pairs
[(A’ Ar') | Ar' < A7", and
there exists an atom hehavior (A, A7) in By, 5.1,
Ae' is 2 most general unification of Ao and Ay,
Ar' iz a most general unification of Ar and Ag }
is called the truncated atom behavior of By, by Ap and denoted hy 4, B4,

A usual atom belavior By, o, 0y Is considered as 5oy, v,y By, 0.0 s, where
Xy, Xa,..., X, are distinct variables,

When this truncated atom behavior is employed instead of the original atum behavior,
the size of each query 15 much reduced. The algorithm in Section 5 is modified in the following
Lhree points: .

8 The d-th line of “diagnose” is modified 1o

let B8 he the result of “compuie-atom-be havior™ applied 1o T and A4,
¢ The query iz modified to

Ap is executed.

Agy — An

Ay — AT

Amp, — Am
Aw s in snceess. O KT
¢ The subprocedure “compute-atom-behavior” takes one more argnment Ap, and the
2nd line is modified 10
initialize Ay o {B|Ag < B < Ar}

(2) Diagnosis Using Difference Atom Behavior

The atom behaviors checked in the diagnosis algorithm of Section 5 consists of any
atom pairs representing maximal transition intervals. Each atom pair {Ax, A7) in an atom
behavior says that, if an atom is instantiated at least to the form Aes, it can au tonomously
instantiated al most Lo the form Ar. Though such an atom behavior represents an inherent
characteristics of the atom, two transitions sometimes overlap. For example. suppose that
(Ao, A7) is an atom pair in B, and there exists another atom pair (A#, Ag) such that A7 is
less instantiated than Ae. Then, some portion of the transition from Ae to A7 is already
included in the transition from 48 to An, That is, et Ag' be a most general unification of
Ar aund Ay. Then, the transition {rom Ae to As' is implicitly included in (A#, Ay), and the
remaining transition is represented by (Ae', A7) (Il As' and Ar are identical, (Ao, A7) is
turned out to have no inherent information.) To extract the portion inherent to the transition
itsell, we will define as follows:

Definition Difference Atom Behavior

11

Let B be an atom behavior, [Aeg, A7) be an atom pair in B, and Aa" be an atom such
that Ag < A¢' < Ar. Then, an atom pair (Ae’, A7) is called a difference atom pair of
[Ar Ar) in B when

{a) there exists no atom pair (A8, Ag) in B such that 48 < Ae, and Ag' is identical to

Aeg, o1

{b) there exists an atom pair (A#, An)in B such that A? < Ae, and Ae’' is a most general
unification of Ae and An, and
{c) there exists no other A" satisfving (a) or (b) and more general than Ag'.
Au atom pair (Ae’, A7) is called a diference atom pair in B when there exists an atom pair
(A, Ar) snch that {Ae’, Ar}) is a difference atom behavior of {Ae, A7) in B, A set of atom
pairs B is called the difference atom behaviors of B when it consists of all the difference atom
pairs in B.

Again, when this difference atom hehavior is employved instead of the original atom
behavier, the sige of each gquery s sometimes much reduced, becunse atom pairs with no
inherent information are eliminated. Moreover, the meaning of query is sometimes easier (o
grasp, because overlapping between two transitions is eliminated. The algotithm in Section
5 i1s modified only In the following one point:

¢ The repeat loop in the subpracedure “rompute-atom-behaveor” 1= modified 1o

repeat
select Agin A such that As is minimal in A
il there exists an atom pair (A8, Ag) in B;
st Af < Aer, A’ 15 an m.gu. of Ar and Ap, and Ar < A’
then let A, be A, — {B|dr < B < As');
let H,‘+1 he H.’L
else maximally extend the initial trec of Ae in T if possible, and let its solution be Ar;
let Ai;; be A, — [B|de < B < At}
if Ar = A7 then let B, be B; else let B be B; + {{Aa, AT)}
inerement ¢ by 1;
until 4, is empty;

(3) Diagnosis Utilizing Answer Database

One of the reasons Shapiro’s algorithmic debugging has appealed so strongly [20],[21]
is that the number of queries human programmers need to answer can be much lessened due
io the use of an “answer database™ by accumulating answers to previous queries. A new
query is first posed to the “answer database,” asked to the programmer only if the “answer
database” fails to answer i1, and the answer is added to the “answer database”™ so0 that the
programmer need nol answer the same guery over again,

The “answer database” can be also wtilized for cur diagnesis in the same way as
Shapiro’s algorithmic debugging, though atom behaviors, the objects diagnosed in our di-
agnosis, is a little complicated thar atoms, the objects diagnosed in Shapiro’s algorithmic
debugging. For example, if B is a recorded suceess atom behavior of Aw, it contains the
information about an atom behavior of A’ when Aw < Ap'.

(4) Diagnosis in the “Spy™ Manner

The diagnosis algorithm described in this paper is in the “trace” manner, Le, it de-
scends a behavior tree [rom the parent atom behavior to its immediate child atom behaviors

21

step by step. We can modify the diagnosis algorithm to behave in the “spy” manner (of
DECI0 Prolog). i.e., it asks queries ahont atom behaviors with the same predicates continu-
ally {and diagnoses other immediate child atom behaviors only when ne bug is found for the
predicate) [15]. Queries asked by such a diagnosis algorithm are easier for lluman programt-
mers to answer, since we need not frequently change our attention to different predicates. (In
general, for each priority rule for deciding which node in a behavior tree is diagnosed prior
to the other nodes, c.g.. top-down, bottom-up or “spy™, we have a corresponding diagnosis
algorithm. It is even possible to decide the priority according to the user’s direction, c.g..
defer the check of atom behavior in response to the user’s answer meaning “I don’t know
now, or don’t want to check now, whether the atom behavior is true or not” [15].)

In particular, the diagnesis algorithm in the “spy™ manner is snitahle for the diagnosis
ol the GHC programs in the object-oriented style. When GHC is used for ubject-oriented
style programming, we usually prepare a predicate for each class of objects. For example, a
class of objects “counter” is programmed in GIIC as helow [22]:

counter ([clear|M=gs] ,State) :- | counter {Msgs,0},
counter([up|Msgs] ,State} :- |

add(State,!,NewState), counter(Msgs,NewState).
counter ([down|Mzgs] ,5tate) :- |

subtract(State,l NewState), counter(Msgs NewState).
counter([],5tate).

Such a predicate usnally takes
® arguments representing the streams of messages sent from other ohjects,
¢ (possibly 0) arguments tepresenting the streams of messages sent to other vbjects, and
* an argument representing the current state of the object.
In addition, the clauses defining the predicate are usuvally lincar recursive. ie., each claunse
contains at most one atom with the head predicate in the body. For such a GIIC program,
the dizgnosis in the “spy” manner proceeds very naturally, since the queries asked continunally
in the “spy™ manner correspond to the continual state transitions of the same ohjuect.

B. Discussion
(1) Truly Parallel v.s. Non-deterministic Sequential

Recall that we have formalized the notion of compuelation tree based on the non-
deterministic sequential GHC execution, in which the instantiation cansed by the extension
at one node is propagated immediately to all the other nodes. {Let us call such execution
non-deterministic sequential) At first glance, It seems unnatural, since we cannot gnarantee
that the instantiation is propagated in such a way. If nodes are assigned to different processor,
the extension at some node might be done before the instantiation caused at other nodes
has been propagated. (Let us call such execution truly parallel) For example, consider the
following program:

Cyr oa-and-b(X) :- | alX), b(X).
Co: alX) = | X=a.
Ca biX) :-= | X=b, X=b.

Suppose that the substitution < X < a > caused by the execution of “X = a” is propagated
before Lhe extensions at other nodes are tried except the extension at the right node labelled
with “X = b". Then, we will have the tree below, which is not our maximal computation
tree.

24

a-and-bia)

()
/ A\
ala) bia)
I / S
a=a" a=h* b=h"
Ca Ch L

However, note that, if we can assume that the instantiation cawsed at cach node is
g_"l.-'i_'ntua.":,-' prupusuu!d to all the other nodes, we can Ay that
e alabelled tree is a success tree by non-deterministic sequential execution if and only if
it 13 a success tree by truly parallel execution,
a labelled tree is a suspension tree by non-deterministic sequential execution if and
only il it is a suspension tree by truly parallel execution, and
o the execution of an atom fails by non-deterministic sequential execution if and only if
it fails by truly parallel execution.
Hence, the notions of success tree and suspension tree do not depend on the non-deterministic
seguential execution mechanism we have employed in Section 3.2, Moreover, once a maximal
computation tree {by non-deterministic sequential execution} is given, any maximal subex-
tension in it, henece its atom behavior, is also independent of the sequentiality. (Note that
the notions of truncated atom behavior and difference atom behavior in Section 7 are also
independent of the sequentiality.)

(2) Comparison with the Diagnosis of Prolog Programs

As for Prolog programs, since the advocacy by Shapiro [20),[21]. many studies to extend
and refine his approach have been made [2).[3].[4],[5],[8]./13].[15].[16],[1T].[18].

Suppose that we identify any Prolog clanse of the form
“alty, o, endm]) - By, Bs,... B,
with a GHC clanse of the form
;‘F{J‘-‘l1-‘1‘-j----1):n:l:' |X]:t1..}:2:!j xm:tm,‘Bl1BE _____ Eﬂ'ﬂ

Then, as far as the predicate of an atom is not undefined, the execution of an atom v such
a GHC program is never suspended immediately since there always exists some clanse to
whirh the execntion is committable. The failure in snch a GHC program corresponds to the

backtracking in the onginal Prolog program.
When our diagnosis algotithm is applied to such a converted GHC program, it can

detect “wrong suspension atom” only when the predicate is undefined, and otherwise it can
only detect “wrong clause instances,” which correspond to the “wrong clause instances” and
some of the “uncovered atoms” detected by Shapiro’s diagnosis algorithm applied to the
original Prolog program.

(3) Comparison with Other Diagnosis of Concurrent Logic Programs

As for (8o called) concurrent logic programs, several researches have been just begun
[6],[10},[12],[12],[14],[19],[23],[24],[25],[26]).

25

Lloyd and Takeuchi [12] have tried to generalize Shapiro’s approach for the dingnosis of
GHC programs by considering 3 sets of gronnd atoms A, .oorus, Miaiture, Mauspension 0stead
of considering only the least Herbrand model M,,, and naturally noticed that some bugs
inherent to GHC cannot be delected if only ground atoms are considered. See Takeuchi [24]
for its implementation in GHC. (Maeda, Toi and Tokura [14], Sate, Aida and Saitou [19]
are for the diagnosis of GHC program, and Tatemura and Tanaka [26] is for the diagnosis of
their committed-choice language FLENG similar to GHC)

Lichtenstein and Shapiro [10] has generalized Shapiro’s approach for the diagnosis of
Flat Concurrent Prolog (FCP) based on the notion of atom behavior, {We borrowed the term
“atom behavior” from their paper.) Their atom belavior, however, does not correspond to
a set of waximal transitions, but a sequence of transitions ohserved whenever an immediate
extension {in onr terminology of Section 3.2) is applied or an instantiation is imported from
ontside, Naturally, their atom behaviors contain much finer, hence much more, informa-
tion than ours and depends on each specific course of non-deterministic computation. {The
information involved in our diagnsosis. however, sulfices for the diagnosis, if, for checking
whether a GHC program is erroneous or not. we only ohserve how an initial top-level goal is
mstantiated in the linal success, suspension or failure state.)

To lessen the information involved in the diaguosis, Lichitenstein and Shapiro [11] have
later proposed a method to diagnose FCP programs using rougher information obtained hy
applying abstaction to their atum behaviors. Though we have shown the diagnosis algorithm
using atom behaviors, our notion of atom behavior is already an abstraction of GHC com-
putation. Similarly to Lichtenstein and Shapiro's approach, if a different abstraction of the
GHC computation is employed, a diagnosis alogorithm for the different aspect of the GHC
computation is obtzined,

Huntbach [6] tried to apply Shapire’s appreach to PARLOG. However, hecause his
approach focwses its attention on computation trees, not hehavior trees, his diagnosis algo-
tithm is naturally unable to detect the bugs inherent to the synchronization mechanism of
commntitted-choice languages based on how far the variables in the goals are instantiated.

9. Conelusions

We have presented a framework for the diagnosis of GHC programs. This method is
an element of our system for modification of GHC programs under develapment.

Acknowledgements

Our modification system under development is a subproject of the Fifth Generation
Computer System (FGCS) “Intelligent Programming System.® The authors would like 1o
thank Dr. K. Fuchi {Director of ICOT) for the opportunity of doing this research, and Dr.
k. Furnkawa {Deputy Director of ICOT), Dr. R. Hasegawa (Chief of ICOT 1st Lab.) fur
their advice and encouragement.

References

[1] Bowen, D.L, L.Byrd, F.C.N.Pereira. L.M.Pereira and D.H.]).Warren, “DECsystem-10
Prolog User's Manual,” Department of Artificial Intelligence, University of Edinburgh,

1983,
[2] Dershowitz, N. and Y-J Lee, “Deductive Debugging.” Proc. of 1987 Symposium on
Logic Programming, pp.298-306, San Francisco, Angust 1987,

26

[3] Drabent, W., 5.Nad] m-Tehrani and J.Maluszvnski, “The Use of Assertions in Algorith-
mic Debugging,” Proc. of the Intern ational Conference on Fifth Generation Computer
Systems 1988, Tukyo, November 1985,

[4] Edman. A. and S.A Tarnlund, “Mechanization of An Oracle in A Debugging System,”
Proc. of #th International Joint Conference on Artificial Intelligence, pp.553-555, Karl-
stuhe, August 1981

(5] Ferrand, G., “Frror Diagnosis in Logic Programming.” J. of Logic Programming, Vol.4.
pp. 177198, 1987

[6] Huntbach. M., “Algorithmic Parlog Debugging.” Proc 4th Symposium on Logic Pro-
gramming, pp.288-297, San Franecisco, Augest 1987,

[7] Kanamosi, T. and M.Maeji, A Preliminary Note on the Semantics of Guarded Horn
Clanses.” TCOT Technical Report TR-434, ICOT, Tokyo. December 198E.

[¢8] Kanamon, T., T.Kawamura. M.Maeji and K _Harinehi, “Logic Program Diagnesis from
Specifications.” 1COT Techmical Report TR-447. ICOT. Tokyo, February 1989,

[9] Kanamori, . and M.Maeji, “A Fixpoint Semantics of GHC Programs.” ICOT Tech-
nical Report TR-577, 1COT, Tokyo, March 1990.

[10} Lichtenstein, Y. and E.Shapuro, “Concurrent Algorithmic Debugging,” The Weizmanu
Institute of Science, Department of Computer Science, Technical Note (TS&7-20, 190 4.

[11] Lichtenstein, Y. and E.Shapiro, “Abstract Algorithmic Debugging.” Proc. of 1987 Svm-
posium on Logic Programming, pp. 312 531. San Francisce, August 1987,

[12] Lloyd, J.W. and A Takeuchi, “A Framework of Debugging GIIC Programs,” 1COT
Technical Heport TR-186, 1COT, Tokyo, June 1926

{13] Llogd, JW., “Declarative Program Diagnosis,” Technical Report 86/3, Department of
Computer Seience, University of Melbourne, 1956, Also New (enerartion Compnting,
Vol.5, Nu.2, pp.133=154, 1987,

[14] Maeda, M., Il.Uoi and N.Tokura, “A Debugging Method for GHC Programs,” (in
Japanese) Rescarch Report of 5IG Foundation of Software 28-4, Japan Information
Processing Society, Tokyo, March 18885,

[15] Maeji. M. and T.Kanamaori, “lop-down Zooming Diagnosis of Logic Programs.” Pre-
sented at RIMS Symposiom on Mathematical Methods in Software Seience and Engi-
neering 87, Kyoto, September 1987, Also RIMS Research Report 655, pp. 147-166,
Research Institute for Mathematical Sciences, Kyoto University, April 1888, Also 1COT
Technical Report TR-290, 1COT, Tokyo, August 1987,

[16] Pereira, L.M., “Rational Debugging in Logic Programming,” Proc. of 3rd International
Conference on Logic Programming. pp. 205-210, London, Inly 1986,

[17] Pereira, L.M. and M.Calcjo, A Framework fur Prolog Debugging,” Proc. of Sth n-
ternational Conference and Symposium on Logic Programming.” pp 48 1-495, Scatle,
Angust 1988,

(18] Plaisted, D., “An Efficient Bug Location Algorithm.” Proe. of 2nd International Logie
Programming Conference, pp. 151-157, Uppsala, July 1984,

[19] Sato, 5., H.Aida and T.Saiton, “An Experimental Debugging Tool for Coneurrent Logic
Programs.” Proc. of 4th Nativnal Conference of Japan Society for Software Science and
Technology, pp. 447- 450, Kkyoto, November 1987

{20] Shapiro, E.Y., “Algorithmic Program Debugging,” An ACM Distingnished Disscrtation
1982, The MIT Press, 1983, Also Research Report 237, Yale University, Department
of Computer Science, 1982,

[21] Shapiro, E.Y., “Algerithmic Frogram Diagnosis,” Conf. Rec. of the $th ACM Sympo-
sium on Principles of Programming Languages, pp.299- 308, 1984,

i

[22]

23]

[24]

[25]

Shapiro, E.Y. and A.Takeuchi, “Ohject Oriented Programming in Concurrent Prolog,”
New Generation Computing, Vol.l, pp.25-48, OHMSHA, LTD and Springer Verlag,
1983,

Takeuchi, A., “On the Algorithmic Debugging of GHC Programs,” (in Japanese) Proe.
of Spring National Conference of Japan Information Processing Society, pp.495-501,
Takyo, March 1988,

Takeuchi, A., “Algorithmic Debugging of GHC Programs and its Implemeniation in
GHC,” ICOT Technical Report TR-185, I[COT, Tokyo, June 1936,

Takenchi. A, “GHC Programming Environment,” (in Japanese), in A Concurrent
Logic Programming Language GHC and its Applications (K Fuehi, K.Furukawa and
F.Mizoguchi Eds.}. pp.191-215, Kyouritsu Pub. Co., September 1987,

Tatemura, J. and H.Tanaka, “Debugger for the Parallel Logic Programs : FLENG,”
Proc. of the Logic Prpgramming "9, pp.133-142, Tokyo, July 1983,

Ueda, K., “Guarded Horn Clauses,” Doctoral Thesis, Information Engincering Course,
Faculty of Engineering, UUniversity of Tokyo, 1986,

Ueda. K., “Guarded Iforn Clauses : A Parallel Logic Programming Language with the
Concept of a Guard,” Pror. of 1st Franee-Japan Artificial Intelligence and Computer
Sciemece Sympusium, pp.127-138, Tokyo, October 1987, Also in Programming of Future
Generation Compnters (M. Nivat and K Fuchi Eds.), North-Holland, 1988

28

