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Abstract

This paper concerns deductive procedures for abductive reasoning and a variety
of ATMSs. Although de Kleer's basic ATMS (4] has been widely used in AL the
algorithm has not yet been given any formal procedural semantics. Reiter & de Kleer
[26] view an ATMS as a kind of abduction in which the best explanation of a formula
15 defined as a minimal conjunction of hypotheses that explain the formila. However,
they do not give any algorithm to compute such minimal explanations of a formula
in their CMS thal is a generalization of the basic ATMS. In this paper, we use the
notion of characteristic clauses [29] to explain clearly the computational aspects of
the CMS and the ATMS and to produce an efficient abductive procedure based on
linear resolution. By means of this abductive procedure, we give the CMS algarithms
for computing minimal explanations in the interpreted approach and for updating
them in the compiled approach. We then present algorithms for generating and
updating labels of nodes in an extended ATMS that accepts any formula justifications
and literal assumptions. Additionally, proof procedures for a class of nonmonotonic
reasoning based on variations of the abductive procedure are also mentioned.

Keywords: ATMS, OMS, Abduction, Saturation. Linear Resolution



1 Introduction

An assumption-based truth maintenance system (ATMS) [4] has been widely used when prob-
lemns require reasoning in multiple contexts. However, this basic ATMS can only handle the
restricted form of formulas, and is described algorithmically rather than declaratively or model-
theoretically, and no proof of its correciness is given, so it is nol obvieus how to generalize or
refine it. The motivation for this research was the desire to [ormalize generalizations of the
ATMS within simple model and proof theories.

Recent investigations such as those of Reiter & de Kleer 126] and Levesque [18] show that
there are strong connections between the ATMS and a logical account of abduction or hypothesis
generation [24, 3, 10, 22). An ATMS can be characterized by the following tvpe of abduction:

Definition 1.1 Let W be a set of formulas, A a set of ground literals (called the assumptions),
and G a closed formula (called observation). A formula H is an explanation of G with respect
to W and A if:

(1) WU{H} =G,
(2) WU {H} issatisfiable, and
(3) H is a conjunction of literals in A,

An explanation H of ¢ with respect to W and A is minimal if:
(4) No proper sub-conjunct of H is an explanation of (7,

From the viewpoint of abductive reasoning, condition (3) and (1) work as restrictions to
accept appropriate explanations from the large number of explanations that satisfy (1) and (2).
Condition (3) says that an explanation H is limited to consisting of a conjunciion of literals
that are expressed in terms of a prespecified subset of the predicate symbols, assumable literals.
Pople [24] and Cox & Pietrzykowski [3] do not allow for such a distinguished set of literals
but adopt another criterion. Poole [22] and Finger [10] compute an explanation satisfying (1)
(2) and (3), if assumptions are restricted to being ground atoms, but they do not require the
mimimality condition (4). Here we claim that minimal explanations can reasonably be accepted
because we do not need unnecessary hypotheses (the maxim of Occam’s Razor [24]). Mateover,
the minimality is essential for efficiency in some application domains such as diagnosis and
design.

The ATMS is precisely intended to generate all and only minimal explanations. In the ATMS
terminology, the set of explanations of an observation ¢ (called node) with respect to the sets
W' (called justifications) and A that satisfy the above four conditions is called the label of G,
which is consistent, sound, complete and minimal. The basic ATMS [4] is restricted to accepting
only Horn clause justifications and alomic assumptions, and each observation to be explained
is only an atom. In the above four conditions for an ATMS, justifications and observations can
contain any formulas, and assumptions are allowed to be literals, We call this generalization an
ertended ATMS, because it covers de Kleer’s various extended versions of the ATMS [5, 6, 7],
Dressler’s extended ATMS [9], and Reiter & de Kieer's clause tanagement system (CMS) [26)
if every ground literal is regarded as an assumption. Although the CMS is well defined, [26]
does not give any algorithm for computing such minimal explanations of a formula in it.
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In the remaining sections, we describe abduction as the problem of finding the characteristic
clauses [1, 29] that are theorems of a given sel of clauses and that belong to a distinguished
sub-vocabulary of the langnage. We will give a propositional linear resolution procedure with a
production field for abduction and saturation, then show ways in which to implement the CMS
and the extended ATMS described above for both label generating (the interpreted approach )
and label updating (the compiled approach). Two algorithms for ATMS label updating will be
given: full and less-complete versions. The full algorithm computes all minimal explanations
for a node; and the less-complete algorithm violates the label completeness, but is much more
clicient. This extended ATMS can also capture a kind of nonmonotonic reasoning hecanse it
introduces the notion of negation [9]. Since our extended ATMS can accept literal assumptions
and general formulas, the methods described in this paper can also be applied to hetter im
plementations of theorem provers for closed world assumptions [1] and circumseription [25, 11},
and membership in all extensions (23], based on abductive procedures [13, 12].

2 Background

We begin wilh some definitions and notations that will be nsed throughout this paper. We shall
assuine a propositional language with finitely many propositional symbels A and with logical
conneclives, The set of literals is defined as: A% = 41U —. A, where = § means the set formed
by taking the negation of each element in §. A clause is a finite set of literals, understood
disjunctively; the empty clause is denoted by O, A conjunctive normal form (CNF) formula is
a conjunction of clanses, Let ' and (" be two clauses. € — € denotes a clause whose literals
are those in the difference of €' and €', € is said to subsume (" if every literal in 7 oceurs in
C"(C C C"). In logical notation, €' subsumes €' if |5 ' O . For a set of clauses X, by 4 or
#[£] we mean the set of clauses of ¥ not subsumed by any other clause of .

Definition 2.1 Let ¥ he a set of clauses.
(1) A clause C'is an implicate of ¥ if £ |= (7. The set of implicates of ¥ is denoled by Th{E).
(2) The prime implicates of ¥ are: PI(X) = p Th(X).

2.1 Characteristic Clauses

We use the notion of characteristic clauses, which helps to analyze the computational aspect of
ATMSs. While the idea of characteristic clauses was introduced by Bossu & Siegel [1] to evaluate
a form of closed-world reasoning and was later generalized by Siegel [29), neither research focused
on abductive reasoning or the ATMS. Informally speaking, characteristic clauses are mtended
to represent “interesting” clauses o solve a certain problem, and arc constructed over a sub-
vocabulary of the representation language called a production field.

Definition 2.2 (1) A production field P is a pair, { Lp,Cond)., where Lp (called the charac-
teristic literals) is a subset of A*, and C'ond is some conditions to be satisfied. When Cond is
not specified, P is just denoted as { Lp J. A production field ( A*) is denoted ;. _

(2) A clause C' belongs to a production field P = { Lp, Cond) if every literal in C helongs to
Lp and C satisfies Cond. The set of implicates of ¥ belonging to P is denoted by The(L).
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(3) A production field P is stable if P satishies the condition: for two clauses ¢ and (" where
€' subsumes (', if €' belongs to P, then (' also belongs to P.

Consequent properties. The empty clause O helongs to every stable production field.

Example 2.3 The following are examples of implicates belonging to stable production fields.
(1} P =P, Thp(X) is equivalent to Th(X).
(2) P = (A} Thp(X) is the set of positive clauses implied by ¥,
(3} P = {—=- A, below size k) where A C A: Thp(E) is the set of negative clauses implicd
by ¥ containing less than & literals all of which belong to —- A.

Definition 2.4 Let © be a set of clauses,
(1) The characteristic clauses of ¥ with respect ta P are:

Care(X, P) = uThp(Z).

In other words, a characteristic clause of £ is a prime implicate of £ belonging to P.
(2} Let #' be a formula. The new characteristic clauses of F with respect to % and P are:

Neweare(N, 1 P) = Care{ ZU{F}, P) = Care(%, P),
that is, those characteristic clanses of X 1 {#} that arc nol characteristic clanses of 5.

Consequent properties. (1) I[ ¥ is unsatisfiable, then Care(X, P) ouly contains O.
(2) PHE) = CarelE,P,).

‘arc(L, P) represents saturation: all the unsubsumed hmplicates of ¥ that belong to a
production field P must be contained in it. On the contrary, the next theorem shows that
Newecare(E, P, F) represents abduction,

Proposition 2.5 Newecare(X, F,P) = p[Thp(E U {F}) - Thp(3)].

Froof: Let A = Thp(S U {F}) and B = Thp(%). Notice that B C A. We will
prove that g(Ad — B] = pA — B,

Let ¢ € p[A = B]. Then obviously ¢ € A — B and thus ¢ € 4. Now assume that
¢ ¢ uA. Then 3d € pA such that d C e. By the minimality of e € A — B, d € B.
Since d C ¢, ¢ € B, contradiction. Therefore ¢ € pA. Clearly, by ¢ & B, ¢ & uli.
Hence, ¢ € pAd — puB.

Conversely, assume that ¢ € pA — pB. Firstly we must prove that ¢ € A — B,
Suppose to the contrary that ¢ € B. Since ¢ ¢ uld, 3d € uB such that d ©
However, as B C A, d € A, contradicting the minimality of ¢ € A. Therefare,
¢ € A— B. Now assume that ¢ is not minimal in A — B. Then, 3¢ € A — B such
that e C ¢, again contradicting the minimality of ¢ € A. Hence, ¢ € u[A — B]. O

Theorem 2.6 Let £ be a set of clauses, 4 € A%, (7 a formula. The set of all minimal
explanations of G with respect to ¥ and A is - - Newearce{¥, -G, P), where P = {=-A).
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Proof:  Suppose that H is an explanation of G with respect to £ and A. By
Definition 1.1, 1t 15 observed that (1) SU{H} | @ can be written as BU{=G} | =H,
(2) the fact that ¥ U {#} is satisfiable means ¥ g =H, and (3) =H is a clause all
of whose literals helong to —- 4. Thus ~H € [The(EZ U {-G}) — Thp(Z)]. By
Proposition 2.5, H is a minimal explanation of G with respect to ¥ and A if and
only if =l € Neweare(X, =G, P). O

2.2 About Abductive Procedures

In this seclion, we show that given a set of clauses ¥, a stable production ficld P aund a formula
F', the characteristic clanses Care(X, P) and the new characteristic clauses Neweare(E, F, P)
can be computed by using resolution. Before describing this matter in detail, it is worth noting
that, since we are dealing with abduction, the proof procedure has the following difficulties:

L. It should be complete for consequence-finding, that is, every relevant theorem can be
produced, instead of just refulation-complete (producing O if the theory is unsatisfiable),

2. It should focus on producing only those theorems that belong to P.

3. It should be able to check produced clauses from £ U {F} and P with the condition “not
belonging to Thp(X)", which corresponds to consistency checking in abduction.

The completeness for consequence-finding was investigated by Slagle, Chang & Lee [30] and
Minicozzi & Reiter [20]. The second property requires that such consequences belong to P. A
promising approach to overcome these difficulties is to use an ineremental resolution procedure,
which should first deduce all the Cure(E, P) prior to giving Care(SU {F}, P). Bossu & Siegel'’s
(1] saturation procedure is an example of incremental resolution methads.

A better approach to compute Newcarc(E, ', P) does not construet the whole of each sat
urated sel. [t is possible by using a linear resolution procedure, given £, P, and a newly added
single clanse (' as the top clause of a deduction. Siegel [29] proposes such a resolution method
by extending SL-resolution [17]. Iu this paper, we use the basic idea of [29] but introduce a
more simplified procedure which is enough to explain our goals. The resolution method, which
we call m.c.ls. resolution, is based on m.e.l. (merge, C-ordered, linear) resolution [20] ', and
1s augmented by the skipping vperation 2. The following procedure is based on the description
of OL-dedunction in [2], but the result is not resiricted to it. An ordered clause is a sequence
of literals possibly containing framed literals which represents literals that have been resolved
upon: from a clause (' an ordered clause C is obtained just by ordering the elements of €'
conversely, from an ordered clause € a clause €' is obtained by removing the framed literals and
converting the remainder to the sel. A structured clause ( P, () is a pair of a clause P and an

ordered clause @, whose clausal meaning is P U .

!By the term m.c.|. resolution, we mean the family of linear resclution using ordered clauses and the informa-
tion of literals resolved upon. Examples of m.c.l. resnlution are OL-resolution [2], SL-resolution [17], the model
elimination procedure [19], and the graph construction procedure [28].

*Roughly speaking, the skipping operation corresponds to Pople'a [24] synihests aperation.



Definition 2.7 Given a set of clauses £, a clause (7 »and a production field P = ({ Lp, Cond ),
an m.c.l.s. deduclion of a clause § from ©+C and P consists of a sequence of structured clauses
Do, M. .. 1, such that:

I. Do = (DO, ().
2 D, ={S O).

d. For cach D, = (P, @; b, Pou @ is not a tautology.

-

4. For each D; = | P, (;':,- )y P U Q; is not subsumed by any F; U@, where D, = (P;, Q)

is a previous structured clause, j < 7.
5. Dy = (Piys, Qi ) is generated from I = (P, @;) according to the following steps:

(a) Let I be the first literal of ;. P.,, and R\ are obtained by applying either of the
riles:

i. (Skip) If I € Lp and P, U {{} satisfics Cond, then Fyy = P, U {l} and Ky, is
the ordered clause obtained by removing | [rom Q‘;.

ii. (Resolve) F,,, = P, and R:,_l is an ordered resolvent of ¢J, with a clause B, in
X, where the literal resolved upon in @, is |,

{b) Q:H is the reduced ordered clause of the ordered factor of R:..l,

Remarks. (1) Rules I, 3, 3(a)ii and 5b form an OL-deduction for the non-production part
{the right side) of structured clauses. By the ordered factor of £, it unphes the ordered clanse
obtained by ierging right for any identical literals in R, and by deleting every framed literal
not followed by an unframed literal in the remainder (truncation). The reduction (or ancestry)
of B, deletes any unframed literal k in K. for which there exists a framed literal -k_T in R,
(2) Rule 1 is included for efficiency. It does not affect the completeness described below 2.
(3) Rules 5(a)i and 5(a)ii are not exclusive; for I € Lp either rule can be applied.

The Skip rule (5(a)i) reflects the following operational interpretation of a stable production
field P: by Definition 2.2 (3), if a clause ' does not belong to P and a clause € is subsumed by
', then O does nol helong to P either. Thus we can prune a deduction sequence if no rule can
be applied for a structured clause D,; if Skip was applicd nevertheless, any resultant sequence
would not succeed, thus making unnecessary computation.

For m.c.Ls. resolution, the following theorem can be shown to hold,

Theorem 2.8 (1) Decidability: The algorithm stops for a set of propositional clauses ¥

(2) Soundness: Lvery clause produced from £ and P helongs to Thp(Z). In other words, if a
clanse § is derived using an m.c.Ls. deduction from £+ and P, then § belongs to T'hp(EU{C}).
(3) Completencss: Il a clause T belongs to Thp(X), then there is an m.c.l.s, deduction of a
clause 5 from ¥ and P such that S subsumes 7.

®Iu fact, in Chang & Lee’s version of OL-deduction [2] this rule is overlooked. The deletion rule is clearly
present in the model elimination procedure [19]. These two observations were pointed out hy Mark Stickel.
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(4) Completeness: 1f a clause T does not belong to Thp(E), but belongs to The(EU {C}), then
there is an m.c.ls. deduction of a clause S from X + € (that is, with top clauvse C) and P such
that 5 subsumes T.

Proof: The proof fur the completeness can be seen as an extension of the result
for linear resolution by Minicozzi & Reiter [20]. And these results follow easily using
the same method as in the proofs for Siegel’s procedure described in [29]. D

Note that m.c.l. resvlution is refutation complete [19, 17, 2], but is incomplete for consequence
finding [20]. The procedure of m.c.ls. resolution s complete for characteristic-clause-finding,
hecanse it inclndes the additional skipping operation.

Example 2.9 Suppose that ¥ = {e Vv b, =cV =b, =eV —a}. There is no m.c.l. deduction of
-¢ from £, but —¢ is derived using an m.c.lLs. deduction from ¥ and 7, as:

(O, avh), (O, 2cV[a]Vh), (= [EIVE), (-e, aev[b), (=e [5]).

Definition 2.10 Given a set of clauses ¥, a clause ', and a stable production field 7. the
production from Y. 4+ (7 and P is defined as:
Prod(S,CP) = u{ 5|8 is a clause derived using an m.c.l.s. deduction from ¥ + ¢ and PL.

In [24]. there is no precise statement about compuling Neweare(X, U, P} and Care(%, P) by
using Prod(%,,P). Here we show the connections between them. Firstly, by the soundness
and the completeness’ in Theorem 2.8, the following lemma can be shown to hold.

Lemma 2.11 Tet (7 be a clause. Newcare(E,C,P) C Prod(X,C,P) C The(Z U {C}).

Proof: By Theorem 2.8 (2), the second set-inclusion relationship easily follows.
Let T € Newcare(L, C,P). By Proposition 2.5, T € p[The(Z U {C}) — The(X)].
By Theorem 2.8 (4), 35 € Prod{%Z,C,F) such that § C T. By the minimality of T',
T = S. Hence, Newcare(X,C,P) C Prod(E,C,P). O

The nexi theorem shows that we can compute Neweare(E, €, P) for a single clause O, with-
out a naive iinplementation of Definition 2.4 (2) that computes the saturated sets, Carc(E, )
and Care(S U {C}, P), and that we need check for each clause § € Prod(Z, C,P), ouly whether
Y. E 5 or not.

Theorem 2.12 Let (' be a clause. Newcare(%,C,F) = Prod(E.C,P) — Thp(L).

Proof: By Lemma 2.11, Newcare(E,,P) C Prod(Z,C,P). It remains to show
that Prod(E,C, P) — Neweare(E,C, P} € Thp(E). Suppose Lo the contrary, for
S € Prod(X,C,P) — Thp(X), that § ¢ Newcare(E,C,P). Since § ¢ Thp(E),
S ¢ Care(E,P). Because § € Prod(E,C,P), § € Thp(X U {C}) by Lemma 2.11.
Since S is not minimal by the supposition, 38" € Care(X U {C}) such that §' < §.
Then, clearly S’ ¢ The(Z) as 5 C §. Thus, 8 € Thp(Z U {C}) — Thp(X).
By Theorem 2.8 (4), 35" € Prod(Z,C,P) such that §” C §" C §. However, by
Definition 2.10, Prod(¥, C, P) is pu-closed, that is, does not contain any redundant
clauses, contradiction. Hence, S € Newcare(E,C,P). O
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For a CNI formula &, Newearc(X, G, P) can be computed by applying Theorem 2.12 inere-
mentally. By using Proposition 2.5, we get the following theorem:

Theorem 2.13 Let (7 = (') A - A, bhe a ONI formula. Then

Newcare(2, G, P} = | U Newecare(Y,, C;P) ]

= wlUJ Prod(5.CyP) | = Tha(%),
where £, = ¥, and %, 1= Siu{Ch fori=1,....m—1.
Proof: Notice that in the [ollowing proof, for sets, A, B, and (7, such that ¢ C
BCA A-C=(A-B)J(P - ) holds.
Neweare( X, G, P)
= u[The(EU{Cy,,Cn}) = Thp(X)] (by Proposition 2.5)
p(Thp(Em U{Ca)—The(E)) U U(Thp(EU{C: )= Thp()) ]

LA Tho(5m U {Cn})=Thp(Tn) U - U ] Lhp(83)~ Thp(E1)]
= p! Neweare(Z,,,Copn, P)U - U Neweare(E,, Cy, P) |

T

= p[|J Newecare(%;, C;,, P) ].
i=1
Now, the last equality can be shown to hold by using the following equation succes-
sively:
Newecare(Xipq, Cipr, P) U Neweure(Eg, Ok, P)
= (Prod(EZy U{C,},Coy1, P) = Thp(Tp U{Ck}) U Prod( L, Ch, P) — The(Ec) )
= (Prod(X; U{Ci},Cig1, PIU Prod(Es, Oy, P) ) = ( Thp(S, U {Ck}) — Prod(Es, Ci, P )
— (Thp(Ex)— Prod(E; U {Ch}, Crars P) ) = ( The(Ls U {Ce}) A Thp(4) )
= (Prod(Ei 1, Char, PIU Prod(Xy, Oy, P) ) — ¢
— (The(Xe)—FProd(E U{C} Crsr, PY) — The(E)
= ([ Prod(Zis1, Cit1, P) U Prod(Ze,Cy, P) ) — Thp(Es)
Hence, Newcare(X, G, P) = u[UUZ, Pred(Z;,C;,P) 1 = The(¥). O
Finally, the characteristic clauses Care(X, P) can be generated by the following incremental
method. This will be used for the compiled approaches to the CMS and an ATMS in sections 3.1

and 4.2. Notice that for some propositional symbol p, il £ ¥ p, & £ —p, and p v —-p belongs to
some stable production field P, then p V —p belongs to Care(Z, P).

Theorem 2.14 The characteristic clauses with respect to P can be generated incrementally *:
Care(¢,P) = {pV-p|pecAand pv-p belongs to P}, and
Care(BEU{C},P) = up[Care(E,P)U Neweare(E, 7, P)]
= pu|Care(Z,P)U Prod(E,C,P)] .

*In practice, no tautology will take part in any deduction; tautologies decrease monotonically.
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Proof: 'I'he first equation follows immediately from Definition 2.4 {1). Now,

Carc{ZU{CLP) = pThe(EU{C}H
= u|[The(EU{CHUThe(E)]
.k [WThe(SU{CY U uThe(S)] (+)
[ Care(S, P)U Care(2 U {C}, P)]
p|Care(S, PYU( Care(EU{C},P) — Care{E,P) )]
= u[Care(¥X,P)U Newecare(X,C,P) ]
= u[Carc(E,P)U( Prod(E,C,P) ~ Thp(E))] (by Theorem 2.12)
= p[Care(E, P)U Prod(X,C,P)] .

Notice that at (=), for two sets, 4 and B, p[ AU B| = p[pAU pE] holds. O

3 The Clause Management System

Reiter & de Kleer [26] propose a generalization of the hasic ATMS [4] called the clause man-
agement system (CMS) and show its applications to abductive reasoning. A CMS is intended
to work together with a reasoner, which issues queries that take the form of elanses. The CMS
is then responsible for inding minimel supporis for the queries:

Definition 3.1 [26] Lel T be a sel of clauses and ' a clause. A clause S is a support for
with respect to ¥ if:

EESuUC, and

TES.
A support for C with respect to £ is minimal il there is no other support 5" for €' which
subsumes §. The set of minimal supports for C' with respect to X is written MS5(X, C').

Comparing minimal supports with minimal explanations described in Definition 1.1, a min-
imal support S for 7 with respect to ¥ is exactly a minimal explanation =5 of (7 with respect
to ¥ and 4% Therefore, the ahove definition can be easily extended Lo handle any formula
instead of a clause as a query. Setting the production field to P, = (A%}, we see that:

Proposition 3.2 Let F' be any formula. MS(X, F) = Newcare(Z, - F, P, ).

Proof: A clause 5 is a support for /' with respect to ¥

— LESUF,and EES

< YU{-F}ES and DS

— Se[ThEU{-F})-Th(E)].

Therefore, 5 € MS(E, F) «= § € Newcarc(%,~F,P;) (by Propoesition 2.5). O



This formulation can solve one of the limitations of the CMS. In [26], the CMS is defined to
handle only the obhservations of the clanse form, so that it cannot compute minimal explanations
of a conjunctive observation. For example, p{—e | ¥ E ¢ 2 g1 A gz and £ £ —e} can
be computed straightforwardly in our formulation as Newecare(E, ~g; V —gs, P,). And for a
disjunctive normal form observation F, we can compute MS(X. =F') by using Theorem 2.13.

We thus see that our algorithm can compute minimal supports. However, Reiter & de Kleer
[26] consider the two ways the CMS manages the knowledge base: keeping the set of clauses
¥, transmitted by the reasoner as it is (the inferpreted approach), or computing PJI(X) (the
compiled approach). Theorem 2.12 shows that we can generate the new characteristic clauses
Neweare(X,C, P} without knowing the saturated sets, PI(¥) and PI{E U {C'}). Therefore,
computation using Theorem 2.12 and Proposition 3.2 represents the interpreted approach °.

3.1 Compiling the Knowledge Base

When we are faced with a sitnation in abduction where we want to know explanations for many
different queries, we must run the algorithm each time a query is issued. Instead of keeping the
initial theory ¥ as it is and doing the same deductions over and over for different top clauses.
some of these inferences can be made once and for all. That is the motivation for the compiled
approach: the set ¥ is compiled into the saturated set, PI(Y) = Carc(X, P, ).

Given PI(X), to find MS(X,(7) for each query (7 in the compiled approach, again we do not
need to compute the saturated set PI{¥ U{=(}), as Reiter & de Kleer show some relationships
between prime implicates and minimal supports.

Proposition 3.3 [26, Theorem 5] Let (' be a clause. Then
MS(ECy=p{P-C|PePIE)and PNC #e}.
Corollary 3.4 [26, Corollary 4] Let n € A be a literal. Then
MS(E {n}))={P—{n} | PePIHE)and n € P}.

Proposition 3.3 works only for a single clause query (7. Levesque [IS] generalizes it to handle
a ONF formula query as follows 9

Proposition 3.5 [IR, Theorem 3] Let G =, A--- A (], be a UNF formula. Then

MS(E,Gy={85]|S5 e uVI(E,C) and S is not subsumed by auy other clause in PI{Z)},

where V(5,G) = { (P = C:) | P € PI(S) and P1C; # 6}

=1

*Note that in [26] there is no deseription of an algorithem for the interpreted approach.

“We change the original expression in [18] slightly, so that the correspondence with Proposition 3.3 is clearer.
Note thal while Proposition 3.5 handles a CNF formula query diceetly, Theorem 2,13 haodles a DNF forimula
query easily becanse of the duality of M5 and Newecare in Propasition 3.2,



One of the disadvantages of the compiled approach is the high cost of updating the knowledge
base. When the reasoner adds a clause ' to ¥, we must compute all the PI{EU{C'}). However,
for both purposes, that is, constructing the prime implicates and updating them, Theorem 2.14
and the next lemma can be used by setting the production field to P,.

Lemma 3.6 For any stable production field P, Newcare(X,C,P) = Newearc(PI{Z),C,P).

Proof: Notice that Care( PI{E), P) = Carc(Care(S, Py ), { Lp ) = Care(E, { £20
Lp)) = CarelX, 7).

Now, Care( PI(E) U{C}, P) = p Thp(p Thp,(5) U {C}) = u Tho(Th(E) U {C}) =
Care(x U {C}, P).

The lemma follows immediately by Delinition 2.4 (1). O

Proposition 3.7 Given PI(Y) and a clause ¢, PI{E U{C}) can be [ound incrementally:

Plig) = {pv-p|peAd}, and
PIZUA{C}) = wu[PHE)U Prod(PI{E),C,P,)].

Proof: The proposition follows by setting P to P, in Theorem 2.14 and by using
Theorem 2.12 and Lemma 3.6, O

By Proposition 3.7, the prime implicates can be incrementally constructed using every clause
as a top clanse. Thus the transmitted clanses ¥ can he substituted for PI(X). When a clanse
is newly added, we just need to add the theorems deduced from PI{¥) with top clause O and 1o
remove the subsumed clauses. The computation of all prime implicates of & by Proposition 3.7 s
much more efficient than the brute force way of resolution proposed briefly by Reiter & de Kleer,
which makes every possible resolution until no more unsubsumed clauses are produced .

3.2 Comparing the Interpreted/Compiled Approaches

Reiter & de Kleer [20] also consider the trade-off between the compiled and the interpreted
approaches. ln the former, the computation of F/(X) is very expensive, hnt reirieval is then
efficient. In the latter, the CMS's database is kept as it is; the price we have to pay is a high
retrieval cost. Now let us consider efliciency problems compared with such approaches. The se-
rious problems are either commputing supports with au uncompiled theory or compiling a theo .
Each computational complexity is exponential. Proposition 3.7 shows that the interpreted ap-
proach is a particular case of the compiled one. The question is how efficiently will the algorithm
work with a non-compiled theory.

In the CMS, the relative efficiency of the algorithm as compared with a brute-force algorithm
commes from the restriction of resolution, as the key problem Lere is to generate as few as possible
subsumed clauses together with making as few as possible subsumption tests.

But there is another interesting production field that offers an intermediate alternative to
the compiled/interpreted disjunctive. The original theory ¥ can yet be simplified, computing
its reduction by replacing it with the set of sub-clauses implied by L.

Reiter & de Kleer [26] also briefly alluded to more disciplined ways for computing prime implicates and
announced that they would be considered in the full paper, which has not been published yet.
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Definition 3.8 The reduction of a set of clauses ¥ is:  Reduced(¥) = Care(¥, Pr), where
Pr = (A%, subclause of clauses of 1),

Proposition 3.9 For any stable production ficld P,
Neweare( S, C,P) = Newearel Reduced(X), C,P) .

Proof: It is easy to show that Care{ Reduced(X), P) = Care(X, P). The proposi-
tion can be shown to hold in the similar manner to Lemma 3.6, O

Note that Pp 15 a stable production field. The original sel £ can be reduced Lo a greal
extent; computation from Heduced{X) will be much more efficient than from Y. For example,
the set { a, —aVv b} will be reduced to { a, b} (in this case producing the sub-clause is equivalent
to saturation). However, {a V¢, —a Vv b} contains all the sub-clanses implied by it and thus
cannol be simplified, while the saturation would have added bV c.

4 An Extended ATMS

In de Kleer's versions of ATMSs [4, 5, 6, 7], there is a distinguished sel of assumptions A C 4%,
One of the most generalized versions of the ATMS can be considered as a CMS with assumplions
as described 1n Definition 1.1, Thercfore, based on Theorem 2.6, an ATMS can be delined as a
responsible system for finding all the minimal explanations (called the label) for the queries:

Definition 4.1  An ATMS is a triple { N, A, B}, where N © A% s a set of literals, nodes,
AT N is a set of literals, assumptions, and ¥ is a set of clauses all of whose literals belong to
NU - N, justifications. 'I'he label of n € N with respect to (N, A, ) 1s defined as:

Lin,A,X) = = Newcarc(E,-n,P), where P={--A).

The following properties [4, 6] hold for the label of each node n € N with respect to an
ATMS (N, A, £} given by Definition 4.1:

Proposition 4.2 Let (N, A, &) be an ATMS, n € N a literal, P = (- A).

(1) Label consistency: for cach E; € L(n, A, E), ZU{F.} is satisfiable.

(2) Label soundness: [or each F; € L(n, A,X), EU{E]} Fn.

(3) Label completeness: for every conjunct E of assumptions in A, if Z U {E} & n, then
there exists E; € L(n, A, X) such that E, is a sub-conjunct of E.

(4) Label minimality: every E; € L{n, A,X) is not a super-conjunct of any other element.

Proof: By Definition 4.1 and Theorem 2.6, E; € Lin, A, E) is & minimal explana-
tion of n with respect to ¥ and A. Therelore, these four properties obviously hold
by Definition 1.1. O

In the same way as the CMS, we will consider the following two problems, that is, abduction
and saturation, concerning the computation of the labels of the nodes with respect to an ATMS:
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. Generating labels. Given au ATMS (N, A, &), compute L{n, A, X} for some node n € N
from the original set £. This corresponds Lo the interpreted approach of the CMS.

2. Updating labels. Given an ATMS (N, A, £) and the current label L{n, A, T) of each n €
N, compute the new label L(n, A, SU{C}) of every n € N with respect to { N, A, ZU{C} ).
This corresponds to the compiled approach of the CMS.

4.1 Label Generation

Generating the label L{n, A, ¥} of a node n is straightforward by Theorem 2.12 and Defini-
tion 4.1. Moreover, a query is not restricted to being a literal of N in this case: for a general
formula, Theorem 2.13 can be applied by converting it to CNF.

Example 4.3 Let an ATMS be ({a, b, c,x, -y}, {z, -y}, { ~aV-bve, ~rv-bva, yvbvel).
Then the following deduction finds cs label {z A <y}

{0, 2¢). (O, ca Vv -bV[=e]), (B, cx Vv #pv[zalV —bV[=el), (~e [F]V ob v =e])
(=, y Vi v bl ), (e vy, [V IR

T'he question 15 how effectively consistency can be checked, that is, by testing whether a clause
S produced from ¥ + —-n and P = { = A) belongs to Thp(X) or not. A direct implementation
is to use a theorem prover, as we already know that 5 belongs to P, but theorem proving is
also possible in m.c.le resolution: ¥ | 5 iff Prod(X, S, P) = {O}. In this case, since we are
not interested in any produced clause from Y 4 =5 other than O, the production field P can be
replaced with { ¢ ) and Skip (Rule 5(a)i) will uever be applied. Thus, there is an mee.l refutation
from ¥ U {~5} iff there is an m.c.ls. deduction from X + =8 and (¢ ).

However, there is an another way for consistency checking that offers an intermediate ap-
proach between the interpreted and compiled approaches. Unlike with the CMS, the computa-
tion of C'arc(X, P) can be performed better as the search focuses on the restricted vocabulary
P if it is small compared with the whole literals A%, Having Care(E, P), consistency choecking
is much easier; 5 € 1'hp(X) iff there is a clause 1' € C'arc(X, P) such that 1' subsumes 5 ®. The
characteristic clauses Clare( X, { ~A ) ) are called unsubsumed nogoods in the ATMS terminology.
This checking can be embedded into an m.c.ls, deduction: Skip (Rule 3(a)i) of Delimtion 2.7
can be replaced with the [ollowing rule:

fa)i’. (Skip & Check) If F, U {/} belongs to P and is not subsumed by any clause

of Care(X, P), then the same as Skip.

Proposition 4.4 lf Skip & Check is used as Rule 5(a)i of an m.c.l.s. deduction instead of the
original Skip rule, then Prod(E, (", P) = Newcare(EZ,C, P).

SNote that even if we have Care(E, P), we cannot compute Neweare{Z,-n,P) from it in the same way
as Corollary 3.4 for the CMS, because in gencral for a stable production feld P, Newcare(E, O, P) £
Neweare(Care(E, P),CP). That is why for the compiled approach to an ATMS an another technique is
anticipated (see Section 4.2),
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Proof: Because every clause belonging to The(X U {C}) that is subsumed by
some clause in Care{X, P) must be pruned in a deduction sequence, every clause
produced from ¥ + (7 is not a super-clanse of any clause in Care(X, P) and thus
does not belong to Thy(¥). Hence, by Theorem 2.12, the proposition follows. O

4.2 Label Updating

I the compiled approach to an ATMS, the following result corresponding to Corollary 3.4 for
the CMS5 and to a generalization of [26, Theorem 7] holds:

Theorem 4.5 Let { N, A, ¥} be an ATMS, n € N a literal, and P = { =~ A).
Neweare(X,-n,P)={ P~ {n} | P € PI(E), n € P and P—{n} belongs to P }.

Proof: (2} Let P € PI(X]) such that n € I’ and P — {n} belongs to P. Then,
since P {n} C P, Y P—{n}. Sncene Pand X E P, YU [-n} = P - {n}.
Therefore, P {n} € Thp(EU{-n}) = Thp(¥). As P € PI{L) and n ¢ P, for auy
clause S C P {n}, U= SU{n}, and thus XU { n} £ S holds. 'T'his implies that
P —An} ¢ Carc(ZU {-n},P), and thus P - {n} € Neweare(¥, ~n, P} *.

(S) Let S € Newcare(E, m,P). As XU {-n} E 5, £ = 50U {n} holds. Suppose
that 3T &€ Th(E} such that T'C S0 {n} and that T — {n} belongs to P. Clearly,
L | T'U{n}. Now for any clause 5" such that 8 C 8, since T u {-n} £ 5,
L = S5'U{n} holds. Therefore, § C 7' C SU{n}. As nis aliteral, T = S. However,
S g Care(X,P), contradiction. Hence, S U {n} € PI(E). Replacing S U {n} with
F. we get the theorem. O

Theorem 4.5 shows that we can compute the label of a node from the prime implicates
of £. Therefore an approach may keep PI(%) and when a new clause €' is added we compute
PI{¥0{C}) by Proposition 3.7 for updating labels of nodes. However, compared with the CMS
many of the prime implicates are not siguificant for the task of an ATMS when the assumptions
A are relatively small, although their computation is extremely high. In such a case, we do
not want to compute all the prime implicates. Fortunately, we can compute a subset of PJ{E)
enough to give labels by using the following stable production field:

Definition 4.6 Given an ATMS (N, A, £} and a production field P = {=- A}, a production
field P* s defined as;

P*={=-AUN, the number of literals in N—=-A is at most one ).
Since P* is stable, Care(Z, P") can be constructed incrementally by using Theorem 2.14:
Care(XU{C}, P") = p[Care(E,P*) U Prod(Z,C,P")].

Here we only need to keep ¥ and Carc(E, P*). Looking further at Definition 4.6, the relationship
between Care(X, P*) and Care(E, P) can be shown exactly in the next lemma:

“Note that in this direction n need not be a literal in N the relation holds for a elause C:  if P € PI{YE,
CC P, and P - ( belongs to P, then —- (P — 7} is a minimal explanation of ¢ with respect to © and A, This
result corresponds o a generalization of [26, Theorem 3 for a general P.
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Lemma 4.7 Carc(X,P*) = CardX, P)U{ SU{n}ine N—-4 and 5€ Newcarc(X, -n, P) |.

Proof: Clarc(X,P*) can be divided irto two disjoint sets of clauses: (1) containing
no literal in N — - - A, and (2) containing exactly one literal in ¥ — - - 4. The
former is exactly Clare(X,P). Assume that (' belongs to the latter set, and that
n € (' is a literal in N ~ =- A, Then, ' —~ {n} only contains literals in = - A
and thus belongs to P. We must show that ' — {n} € Card(E U {-n},P). Since
CcCarelE.P), EE C and thus & U {—m} = C - {'n,}. Suppose Lo the contrary
that 35 € The(XU {-n}) such that § € O —{n}. Then, SU{n} C Cand SU{n} ¢
The(¥) by the mnimality of O € Thp(X). Since ¥ E SU {n}, EU{-n} E 5.
contradiction. Therefore, C — {n} € Care(Z U {-n},P). Since O € Care(E, P),
obviously C — {n} & Carde(E, P) holds. Hence, the lemuma. O

Therefore, the knowledge base can consist of the justifications ¥, unsubsumed nogoods
Care(¥,P), and prime implicates meutioning one node n € N—=- A with the negation of
an element of its label. No other primme implicates are necessary. Having Carc( X, P*), we can
find the label of each node n € N easily as follows:

Theorem 4.8 let (N, A, £} be an ATMS, n € N, P={—--A4), and P* the same as Defini
tion 4.6,

nblS€Care(E,P), andne S} f neN-—=-4
fn}|ScCarelE,P),andne S} il ne Nin=-A

Proof: (2) Obvious from I'heorem 4.5 and Lernma 4.7.

(C) Let T ¢ Neweare(S,~n,P). By Theorem 4.5, T U {n} € PI(E). (1) If
ne& N —--A then TU {n}] belongs Lo P* because T belongs to P. Therelore,
TU{n} e Care(X,P*). (2)Ifne NN =-A, then TU {n} belongs to P. Therelore,
Tu{n} € Care(E,P). O

Note that in the second case of Thevrem 4.8, Care(E,P) € Care(Z, P*) holds. This
means that for n € - A the label of n is computed [rom unsubsumed nogoods containing
nif n € N. For updating the knowledge basc when a new clause € is added, again we just com-
pute Clare(X U {C}, P*) from the previous Care(Z, P*) incrementally by using Theorem 2.14.
Since this computation guarantees the completeness of characteristic-clause-finding, the four
properties of the ATMS labels in Proposition 4.2 arc also satisficd i this case. Note that the
u operation removes all the previous prime implicates thal are subsumed by some newly added
prime implicates. This operation is also crucial Lo guarantee the label consistency because impli-
cates subsumed by some nogood must be removed. We call Lhe procedure using m.c.l.s. resolution
based on Theorem 2.14 and Theorem 4.8 the full procedure for label updating.

Example 4.9 Suppose that an ATMS is ({a,b,z,y}, {z,y}, £) where ¥ = {aV b ~yVa}.
In this case Clare(X, P*) = XU { =2 Vz, =y Vy }. Now suppose that a new clause =z V —a is
added to £. Then the updating algorithm will ind b's new label z, as well as a new unsubsumed
nogood -z WV -y

(O, 2z V -a), (~z, 2a), {(~z, bv[za]), (-zVb [F])-
— (-2, ~yV[zal), (-zVv-y, [F4]).

g
Newearc(X, -n, P} = { } -
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We thus see that Care(X, P*) can be used for giving labels for nodes. To maximize efficiency,
however, it can be used also for caching the result of the production to be utilized later as the
bypass of resolution for the next updating. In the next section, we describe how the updatin o
algorithm can be modificd for this purpose and still establish the label completeness for various
ATMSs [4, 5, 6, 9], and the correspondence of the modified algorithm with de Kleer's label
updating algorithns [4, 6]. '

4.3 Optimization by Bypassing Resolution

In Section 4.2 we showed that the full procedure can update the label for each node n € N from
the previous Care(X,P") and ¥ when a new clause (7 is added to ©. However in camputing
Care(E U {C},P*) in Theorem 2.14, some of the resolution in Prod(E,C, P} will often be the
saIne as ones in the previous computation of characteristic clauses. As we took grate pains Lo get
Care(X,P7), that information should be used in new deductions. This means that Care(S. P*)
is used not only for giving labels for nodes but also for caching the result of the production to
be utilized for the next updating. This leads us to introduce the following additional rule into
Step Ha of an m.cls. deduction (Definition 2.7).

5(a)iii. (Bypass) If [ € =N, then F,, = P: and R,,, is an ordered resolvent of o,
with a clause B, € Care(%, P*), where [ ¢ B, and B, ={~{} belongs to P.

'I'he resolvent Ry, obtained by Bypass salisfies f,01 = (B — {=I}) U (Q; — {I}). Since
L;— {1} belongs to P, there is a deduction from £+ (B;—{~{}) and P where all of literals arc
skipped. Since B; € Care(E,P*), I, —{~l} € Newcare(Z,l, P) by Theorem 4.8. Lhis implies
that the deduction is also obtained from ¥ 4 [ and P by the completeness’ of m.c.ls. resolution
(Theoren: 2.8 (4)). Conversely, if a clause T is derived by an m.c.Ls. deduction from ¥ 4 [ and
P, then there exists a clause S in Care(E, P*) such that =1 € § and that S—{=1} belongs 1o P
and subsuwes T’ That is why Bypass works as the saving of computation.

lo maximize efficiency, however, Resolve (Rule 5(a)ii} and Bypass (Rule 5(a)iii) should
be exclusively applied. The easiest and the most efficient way is to apply Resolve only when
Bypass cannot be applied. In this casc, Step 5a in m.c.l.s. deduction { Definition 2.7) is changed
to the following rules:

Sla)i’. (Skip’) If F; U {l} belongs to P*, then the samc as Skip (Rule 5(a)i).

S(a)i’. (Resolve’) If g =N, then ¥, = P, and R,,, is an ordered resolvent of
(J; with a clause B, in ¥, where the literal resolved upon in Q‘i is [

hajiii'. (Bypass') If { € = N, then the same as the above Bypass.

Note that agam Skip is not exclusive to other two. The problem of this method is the in-
completeness. The reason is that Bypass is complete only for m.c.l.s. deduction from & + €
and P, not P*. We call the procedure based on Theorcm 2.14 and m.c.l.s. resolution with this
modification the less-complete procedure for label updating.

Example 4.10 Suppose that an AIMS is { {a,b, 2,3}, {z,y}, £} where ¥ = {aV h, -y V a}
(the same as Example 4.9). When a new clause ~z v —a is added to £, the less-complete
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alporithm cannot find b's new label z. but the full algorithm finds it by resolving —r Vv —a with
aV b as:

(O, 2z vV —a), {—z, 2a), (—z, bV[-a]), (—zvb [Fd]).
A new unsubsumed nogood —x v -y can be found in this case by both algorithms:

(O, 22V =a), (=2, =a), (=2, =y V[5al), (~2V ~y, [F])-
However, if a next new clause —bis added to £ U {—rV —a}, the less-complete algorithm cannot
find a new unsuhsumed nogood —r.

In some cases, the less complete algorithm is complete for label updating. The completeness
depends on how to build an A1TMS, that is, how to choose the elements of N and A from AT,

Example 4.11 Suppose that an AIMS be { {a,b,—b, z, ¥}, {z,y.b,-b}, ¥) where ¥ is the same
as the previous example. This tiine the less-complete algorithin is complete for label updating
because Neweare( X, —a, P) = {b} holds and thus Bypass’ is applied to —a making an deduction
continue {but the resull is the same as the application of Resolve' in Lhis case).

The last example suggests that we should find a class in which the less-complete algorithm
is complete for updating the label of every node. And more Resolve is applied, more complete
the algorithm is. Therefore, we should change the condition of Bypass and apply Resolve to
some literals in —=- N. We can show a sufficient condition for that.

Definition 4.12 Let N be a set of hiterals. A clause is N-Horn if it is either of the form
=y Voo W e VO or of the form —oq V- - W —ong, where o, € N A2 0 and 72 N,

Lemma 4.13 Let (N, 4, X)) bean ATMS. If (1) ¥ is a set of N-Horn clauses, {2) N1-N C A
holds, and (3) { is a literal belonging to =N — N, then Prod(¥X,[,P*) = Prod(¥, I, P).

Proof: (2) Obvious from Definition 4.6.

(C) We will prove that if T is derived from £+ 1 and P*, then there is an m.c.ls. de-
duction of § [rom E+1 and P such that § € T. Firstly, in case that Skip (Rule 5{a}i)
is applied for | € =- A, [ s deduced. As [ belongs to P, | € Pred(X, [, P) holds.

Otherwise, Hesolve (Rule 5({a)ii) is applied. Let B = —a; V- -V =y V =l be a side
N-Horn clause from ¥, where a; ¢ N (1 £ ¢ < k). Notice that =/ ¢ N — =N, Since
Nn=-NCA Nn(~-N-=A4) = ¢ holds, and thus o; § =- N — A, Therefore,
a; e N — =N, and thus =g, € =-N — N,

Now, every first literal {; of ordered resolvent (jj- in each step satisfies the condition
l; € =- N — N. Applying the above argument for [ to [;, we can show that every
produced clause F; belongs to P. Hence, the lemma holds. D

The second condition N M =N C A means Lhat if both a propositional symbol p apd its
negation —p are in NV, then they must be put into assumnptions A. Notice that aVbis not N-Horn
for Ny = {a,b,z,y} (Example 4.10) but 15 N,-Horn for Ny = {a, b, -b, 2,3y} (Example 4.11}.
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Theorem 4.14 Let (N, A, £) be an ATMS. If (1) ¥ is a set of ¥N-Horn clauses, and (2
-

N =-N C A holds., then the less-complete algorithm replaced the conditions of Rules 5{a)ii
and G{al)iii’ by the following 1= complete for updating the label of every node in V:

Sla)ii”. (Resolve) If I ¢ - N — N, then the same as Resolve.

S{a)iii”. (Bypass”) [ [ € =- N — N, then the same as Bypass.

Proof: We will firstly prove that every deduction by using the above algorithm can
also be obtained by an m.c.Ls. deduction. The Bypass” rule tries to find a clause B,
in Care(, P*) that contains =, where | € +-N—N. Since in this case e N——A,
B,—{-1} € Neweare(X, 1. P) by Theorem 4.8. Therefore, Bi={=l} is m.c.Ls. derived
from & + [ and P by the completencss’ of m.c.Ls. resolution {Theorem 2.8 {4}]: in
fact, since (B;—{—1}) belongs to P, there is a deduction from £+ (I;—{~1}} and
P where all of literals are skipped. By Lemma 4.13, it can be also m.c.Ls. derived
from ¥ 4 [ and P*.

Conversely, let ' be a clause newly added w £, We will now show that if a clanse 7
is m.c.l.s. derived from ¥ + ' and P, then there is a deduction by using the above
algorithm of a clause § from £ 4+ ¢ and P such that § € T. With these facts,
the theorem holds due to the completeness result by Thearem 2.13 and the result of
label finding by Theoremn 4.8,

Now, let T ¢ Prod{¥,C,P*) be a clause in C'are{ZU {C'}, P"). By Lemma 4.7 and
Theorem 4.8, if 4= £ N——- A4 such that -1 € T, then T—{=l} & Newcarc(Z, I, ).
Note that in this case [ € =-N—N holds, because by the condition (2) VN =N C A,
(+N—A)— (=N N)=(NN-=N)—A = ¢ holds. Then, there is an m.c.Ls. deduction
of T'—{~I} from £ + ! and P {by Lheorem 2.8 (4)). By Lemma 4.13, T—{~[} €
Prod(E,1. P} implies T—{ -1} € Prod(%,1,P"). Such { must appear in a deducticn
using the above algorithm, and Bypass” can be applied. If 3-{ € N1 —A and thus
<l g N—=-N. then [ can be resolved upon by the modified algorithm. Therelore, T
is also derived by the above inodified algorithm. Ilence, the theorem. O

We call the procedure used in Theorem 4.14 the modified less-complete algorithm for la-
bel updating. Now let us verify how our modified less-complete algorithm establish the label
completeness for various ATMSs. The following is the reconstruction of various ATMSs:

Let { N, A, ¥) be an ATMS. Recall that N € A* and A C N.

1. The basic ATMS [4]. In this case, N = A and X is a set of Horu (.A-Horn) clauses, Since
An=.A=¢, the algorithm is complete. The conditions of Rules 5(a)i" and 5{a)in” are:
if | € =4, then Bypass; otherwise, Resolve.

2. The negated assumption ATMS (NATMS) [6]. In this case, AC A, N = AU--Aand &
is a set of N-Horn clauses. Since N =-N = AU~ A € A, the algorithm is incomplete,

3. The ertended basic ATMS [9]. In this case, A = A; U~ A; where A; C Aand A; C A,
N = AU—-A,, and ¥ is a set of N-Horn clauses. Since NN—N = AU=-A; € A, U~ As,
the algorithm is incomplete.
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4. The CMS [26]. In this case, N = 4 = A% and ¥ is a sct of general (A*-Horn) clauses.
Since NN —-N = N = A* = 4, the algorithm is complete. The conditions of Rules 5(a)ii”
and 5{a}iii"” coincide with one in the full algorithm, that is, the original one of m.c.l.s. res-
olution (Definition 2.7): for any [, apply Resolve.

Example 4.15 Y is the same as Example 4.10.

(1) Let Ny = {a,b,~b,z, =z, y, -y} and A = {z,y,b}. This is an NATMS selting as a v b is
N3-Horn, and is incomplete (N3 N —- Ny = {b,=b,z, -z, y, -y} € A). In fact, ~a € =- N3 = N;
cannot be resolved upon with a v b in the algorithm.

(2) Let Ny = {a,—a,b,-bz,~z,y, -y} and A = {z,y,a,b}. In this case an NATMS is complete
even though Ny N =Ny € A In fact, =- Ny — Ny = ¢ holds, s0 —a can be resolved upon.

The above example shows a way for an NATMS to be complete for label updating in our
modified less-complete algorithm. If a literal { € =- V is expected to be resolved upon, then (1)
[ should be put into N (I ¢ - N = N}, and (2) =l € A should be put into 4. This technique
corresponds to de Kleer’s “encoding trick™ [6]. In the similar manner, Dressler [9] preposes
a way for an ATMS to be complete. Instead of the above (2), Dressler requires for a literal
[ € =N Lo be resolved upon that (2) I € ~- A should be put into —=- A; € A. Note that
auxiliary assumptions introduced to obtain the label completeness are used only for intermediate
compulalion and should be ignored in the result.

The correspondence of less-complete algorithms with de Kleer's label updating algorithms
[4, 6] is the [ollowing:

e The knowledge base is the same: N-Horn justifications ¥, the complete unsubsumed
nogoods Care(X, P), and prime implicates mentioning exactly one node with the negations
of an clement of ity label.

» The Bypass and Skip operations correspond to de Kleer’s incremental construction of a
tentative new label for each node, which is a union of previous or propagated new labels
of antecedent nodes in a justification.

e The Resolve operation corresponds to de Kleer's propagation of a new label of a node to
other nodes through justifications which contain that node in their antecedents.

e As in the full algorithm in Section 4.2, the y operation is erucial to guarantee the label
consistency and the label minimality.

In spite of Lthese similarities between our less-complete algorithms and de Kleer's, there are
still differences: the NATMS algorithm [6] is still less complete. This is because de Kleer’s
algorithm does not precisely depends on Theorem 4.14 and the application of Resolve is more
restricted (bul Bypass is more applied). This is verified by the nexi example:

Example 4.16 Suppose that an NATMS is {{a,z, -z}, {2}, &) where ¥ = {2V a}. When
a new clause -z V a is added to X, the NATMS algorithm cannot find a's new label {}. Since
—-r € N and r € A4, -z should be resolved upon with z V a. In our modified algorithm, it
is surely resolved. However, de Kleer's algorithm does not resolve it, because it restricts the
application of the propagation only to literals in N — =~ A = {q,z}.
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5 Nonmonotonicity and Skepticism

This section gives some semantical consideralions on an extended ATMS. The semantics of
ihe ATMS is close to the notion of minimization '°. Each assumption is to be maximized in an
explanation process. Maximization of a proposition p is equivalent to minimization of —p. Given
an ATMS (N, A, £}, we can think of a minimal model of ¥ with respect to A which satisfies
a maximal consistent set of assumptions (called an inferpretation in the ATMS terminology
[5]). We can define the equivalence relation on such minimal models of ¥ according to each
interpretation. and call an equivalence class an A-ertension ol ©. Obviously, the label of n € N
is not empty iff 7 is satisfied in every model in an A-extension.

In an extended ATMS (N, AjU—4s, B} where 4; C A and Ay € A (Dressler’s setling [91)-
A, is to be maximized and Aj; is to be minimized. Given some sct E of assumptions, Dressler
defines an A-extension whose every model satisfies all of E and as many negated assumplions
from —- A, as possible. He requires that a node n should be satisficd by every model in such
an A extension to conclude that n holds in . This is a weak form of nonmonotonic or closed-
world reasoning. However, it is even reasonable for us 1o predict a formula il it is satisfied by all
minimal models of ¥ with respect to A. This inference is called skeptical, and is a preferentiai-
models approach to nonmonotonic reasoning [27]. We will consider an implementation of this
skeptical inference in an ATMS later in circumscriptive theorem provers (Section 6.3).

Notice that in the above ATMS, the intersection of 4; and A, represents the fired propo-
sitional symbols and A — (A; U A;) represents variables. It is interesting to note that in the
CMS [26] all literals are fixed (4, = A; = A), so that every model of ¥ is a prelerred model
and preferential entailment is equivalent to ordinary entailment. That is why the CMS cannot
handle nonmenotonic reasoning,.

Fxample 5.1 This is an example where Dressler’s ATMS can behave itsell nonmonotoui-
cally. Let ¥ = {~r 2 a ,~a D b}. If we regard ncgations in antecedents of justifica-
tions as out-lists, assuming = causes a’s outness aud thus makes b in. By Definition 3.1,
MS(E,{b}) = {~b, =a}. Hence, & cannot explain b in the CMS. However, let an ATMS
be ({z.-z, a,—a,b}, {r,~z,~a}, L). Then, given the assumption {r}, we can find an only
minimal model {z,-a,b} of ¥ U {x} and thus conclude that b holds in {r}.

6 Related Works

Iu this section, we compare our characteristic-clause-finding procedure to prool procedures of
various abductive and nonmonotonic reasoning systems. The notions of production fields and
(new} characteristic clanses are very helpful in understanding the relativuships between them
and in reconstructing them in our simple and general formalism.

Dressler [9] and Junker [14] discuss the nonmonotonicity problem that requires each label to he grounded
[8]. In our formulation, the groundedness cannot be handled, as we only implement negated assumptions which
differ out-lists of Dovle’s nonmonotonic justifications. It is impossible Lo express the outness in propositional
logic. To obtain the groundedness, we must add some external mechanism to a deduction procedure such as
Dressler’s and Junker's systems., Therefore, instead of pursuing the groundedness, we relate a nonmonotenic
ATMS with the notion of minimization.
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6.1 Saturation

Bossu & Siegel [1] define a closed-world reasoning called sub-implication, whose notion is similar
{but not equivalent) to Minker’s generalized closed world assumption (GCWA) [21] for propo-
sitional theories, in which all ground atoms are to be minimized. Their saturation procedure
finds Care(X, P) where the characteristic literals Ly are fixed to positive ground literals (see
Example 2.3 (2]). However, it does not use C-ordering, but uses an carlier version of resolution
method based on A-ardering [16]. Moreover, their method to compute Neweare(X,C,P) is a
naive implementation of Definition 2.4. Note that those versions of CWA can be generalized to
allow for variable and fixed predicates as well as minimized predicates, that is, circumseription
of ground theories.

Kean & Tsiknis [15] extend Tison's [31] consensus method of producing prime implicates
to generate them incrementally. In our framework, the corresponding result is illustrated in
Proposition 3.7. The difference is that their method is based on a set-af-support strategy, where
subsumption checking is performed al each resolution step., while ours uses linear resolution and
thus naturally has more restriction strategies that Kean & Tsiknis manage to incorporate for
optimization.

De Kleer [7] introduces hyperresolution rules to pre-compile a set of clauses X, all of which
are cither positive or negative. This technique is also given in [5] in more general form. An
interesting approach in [7] is to use a rule limiting the inference only to negative clauses below
a size k. The negative clauses of the resulting set closed under these rules and subsumption are
the characteristic clauses Carc(E, P) where P = { ~. A, below size k) (see Example 2.3 (3)).
In our formulation, instead of using hyperresolution, linear resolution can be used to produce
such characteristic clauses for any clause set ¥ and any characteristic literals Ly € AL In
practice, this size-restriction is very useful for minimizing the computational offort, because it
canses earlier pruning in m.c.ls. deduction sequences.

6.2 Abduction via Deduction

There are many systems for logic-based abductive reasoning. However, many systems [22, 10, 25]
other than [24] do not require minimality of explanalion. Here we shall compare our method
with those systems on matters other than runimality.

Pople [24] proposed the mechanization of abduction via deduction based on SL-resolution
[17], with “synthesis” operation which corresponds (o our skipping operation. Pople also incor-
porated the notion of simplicity as a criterion [or selecting appropriate hypotheses. However,
his system does not distinguish literals, that is, the production field is fixed to P,, and “hy-
pathesizes whatever cannot be proven”. This criterion is also used by Cox & Pietrzykowski [3].
It can be implemented if Skip (Rule 5(a)i) is preceded by Resolve {Rule 5{a}ii) and is applied
only if Resolve cannot be applied in Step 5a of an m.c.ls. deduction (Definition 2.7).

Finger [10] gives residue procedures for abductive reasoning where assumptions are restricted
to only atoms. His “ordered residue™ is similar to our linear method but is restricted to handle
only Horn clauses. His “resolution residue” uses set-of-support resolution. As Finger men
tions, the completeness result is a variation of Minicozzi & Reiter [20], and therefore excludes
m.c.l. resolution. Thus, our linear method, which introduces more restriction strategies, is morc
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efficient than Finger's procedure.

Poole’s Theorist [23] performs an incremental consistency checking. Instead of failing to
prove the negation of an explanation, Theorist tries to prove the negation of each hypothesis
in the explanation from the facts and from the previously assumed hypotheses as long as they
are consistent with the facts ©. Thus consistency checking is being done in the process of
deducing new theorems. In our system, if Care(X, P) is computed, this checking is reduced to
subsumption tests so that it can be embedded into deduction too (see Proposition 4.4).

6.3 Query Answering for Circumscription

Przymusinski [25] defines MILO-resolution, a variant of OL resolution [2], which is used in
his circumseriptive theorem prover. MILO-resolution can be seen as m.c.ls. resolution where
the characteristic literals Lp arc fixed to the positive occurrence of minimized predicates and
any ocenrrence of fixed predicales in circumscription policies. Inoue & Helft [13] discuss this
relationship in detail and how the efficiency of MILO-resolution can be improved. Every ruery
answering procedure for cirenmseriptive theories is based on the following proposition:

Proposition 6.1 [25, 11, 13] Suppose that Lp is the same as in the above description ard Lhat
P = {Lp). Every circumscriptive minimal model satisfies a formula F if and only il there 1s @
conjunet & of clauses of [ Thp{SU{=F}) = T'he(L) ] such that [Thp(XU{=G})=Thp(Z)] = o

There is a big difference between MILO-resolution and Lthe ATMS. In Proposition 6.1, to get
theorems in [The(X U {("}) = The(E)] for some clause C, MILO-resolution does not actually
compute Neweare{2, (7, P). while the ATMS does, as there is a sct smaller than the whole set
that can be nsed to answer a query. Let us divide the produced clauses from X 4+ € and P
possibly containing subsumed clauses into two sels, say 51 and 52, such that ¥ U 51 = 52,
Then adding S2 to S| does not change the models of the production. I'hus only 51 needs 1o
be computed model-theoretically''. We call a set 51 verilying this condition a precursor of the
production. Note that a clanse in a precursor is not always a prime implicate of X. MILO-
resolution computes such a precursor, because when the first literal belongs to Le in Step 5a
of an m.c.ls. deduction (Definition 2.7), only Skip (Rule 5(a)i) is applied. On the contrary,
since the CMS and the ATMS are nsed for computing all and only minimal supports for a
query, if the literal resolved upon belongs to Ly, they apply cither Skip or Resolve'?. Thus a
precursor-finding algorithm can be written by ordering two rules in Step 5a in the reverse order
of the criterion that “hypothesizes whatever cannot be proven”, as follows:

5(a)i". (Skip & Cut) If P, U {l} belongs to P, then the same as Skip {Rule 5{a)i).
5(a)ii’. (Resolve') Otherwise, the same as Resolve (Rule 5(ajii).

Theorem 6.2 If a clause T iz derived by an m.c.l.s. deduction from £+ C and P, then there is
a deduction with the Skip & Cut rule of a clanse S from £+ C and P such that SU{S} = T.

""However, not all of 51 are still the relevant parts needed to determine that I is in the circumscribed theory.

The detailed discussion is given by Helll, Inoue & Poole [12].
12§ince Ginsberg's circumseriptive theorem prover [11] is based on a backward-chaining “plain ATMS”, it may
produce more clauses than MILO-resolution. For more detailed discussion, see Inoue & Helft [13].
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Proof: Let Dy, Dy, -, [, be an m.c.ls. deduction of T from & + € and P. Let
[, be the first literal of (.i-, where D, = ( P, (j,} and 0 <3 <n — 1. Firstly, if Skip
is applied for every I; (0 < j < n — 1) such that [, € Lp, then T is actually derived
from ¥+ C and P by using the Skip & Cut rule, and of course LU {T} &= T holds.

Next, suppose that 30); in the m.c.l.s. deduction such that l; € Lp but that Resolve
is applied upon I; in ; with a clause B; ¢ E. Let m {I < m < u) be the
number of such clanses, and [); be such a clause where & (0 < k& < n = 1) is
the largest number. In this case, Dy, = ( Py, Q;_,_l}. where Fiy = P, and
Hisy = (By — {=I })U(Qx — {&}). In the following proof, to simplify the discussion,
we assume that there are no identical, truncated, or reduced literals in Ry if
they exist, then we can modify the proof appropriatcly. Now, let [7 he a clause
m.c.ls. derived from E 4 (B, — {-l}) and P, V a clause m.c.l.s. derived from
L+ {@x—{l}) and P. Here, we can choose such I/ and V' to satisfy T = P, UL/ UV,
because T is m.c.ls. derived from ¥ 4 (Phyy U Riyy) and P.

Now assume that instead of applying Resolve, Skip & Cut is applied to /),
deducing D}, = {P,,, @i, ). where Figy = Fou{lh} and B, = Q. — {1}
Then, By U {lg} UV is m.cls. derived from £+ {P[,, U R},,) and P, and thus
from £ 4 ' and P. Since XU {L} = By — {=4}, SU{l} = [/ holds, and thus
SU{(FU{LIUV)) E T holds.

Now let Ty = 1" and 1 = (P U{L} U V). In the similar way, we can find an
m.c.Ls. deduction of T; from 4" and P such that ¥ U {Ty} &= Ty, by resetting & to
the second largest number. By using the bottom-up manner, we can successively find
clauses 15 (1 < j < m) m.cls. derived from £+ € and P such Lhat TuT,} =T,
Therefore, Y U{T,.} | Ty, EU T3} = T gy -+, ZU{TY} E To. Hence,
YT} E Ty, and we get the theorem, O

Therefore, if we need only a precursor, instead of computing all the Newrare, we can use
the above modification of m.c.ls. resolution. This modified procedure can be used in a proof
procedure for skeptical inference in an extended ATMS (N, A; U= A,, ©) where 4, C A4 and
Az € A, which answers whether or not a formula is satisfied by every preferred model [27] wf =
(see Seclion 5).

7 Conclusion

We have shown a logical basis of procedural interpretation of abduction, the CMS and the ATMS
based on linear resolution. The Skip rule can be safely embedded in linear resolution strategies
making characteristic-clause-finding complete, due 1o the stability of production fields. While we
uscd the description of OL-resolution as the definition of our linear resolution procedure, Skip
can be applied to other, superior versions of propositional linear resolution, such as Shostak’s
graph construction procedure [28], and further improvements on these methods can be used to
improve efficiency still more. We should also note that the control of inference can be made to
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the production in various ways as breadth-first or best-first scarch 12]. integration of top down
and boltom-up strategies [10], reordering subgoal trees [29], and others.

We have also analyzed both the interpreted and compiled approaches to the CMS and an
extended ATMS. To find conditions in which the Resolve rule is replaced by the Bypass rule
in an extended ATMS with maximum efficiency but without loss of completeness for general
torm of theories is one of the goals for future discussion.

Using the methods described in this paper, many Al techniques such as preferential-models
approaches to nonmouotonic reasoning and conslraint satisfaction problems, as well as direct
applications of abduction or the ATMS. may be helped on the way to hetter implementation.
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