ICOT Technical Report: TR-545

TR-343
“(Go Generation™ A Go Playing

System

by
N. Sanechika (AIR)

April, 1990

© 1990, 1ICOT

Mita Kokusai Bldg. 21F (03) 456-3191~5
" :O | 4-28 Mita 1-Chome Telex ICOT] 32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

“Go Generation” A Go Playing System

N. Sanechika*
Iilectrotechnical Laboratory of the Agency of Industrial Science and Technology
H. Oki S. Yoshikawa! T. Yoshioka S. Uchida
Future Technology Laboratories Inc. Institute for New Generation Computer Technology

November 10, 1988

Abstract

This report is an introduction to the research and development of the Go playing system
GOG (Go Generation) in the Fifth Generation Computer Systems Project. The purpose of
this research is to pose basic problems of search problem solving, to resolve ambiguities, to
transact exceptions, to develop cooperative problem solving in the Al field, and to find new
approaches to conquering difficulties through the development of the Go program. GOG has
been developed as part of the intermediate stage of the Fifth Generation Computer Systems
Project. A working group, the Al scholars’ organization, has been established as an adviser,
and this research has been conducted jointly with it and the Electrotechnical Laboratory of
the Agency of Industrial Science and Technology of MITI . We have been trying to simulate
the human player with some themes of Al In February 1987, a prototype that could finish the
game was developed. Since then, we have been modifying the system and have transferred it
from PSI-I to PSI-II. Now the system runs much faster, fast enough to play Go.

1 Introduction

Programming Go includes some basic subject which are the core of AL It is possible to rate how
well the new programming languages and computer systems can solve Al problems by researching
and developing Go programs. Also, simulating human thinking on the computer may lead to a
new approach to solving Al problems. Compared with Chess, Go has a vast search space, so
the search must use the knowledge database efficiently rather than use simple search oriented
methods. Consequently, we consider that programming Go provides a good case study which
requires unconventional ideas and innovative Al technology. To pase these basic Al problems is the
main reason why we selecied Go programming as part of the Fifth Generation Computer Systems
Project.
The following subjects are the main themes of research into Go programs.

1. Search: Extending the limit of the search’s paradigm

*Currently at Al Research Institute Ltd.
'Currently at NTT Data Communications Systems Co.

2.
3.
4.
.

We have adapted these themes, except learning, to GOG and explain them in more detail below.

Ambiguities: Managing the concept of ambiguities and introducing consideration of it
Exceptions: Dealing with new or unusual situations
Cooperation: Systematic integration of a cooperative system

Learning: Experiencing new things and extrapolating rules

(1} Search

(3)

(4)

Search is known as almighty method. In Al programming, search is one of the ba-
sic techniques. The mechanism of searching is to enumerate all candidates then find
satished answers. This method is called “generate and test” and sometimes causes a
combinational explosion. To avoid this problem, candidates must be well selected before
the test. It seems a bit like going round in circles, but selecting the candidates at many
steps makes solving overflow easier.

Ambiguities

The concept of ambiguitics and consideration of it can be defined as the main theme
of fuzzy theory. Ambiguities come from the nature of human being, Ultimately, fuzey
theory is subjected to qualitative and symbolic processing rather than quantitative and
numeric processing. Usually, scientific processing is determined as analytic processing,
S0 paiustaklng E].Ila.l_‘r"sis].L‘ildB to ti.lt' I].HEI.]. HLH;].I. HUWE\-"‘;‘.‘I‘ S0OINS h'l,lmm ﬂDTICﬂPL$ bewme
meaningless under such analysis, or cannot be found to exisi. Also, people’s Hmited
time and memory mean that they often make a decision without complete information.
Some absiractions of Go, such as Atsumi, and concepts based on them do not exist in
nature,

Exceptions

When a new situation occurs, human beings use their special body of knowledge and try
to fix the situation. to simulate this mechanism, it is necessary to distinguish a regular
situation and an irregular situation. An irregular situation can be either advantageous
or disadvantageous. If it is disadvantageous, the first thing to do is find causes. The
next thing to do is to prepare a couple of problem solvings for each cause. A standard of
judgement in an irregular situation is different from one in a regular situation. Generally,
a process in an irregular situation is under conditions that are more lax than those in
a regular situation. For example, to leave a room, we normally use the door. However,
if the door is jammed, we could try to get out through the window. As ways of getting
out of the room, using the door and the window have the same result. Generally, in the
irregular situation, the process has low efficiency and accuracy, so the process should be
done according to the regular situation. Namely, the simulation should be designed on
the assumption of many conditions. Experienced irregular events become known, and
in that sense regular, so this theme is closely related to the learning.

Gﬂo_pﬂra.ti on

When human beings face a problem without a standard problem-solving theory for it,
they closely examine all primary factors creating this problem, then try to make clear

2

the relationships between the factors. Like this, human beings cau organize parallel
phenomena systematically. In Go, by judging from their opponent’s last move and
possibilities of their own next move, human players decide their next move. At this
moment, they are organizing parallel phenomena systematically. For example, there
are targets A and B. If we try to eapture A and just work on it, we cannot capture
it. Also If we try to capture B and just work on it, we cannot capture it. However,
sometimes we have a chance to capture A while working on B. This example mentions
the truth of cooperative problem solving.

We tried to simulate a human player, bearing in mind the above themes. Our GOG is still
under development, so the lollowing is an interim report. Our research has been conducted since
1985, In that vear, developmenl tools for GOG were prepared. In 1986, the concept of GOG
was [ounded, and a protolype of GOG was created based on that, In 1987 and since, we have
worked on the elaboration of position recognition methods, the expansion of search and knowledge,
and the implementation of the cooperative problem solving system. The GOG program is about
40,000 lines long and is written in Extended Sell-contained Prolog (ESP) running on the PS1 { Per-
sonal Sequential Inference Machine} which has been developed at the Institute for New Generation

Computer Technology (ICOT).

2 Modeling A Human Go Player

Generally, the game tree search approach using the Alpha-Beta pruning method has been widely
adopted in developing two-person games with perfect information like Chess and Go. Research has
concentrated on the game of Chess, so the present level of Chess programs is quite high. However,
it has proved difficult to apply the search-oriented method for Chess to the game of Go, because
the search space of Go is far larger than that of Chess. So programming Go requires an entirely
new approach.

GOG is such an approach. It will simulate as accurately as possible the way the human player
decides moves,

The way a human Go player plays is roughly divided into recognition of the positions, search,
planning, and action.

{1} Recognition of Positions (Function of Visual Information Management)

In general, when someone plays Go, the function of visual information management
is very important. There is a remarkable tendency for recognition of the positions to
depend on it. The human player doesn't recognize the stones as being at coordinates
so much as as members of a group that has tactical and strategical significance. This
recognition evolves by experience or by learning from someone. The significant figures
of stone groups and the player’s learning process are stratified as the player’s knowledge

of Go,

In GOG, we use several of these groups of stones: point, string, group, and family. Also
linkage, which is recognized as a connecting line.

Let’s look at the process of forming these concepts. To play Go, the first thing to
understand is point. Beginners soon understand about capturing stones and escaping
from the enemy’s attack. So the concept of string, a group of stones in line, is invented.

(3)

After a little experience, the player notices that strings that have escaped will often be
captured inunedialely afterwords. This leads to the concept of group which may survive
as a set of adjacent strings. Following this concept or in parallel with it, the concept
of family is invented for a sphere of influence or a territory. Go is a game of territorial
warfare, the concept of family is easily understood from the beginning. But players
don't usually see how important it is until they have had a lot of experience hecanse
the concept of family is firmly related with typical Go strategies {such as KARAMI,
and MOTARE) rather than territories. The coucepl of linkage consists of empirical
knowledge, For example, if two stones are placed close logether, they can be connected
easily from the enemy’s point of view. Also linkage is recognized as the border line, so
enemy stones that invade the territory are cut off from commmunication with the outside
by linkage.

All the above concepts will have meaning only together rather than in izolation. The
human player recognizes these group shapes at a glance.

Search (Function of Fact Confirmation)

Sometimes an unstable place appears in a small area of the board such as a linkage
nearly cut, a group nearly dead, or two struggling groups. When sctilement of such a
place will change the balance of power in the game, reading moves is necessary. GOG
reads moves for the first and the second move. GOG decides whether the two moves
together will succeed or fail, all GOG has to do is revise data structures. If the first
move will succeed and the second move will fail, the game will turn into busy and the
first move will be rate highly. Tt is necessary to recognize the positions and look for
related candidates to read a move (such as “capture” or “cut”™) with a specified intention
in a local area. Methods other than reading maves, such as specified pattern matching,
cannot cover various kinds of changes. Bui reading moves costs a lot of memory and
takes a particulary long time. Nevertheless we adapt that method to GOG by limiting
it for local use and by not using it until the problem has been well eonsidered.

Planning (Funetion of Inference based on Ambiguous Knowledge)

In Go, there is no method to find the best move during planning because the algorithm
which always leads to a win hasn’t been found yet. The player chooses a proper plans
(for the player) from some possible plans and makes a decision based on foresight and
taste. The player chooses the plan most likely to malerialize and is expected that it
changes the balance of power in the game. But still there are too many candidate plans,
considering only these conditions. Actually, not all these candidates are examined. A
player seems to adopt a plan which is based on that the player remembers working in
a similar situation. Based on this idea, GOG introduces the concept of CASE which is
newly created by combining Go’s typical situations and their related tactics.

During planning, choosing between a plan which could gain a big advantage but for
which & series of actions has not yet been decided and one which offers less advantage
but has an exact plan of action is a gamble. Players generally think that the necessary
actions will become obvious after planning but this is not always the case. Making
a plan without any idea that materialize the plan is wasting time. Also deciding the
details of the actions during making a plan is laborious and takes a lot of time. Many
players takes the middle road by planning and devising a tentative course of action

4

simnltaneously. The accuracy of this course of action corresponds to the number of
candidates of the plan; the more candidates, the lower the accuracy. When there are
many candidates, the process of deciding the aclions takes several steps. At the end,
actions that are accurate enough are offered when planning is done. This is an expression
of the principle of iterative deepening recognition. In GOG, a set of actions (a candidate)
corresponds to a provisional actions in the [irst layer of iterative deepening.

Even if players decide a plan, the actiou for its realization is still not decided by a single
option. The plan always keeps open the possibility of optimization. When players are
deciding on a course of action, sometimes they find a good wav, but then find an aven
better one. In such a case, we don’t stick with the first course of action.

(4) Action Structure (Function of Systematic Complex Phenomenon Integration)
Human players use methods of structuring a course of action that is different from the
game tree search in lwo-person games with perfect information. Some characteristics
of that method are listed below.

o Object/Target Directional Read
The maximizing static evaluation function on a standard search is general aid
abstract, but human beings aimn at a definite object and lnok for it.

¢ Integration of Method Decision and Action Structure
Gradually, as explained in (3) above, ihe search narrows and a course of action is
pinpointed.

o Reading Different Moves Siinultaneously and Merging
Asscmbling prospects which haven’t been approved yet or a lew prospects, one of
which will be selected.

o Object/Larget Alternations Part Way through Process
Choosing a higher object or target than the present one, when the human plaver
finds one while reading moves.

3 GOG Program: Modeling A Human Player

To simulate funclious human player, GOG use the module structures illustrated in Fig.1.

3.1 Recognition of Position
3.1.1 Revision of Data Structures

Abstract subject on the board counstitule data structures. Revising data structures in incremental
revision means that the version is only implemented on those data structures that were changed by
the last move. This approach saves time, but involves complicated procedures. So when it is not
necessary to consider time, we use overall revision instead. Data structures of GOG are associated
with individual points, strings, groups, families and linkages. The various data structures are
represented in Fig.2.

— Play Mode
Miagram Editor

— General [/O ——————Edil Mode LPntent.ial Editor
Knowledge Fditor

— Analysis Mode

GOG— L . — Data Structure Revision
— Recognition of Positions —L

General Judgement

— Local Search

LMDW? Decision Local Adjustment for Candidate

[{Ta.ndida,te Frnumeration

Final Decision for Next Move

Figure 1: GOG Module Structures

Each object has some attributes. Here, we'll explain one of them, rate of siege, which is a
measure of the possibility of besiegernent. It is a rather ambiguous concept, but one of most
important factors for judging the vitality of groups.

Fig.3 shows black stones becoming surrounded by white. Placing one or two more whiie al
the upper side surrounds black completely. We have developed an approach like Fig.A so that the
situation can be recognized by a computer.

In Fig 4, the search is spreading from each stone in the group to the group’s DAME. The number
of apertures are defined as group’s DAME and 4th group’s DAME are defined as the rate of siege.
When the search reaches an enemy stone or blocked point, which is a point on enemy linkage, it will
be stupped. The search starts from the group which is nearly surrounded and rates the aperture
of siege,

In Fig.4 4th group’s DAME is 6, so the rate of siege is 6. The lower the rate of siege, the
stronger Lhe besiegement. Zero is a perfect siege. Every 4th group’s DAMEs’ positions will be used
by the search for the possibility of escape from siege.

The fullowing is the definition of the rate of siege written in ESP.

rate_of_siege(Go,E):-group dame(4,Go,Gds),size_of list(Gds,E);

group-dame(N,Go,Gds):-N>=1,!,group.dame(N-1,Go,Gds1),
group_dame_dame(Gds1,N,Gds);

group.dame(0,Go,Gds):-group _stone(Go,Gds);

group_dame_dame((],,[]):-!;

I Ohject H Main rule Function Main attribute -I

Point || Board confliguration Stone's location Color,contact point,
potential,candidates
String A unit which 1s alive Unit of capture Number of stones,
or dead simultaneously [DDAME points,

assigns life and death
Linkage | Supposed line between two points | Border of territory | Type of linkage,

of the same color or between a | unit of connection | type of connection
stone and the board edge

Group || A unit of the same color whose Unit of life and Number of stones,
stones are strongly conected death territory size,vitality,
rate of sicge
Family || A unit of the same color whose Unit of territory Number of stones,
potential has more than length territory size,
specified value strength importance

Figure 2: Position Data Structures and Attributes

group_dame_dame([Gd|Gds],N,Gdsn):-group_dame_dame(Gds,N,Gdsn1),
adjacent(Gd,AGds),spreadable(AGds,N,Gdsn2},
append(Gdsn2,Gdsnl,Gdsn);

spreadable([],_,[]):-!;

spreadable([AGd|AGds],N,[AGd|Gds]):-spread condition(AGd,N),!,
dame flags(AGd,N),spreadable{AGds,N,Gds);

spreadable([AGd|AGds],N,Gds):-spreadable(AGds,N,Gds);

spread _condition(Gd,N):-dame_flags(Gd,N0),NO<N, color(Gd,empty),
not(blocked_point(Gd));

8

7

: 0

5 Pt

3 O —, , ?—
2 [TTTOT?

ABCDEFGHJKLMNOPQRST

Figure 3: Image of Enclosing

REEeEsers
Fi
6 D; 44 ; 4 o : blocked point
5 9_‘23 233 ?34{ N : Nth group’s DAME
g _‘QE %3"1? %;% g_g rate of siege : number of 4th group’s DAME
2 3212218910
| Lld1352332124
ABCDEFGHJKLMNOPQRST -

Figure 4: Kxample - Caleulation for Rate of Siege

Sometimes revision of data structures cannot be finished by just one procedure. More revisio
is olten necessary to fix inconsistency between individual data structures and to achieve decp
recognilion. Take a look at “captured string adjustment” and “dead group adjustment™.

| Object | Condition - | Main function
Captured string- || When the ather colar’s possible | Start capture search
adjustment. captured string is made considering struggle
Dead group- - When dead string Merging adjacent enemy’s group
adjustment Il is made and resetting all potential

Figure 5: Data Structure Adjustment

Captured string adjustment mmproves the recognition of situations in which strings can he
captured. Dead group adjustment improves data structures using the effects of dead groups. For
example, in Fig.Ga, the three white and the three black stones in the middle of the board arc
recognized as dead stones without captured string adjustment. Because the local search does not
use the results of fights between these six stones, this absurd result occurs. If there is any enemy
stone, which has the same extent of weakness as the target stone of the local search has, near by,
the search should consider moves that could capture the enemy stone. Searching from the wide
point of view at the beginning saves trouble bul the cost of the process is going to be much more,
So the best way is do the phased secarch, if il is necessary.

In Fig.6b, the group of white stones on the right appear vulnerable, but they are safe because
the five black stones in the middle are dead by being surrounded. Actually, all the white stones
are making one big group. The problem is the condition of the stone, dead or alive, is judged by
using the concept of group in the data siructure. Solving this, first of all, we define the basic small
groups of stones as temporary groups and record all attributes of them, then we redefine a dead
group and its enemy neighbor, if such exist, as one new group. At the same time, the potential
value and attribute of the dead group are reset.

3.1.2 Judgment of the General Situation

Judgement of the general situation is a result of recognition of position. It contains the progress
status (opening, middle, and end), the game situation (tactics of defense and offense, and so on),

HAPPPY A PPLARS r—

8 8

7 7

6 6

5 O 5 T

i [HO0080 1| H-800008FOT0000 0@

3| H QGD. 3 ol O D,,,,

2T 1® 1A 2V SEL 0344 ANEE
ABCDEFGHIJKL ABCDEFGHJKLMNOPQRST

(a) Captured String Adjustment (b) Dead Group Adjustment

Figure 6: Data Structure Adjustments

and the game status {winning, even, and losing). It won’t be used for selecting candidates directly,
nonetheless it helps to aveid making an unnecessary search iree.

‘I'he game status is mainly used for deciding the degree of offense and defense. GOG has adopled
the Chinese rules which define a player’s territory as consisting of all the points he has occupied
or surrounded. The Japanese rules define territory to be not oceupied or surrounded points bul
vacant points surrounded by independently live groups.

Counting firmly living stones and the territories surrounded by them, and counting dead stones
as the opponent’s territory are both easy. The problem is counting possible struggle spheres. The
basic idea of salving it is to calculate the rate of the potential of all pasitions on the pame board by
using custom formulas created for stones that exert influence. The potential defines the strength
of the stone’s occupancy at each position. A position which has large potential is likely to become
occupied. Also Fig.R shows the formula which exchanges rate of potential to “size of territories™.

Fig.9 is the result of performing this process on Fig.T. A position which is empty but recognized
as someone's territory is marked with a small white circle as white's territory or a small black circle
as black’s. The total of stones and marked places becomes each team’s territory.

3.2 Local Search
3.2.1 Function of Local Search and its Materialization

Local search is necessary at many stages, but actually these searches can be organized as one
program from the programmer’s point of view. If the position, the local search objects (largets)
and the player have been specified, the conditions for the search can be specified. So all the program
needs is a tool that has these parameters. However, each object has a different heuristic method
for creating candidates and arriving at final decisions for them. So customizing search modules for
each object could give better performance. Fig.10 shows each objects’ search modules. The type
of target are specified by each purpose of the search, such as the target of the capture is the string.

The algorithm for the local search is adapted from the Alpha-Beta pruning method. The search
continues until there is no alternative, so the result must be success or failure. Generally, using
a search routine requires more run-time. If the routine is used a lol, it takes up a lot of CPU
time and memory. So the routine must have well established conditions to start it (Fig.10). These
conditions are quite useful for checking the necessity of starting the search and for specifying the

149 T SRR S

18| H1-00L 000 000

17 O198C+0 O i

15 FO9e+00+90 @0 @

14 ﬁ @ OO0 +® 8 =

13 90 CCO _Q

12 "l"? } 1

11| 1 @++@ : olele:

10 .ODL;OQ O++990®-

9| FOHTOA - 0

/et ete iee e

6 HO@D O+ 1.-_—.FCJJru OC J..?l

5| FOO@OD O olel &

g 990 . 5 .l Sig~
| L.

":_r T t ?.D__G ’|

1] -~ 00

ABCDEFGHJKLMNOPQRST

Figure 7: Diagram for Situation Judgement

search area. The procedure of the check must be as simple as possible while satisfying the condition.
The following explains the Alpha-Beta pruning method after Negamax representation in ESP.

negamax(P,_,_,V,):-terminal_position(P,V),!;
negamax(P,A B,V ,M):-candidates(P,Ms),
best candidate(Ms,P,B,A, .V ,M);

best_candidate([],_,_,V,M,V ,M):-I;
best_candidate([M|Ms],P,B,V1,M1,V2,M2):-move(M,P,NewP),
negamax(NewP,-B -V1 MV3,), V3=-MV3,
(M3>=B,!,V2=V3 M2=M3;
M3>=V1,!,best_candidate(Ms,P,B,V3,M,V2,M2);
best_candidate(Ms,P,B,V1,M1,V2,M2));

In this algorithm, “gencrate” represents candidates and “test” appraises the positions Lthat are
arranged for each search object. Defining these also defines the search itself. Now we explaiu

SHICHO, complete search and HOKAKU, heuristic search.

(1) SHICHO

SHICHO (ladders) is a sequence of moves that ends in disaster for one side or the other,
depending on conditions séveral moves ahead. I'or example, in Fig.11a, black threatens
to capture white by placing a stone on position 1.

10

(2)

equivalent territories
L

7 T P R B]

0.5pt Le--rq-q-mmmmnne-

[~ = potential
o 25 50 75 100

Figure 8: Equivalent Territories Function

When white attempts to keep an escape route open by placing a stone on 2, black places
on 3. and so on. The white stones from a staircase that is eventually trapped against
the edge of the board and the whole group of white stones is captured by black. Each
of blacks’ moves in this example are called ATARI becanse they force white along the
ladder to disaster.

Fig.11b and 11c show OI0OTOSHI and UTTEGAESHT (snapback) two more typical Go
techniques. They also use a series of ATARI move, so they are special forms of SHICHO.
Once SHICHO is recognized, the decision for the end of search and candidales is clear.
The assessment for the end of search is 1 if SHICHO will succeed and -1 if it will fail.
So if there are 2 DAME in offense or there is | DAME in defense, the search continues
until these conditions become different.

Fig.13 shows candidates for SHICHO.

In Fig.11a, like 1, 3, or 3, if white moves one of these, the white stones are going to have
4 or more DAME; this comes under a candidate (1) in offense of Fig. 13. If this move
is possible, wherever black takes SHICHO won't be success. (1) is included in (2], so
it is not quite necessary to define it, butl defining (1) makes SHICHO procedure more
efficient. This condition makes SHICHO go directly to it's conclusion.

Also because (2) is defined in defense, the defense side doesn’t only escape from capture,
but also tries to capture the opponent. So OIOTOSHI and UTTEGAESHI (snap back)
are also easily done, just like SHICHO.

HOKAKU (capture)

HOKAKU operates upon all problems except problems in which a target string will be
enclosed completely (such as TSUMEGO and mutual struggling problems).

Fig.14a, 14b, and 14c¢ are examples of HOKAKU, which has fewer limitations than
SHICHO.

11

e
o . l0ee

@O0
007 ¢ 10100

O T T OO+® o\
T wiass | | CJ.# Situation judgement
@@ O D0 Black White

A
! C‘Dﬁ 'lr'erritr.:-rir.'s 149 points l:lfj [.:noinl.:-l
0 .,Q-_] KOMI - 5.5 points
Q e MOYO 8 points ti points
@ - E} PPeePe White leads (.5 points
Daoiozq

53080

O—Gg—ﬁ{w@ﬂ
’—I—I—i-.ii O =00
. @ iegé OO
ABCDEFGHIJKIMNOPQRST

IMigure % Example for Situation Judgement

A selecting heuristic is necessary for improving the search efficiency. We particularly
need a heutistic which speeds up the search or controls enumeration candidates.

Fig.15 is the heuristic condition for end of search. In the Figure, (1) says "If a target
string has 4 DAMEs or more, stop the search.” if we change the number of DAMEs
to a much bigger number, we could search through a larger selection of candidates.
Although we can search more candidates, the problems that are solved by this search
do not increase as much as the search time does. (2) also has more limitations, 1f
a target string has only 3 DAME but 3 or more stones in an enclosing string can be
captured easily, the target string won't be captured. Giving this condition helps the
efficiency of search a lot. However, we conld still have an explosion of search. (4) stops
the search and returns (0 as the assessment, if the search procedure reaches specified
depth and takes specified steps.

Fig.16 shows the heuristics of selecting candidates. It has normal moves and compul-
sory moves. I the present position satisfies any condition of a compulsory move, the
move becomes a candidate. I there is no compulsery move, all normal moves become
candidates. In Fig.14a, the first move is selected from compulsory move (1). In Fig.14b
and 14c, the correct move is one of the candidates selected from the normal moves (3)
and (4). These problem will end as SHICHO after filling DAMEs up by normal move
(1). In addition, the basic DAME point, which is assessment of normal move (1), is
defined by 10 / (target string’s DAME), and the increment is the increment of DAME
after placing a stone.

12

| Object | Target | Start condition | Result |

SHICHO [String 2 or fewer DAMEs Alive, dead
HOKAKU String 3 or fewer DAMEs Alive, dead, unknown
Connection Linkage Opponent comes to peep Connect, cross,

near linkage through
Life and death | Group N or fewer empty points in Alive, KO,

perfect siege dead
Struggle Both B/W | Opponent group satislying start | Alive, KO,

groups condition for life and death dead

Figure 10: Local Search Modules

E a % Ll B I JI

7 + I CH @ater H 7 Q |

=T LoSTeTelr (087,

4l o901 4 —Di’d" _, i Hoeree——

3 —#@5 3 -DOO“ODG 3 O

2/ 1 T307 2| F5 QODOO. 2 olel

1 9 @ 1 21003 1 —
ABCDEFGHIJKL ABCDEFGHJEKL ABCDEFGHJKL

(a) typical SHICHO (b) OIOTOSHI (¢) UTTEGAESHI

Figure 11: Examples for SHICHO

3.2.2 Difficulties of Local Search

With local search, improving its performance is important, but ways to use it are also important.
The following difficulties occur with it.

[1] Selecting the Search Object

Selecting the search object is done by conditions in Fig.10. This is like the pre-search
for the main search. When there is a possible search object, all factors of the object are
defined by knowledge of the object.

[2] Need to Apply Result of Search

Results of the search are used in many ways, but there are two main applications. These
are applied in the recognition of positions as a supplemental expedient and as the move
decision. Fig.17T describes the usage of the local search at HOKAKU as an example.
The arrows in the figure show each module calling its search module. the purposes are
as follows.

{1) To define the string’s attribute of life and death (it is going to be used by defining
belonging attribute of string and group and enumerating candidates for capture

13

Terminal position salisfies one of the following, and returns its assessmenl | Assessment
{1)In offense, target string has 3 or more DAMEs | -1
(2)In offense, target string has a DAME I
{(3)In defense, target string has 2 or more DAMEs 1

Figure 12: Conditions for End of SHICHO

["Candidates in offense | Candidates in defense
| (1}If defense moves here, DAME will be 4 or more | (1)Target string’s DAMEs
{2)Any move at target string’s DAMFEs except (1) | (2)Will capture adjacent enemy string

Figure 13: SHICHO Candidates

and escape).
{2) To search inconsistencies among neighbor strings, then start wider search, if any.
(3) To use for end-search or for creating a candidate.

(4) To estimate the strength of connection by the general judgement which uses results
ol HOKAKU search for crossed strings’ life and death.

{5) To not place any stone, if a temporarily placed stone will he captured, unless von
meant it to be wasted.

(6) To move to the position that has the highest assessment around there, if there
is any caudidate that has the intention of capture and the position has the same

intenlion.

There arc two more purposes.

|e=t : oL |

f ? 6 6 |I Lyt !

5 5 H@T+O+O+O 5 rOO0e+0-@

4| FO+D+O 4 0008 3 ol 3% 53 J&a=

3 -O9000 3 rTOe0000 3 | Jeleley , e

1 LT 1 1 1 ’
ABCDEFGHIJKL ABCDEFGHIKL ABCDEFGHJKL

(a) TSURU NO SUGOMORI (b} GETA (nest) (c) HASAMITSUKE

Figure 14: Examples for HOKAKU

14

Terminal position satisfies one of the following, then returns its assessment | Assessment
(1)In offense, target string has 4 or more DAMFs -1
(2}In oflense, target string has 3 DAMUEs,

3 or more adjacent encmy strings have 2 or fewer DAMEs -1
(3)In offense, target string can be captured by SIIICHO
(4)If search's steps and depth exceed limits

(=

Figure 15: Heuristics for End of HOKAKU

[Compulsory moves)

(1)If defense moves here, DAME will be 5 or more

(2)If target string has 3 DAMEs, move at enclosing
string (size? or more)’s ATARI

[Normal moves] ;

(1)Any move at target string's DAMEs Basic DAME point x increment |

(2)Move at enclosing string’s ATARI 9 !

(3)Target string’s KOSUMI (height 2 or more) 10 |

(4)A space skipped from target string (height 2 or more) 8

Ollense’s heuristic Aszsessment j
|
|

Defense’s heuristic Assessment

Figure 16: Example for Heuristics of HOKAKU Candidates

{7) To score own HOKAKU exercise
(8) To display the process of HOKAKU search

As above, a routine can be called by a different kind of routine or can call a different
kind of routine.

[3] Managing Result of Search

Sometimes the result of search is used only one time, and sometimes it is used many
times until the disposition of the position is changed. However, if conditions of search
change after the game's progress, because re-recognition of the position is necessary the
disposition becomes unreliable. If that happens, what kind of situation destroys the
judgment once made? Examining this has a lot of difficulties. It seems that the stone’s
influence is exerted mainly on its neighbors, so all we have to do is to search the condition
of positions that are related to objects near the last move that occurred. However, this
will not usually succeed. A typical example is a move which prevents SHICHO, also
some string's capture causes a SEKI break and a chain reaction spreading its influence

15

i;l;ﬂﬁ'j:' Loeal Search Move Decision
(5) Self-capturing
String revision SHICHO - filter
Inconsistency of \\ - {6) .f_‘]. tirmizi
. ; - A primuzing
string’s life and [~ (2) (3) o A . e
death check) - capturing place
HOKAKL 4
'-/:" i] 1
Edit Mode T /” L (4) \\“x o Analysis Mode
1 .
; - Connection I .
Dhiagram Search process
editor i display
_ i

Figure 17: Flow of HOKAKU Search Process

over a wide range. Currently, GOG could expand its search as much as its knowledge
covers.

3.3 Move Decision

The process of move decision is as follows. First, GOG implements position recognition and makes
up a plan based on its results, Then it examines possibilities of materializing the plan and reper
cussion effects considering the full extent of its influence and side effects. Fig.18 describes a flow
of GOG’s decision making.

3.3.1 Enumerating of Candidates

We assume that human beings act based on their knowledge of experienced typical situations,
when they are faced with problem solving. For GOG, we call the concept of these typical situations
CASE. It means the point of decision making is selected by CASEs established by knowledge of
Go. Decision of what kind of CASE is currently occurring is done by defining traits of each CASE.
Also, when a CASE is detected, a candidate (from now on, we call it a CASE candidate) as a
device for managing CASE and the method of ordinary assessment are defined. By doing this.
the intention of move decision (specially opponent’s) and assessment of move can be understood.
Fig.19 shows CASE candidates. We'll talk about the enclose/escape move and the FUTOKORO
(local territories) reduce/expand move.

16

(Opponent’s M m’é
: Supporting System

L

local search

— - TN
({tm;}gmumj of PUEIL]UIf) capture

linkage '

r

N knowledge of candidate

@mlmeration of (}:—l_ndidatey

@mmrﬂl J udgcuu.'il) '

‘ rCandidal-e Adjustmenl\! -—:— candidate adjustment knowledge

e / -

| . | wasted move filter

JOSERI filter

pattern knowledge(JOSEKI, endgame)
separation/contact knowledge

1

l "Q Final Move Decision) L e e e e e e o1

Figure 18: GOG's Module Structure with Flow of Decision Making

Like Fig.4, the enclose/escape move considers a group that has been nearly enclosed. From
the figure, it seems that escaping through the middle of 4th group’s DAME is the best way.
However, placing a stone far from the group brings the opponent’s cul move on the connection,
while placing one too close to the group doesn’t help at all. So, we looked at the Go saying “Skip
a space (IKKEN), when you escape.” We settled this as follows. First, GOG looks for a central
coordination of the gronp’s DAME, and it becomes the 1st approximate enclose/escape point. Then
the nearest position in the group to it becomes a (enclose/escape) base point. An IKKEN point,
KOSUMI point, or the nearest point of NOBI (a possible extension of the string) from the base
point is defined as an enclose/escape point. In Fig.4, the st approximate enclose/escape point
is J6, the base point iz J3 and the enclose/escape point is recognized at J5. Their assessment is
defined by the strength of group, its size and so on.

Next, we explain the FUTOKORO expand/reduce move. Examples for it are the xs in Fig.20.
These moves expand and reduce territories even in an ordinary situation, so using these moves takes
advantage fairly. The importance of the moves increases when the life and death of astone depends
on them, [2 is not so important right now, but once black encloses the left white, it becomes very
important. Like this, searching the pattern of moves can be done as the local search. However,
its importance is decided from the general point of view. So the FUTOKORO expand/reduce
move takes the following two steps. After a move has been made, GOG tries all patterns matching
around the placed stone for the FUTOKORO expand/reduce move and adds new candidates to
previous candidates or delete expired candidates from them. Then GOG examines any changes in
assessments of FUTOKORO expand/reduce moves all over the game board.

The knowledge of the FUTOKORO expand/reduce move consists of two rules (candidates selec-
tion, assessment calculation) and the instance data in Fig.21. The candidatles selection rule consists

17

| Object

” Characteristic

{ Contents

JOSEKI

{ Corner pattern

JOSFKT move (239 moves)

Edge position

Edge patiern

Fdge move (HIRAKI,
(TSUME, WARIUCHI, etc)

DAME (liberty)

Contact pattern

Mutual stl'ugg],e MoOve
{HANE, NOBI. OSHI, etc)

Iuvasion - Corner pattern Invade/protect move at {J.34)

Endgame Mainly edgepatiern Endgame move

FUTOKORO Mainly edge pattern, Moves for weak stone’s
expand /reduce weak group FUTORKORO

MOYO tangency

MOYO pattern
neighboring farmilies

Move at MOY()'s adjacency
(RYO-CGEIMA, etc)

Capture/escape Strings (3 DAMESs or [ewer) | Capture/escape move
Connection /cut Being peeped linkages Connection/cut move for peeping
Enclose/escape Slightly enclosed Euclose/escape move for weak stone

weak friend group
Adjacent weak friend group
Being peeped [amilies

Separation/connection move for stone

| Separation/connection :
Enelose/invade move at MOYO

| MOYO expand/ redice

Figure 19: CASE Candidates

of local pattern rules such as the xs in Fig.20. The assessment calculation rule is for calculating
asscasments and also will record all information of the recognition of position, such as conditioned

reflexes,

3.3.2 Local Adjustment for candidates

The local adjustment for candidates rearranges disharmonies hetween the different CASEs. It has
5 different functions (see Fig.22). We'll look at the dead group filter and the capture position
optimization.

First, the dead group filter. In Vig.23a, the white stones on the left are recognized as not being
a dead group yet, so two KOSUMI moves are indicated as candidates for white. However, the
white stones on the right are recognized as being a dead group, so no candidates are offered even
though the pattern of stones is the same as on the left. This move signifies YOSE (endgame) and
intensifies FUTOKORO to protect the weak white group, so the assessment of this move is the
total of what the assessment of YOSE and the assessment of intensification of FUTOKORO.

Now, in Fig.23b, black to play, black has to protect D3 from white capture. At first, the capture
routine suggested placing at £3. Buil D2 signals the need to intensify the FUTOKORO around E3,
and the capture rontines confirms thal black can also escape from white capture by placing a black
stone at D2. Accordingly, D2 has higher assessinent as an escape move than E3 does.

18

E - I | | Il l
7| o '

6| |- o 00
5 o 0@ ® les
4 @O+ I L 1 1

3 80 Q‘@‘? .I—— =) ‘l—
2 OO T8

ABCDEFGHJKLMNOPQRST

Figure 20: Example for Knowledge of FUTORORO expand /reduce Candidate

3.3.3 Final Decision for Next Move

Candidates which were suggested by the different CASEs and had local adjustment at candidate
adjustment have heen narrowed down to one single next move. These processes arc shown by the
score table in Fig.24.

Each assessment of a CASE's candidate is recorded in the score table. If a place might have
many CASEs, the assessment of the place will be the total of assessments of all CASE.. Fig.24
shows assessments of white's candidates in the table.

For example, a white stone placed at Q15 simultaneously helps to enclose black’s group at R16
and expand white's MOYO. The result is that L14 has the highest assessment. However, this is
still basics; sometimes the method of decision needs adjustment depending on general judgment
or general knowledge of tactics. Generally, when you are winning, you had better conirol fights
quietly as much as possible. When you are losing, you had better spread fights all over the board.
Also selections of moves are imited by the game situation.

For example, when a Go player has a on thick outer shell and is winning, he may choose to
protect the middle of his MOYO from enemy invasion or o enclose his MOY O by letting his enemy
enclose the enemy’s own MOYO. At this moment, if he has weak stones and they won't be changed
at any situation even if they are taken by the enemy, and also if his escaping move will be toward
his large MOYO, the priority of moves which rescue the stones goes down. Or if he is weakened
having his weak stones taken, he stays away from his MOYO and tries not to waste any moves.
In particular, when the enemy invades his largest MOYO, he keeps attacking the invader uniil the
situation is settled.

On the other hand, if a player is in a weak position, he tries to invade his enemny’s MOYO either
by directly placing a stone in it or by breaking through his enemy’s wall. Also he dues not waste
energy on small and weak enemy stones which don’t influence winning and losing.

Comprehending general judgments like the above into all the situations is very difficult, but it
increases GOQ's strength as a Go player even in typical situations.

4 Development Tools

The development tools are not directly related with the main system of GOG, but shortening the
term of development of GOG and improving the quality of GOG are depend on the quality of
the tools. So development tools are very important. Programming of Go games must be improved

19

Candidates selection rule [Assessment calculation rule

standard_pattern : - 1 : - base point(BOTH,5),
friend(-1,1), {weekstone(-1,1) then
enemy([(-1,0),{-1,-1),{0,1),(0,0),(0-13,(1,00.{1,1)]), fighting point{ BO'TH,10));
bosard cdge(0,-173, - .

candidate_select{(0,0],1};
candidate instance data

basc coordination : H2

standard_pattern? - - rotation of axes @ 0

candidate coordination - H2

assessment caleulation @ 1

Figure 21: Knowledge of FUTOKORO expand/reduce

through trial and error and the size of program tends to be getting larger, 50 it is not an ex aggeralion
to say that the success of this project depends on the quality of the development tools. General
1/0) is designed that GOG users can switch around between Play Mode and Development Mode
(Edit Mode and Analysis Mode). It is also quite important for efficiency of debugging. Now we'll
talk about things that are recognized as important in experiment.

4.1 Analysis Mode

This mode takes charge of debugging. Analysis Mode and Play Mude should be on-line connected
and able to be switched at the user’s discretion for direcily examining the problems which occur
during play. Analysis mode requires the peep function which can investigate all objects and their
attributes in data structures. It also requires the trace lunction for the sub-module in case it has
any problems. Fig.25 shows the module structures of analysis mode.

The following are explanations of each module’s functions.

{].JI Display of Data Structures
Displays a distribution of each data structure and its attributes which are represented
by recognition of the positions.

(2) Display of Candidate Move

Displays contents of the score table which are represented by candidate enumeration
and the local adjustment for candidates. Also displays the equivalent of the assessment
of each candidate by equivalent territories function.

(3) Display of the Situation

20

 Object || Main function _ |

| Wasted move filter | Remove a candidate whose signification by its location
iz impossible to actualize

JOSEK! filter Remave candidates except JOSEKI move, when
' . GOG is under JOSEKTI's control _ i :
Dead group lilter | When a candidate makes a dead group and the move doesu’t

| have any meaning for the dead group, remove the candidate
Self capturing filter || Remove a candidate which captures itself

{apture position- Select the hest move when many candidates
oplimization capture the same target

Figure 22 HOKAKU Candidate Adjustment

8 8 | 8l | =
7 7|
HSPNL dh. | L o RS -
3 foobi$t}? gg%&'ﬂi ;
2 —-?25 : --—-—25T_ Il ® i 2| 058 :
1 I | L | i 1 il B |
ABCDEFGHJKLMNOPQRST ABCDEFGHIJKL
(a)Capture position optimization (b)Dead group filter

Figure 23: Examples for Candidate Adjustment

Displays the situation which is represented by the situation judgment.

(4) Display of Search Process

Using each different search module, displays these search processes and their results.
Also it is possible to display the order of their priority.

(5) Tuning of Parameter

The knowledge of recognition of the positions or the candidate enumeration contains
many parameters. Proper adjustment of each parameter is very immportant for accurate
knowledge.

4.2 Edit Mode

Edit mode edits Go problems for Analysis mode, improves the knowledge of JOSEKI and improves
CONUNON INOVes.

21

19] —4 10+ T |]] T Bi endgame K13 exlension
18| F @083+ T2 Bill block 112 separation
17| @O 0O0250 2T zn__o i B19 extension L14 eapture,
16| -~ @@O®13+8 O 121181 11 connection connection
15| @0 ’__..D 5 5 ?31 14 extension, block 1,15 extension
14 440) 9 8 O@877 | C19 block, extension L17 connection
13 ' ~020+ 2 ! ' o :
1 310 connection, M13 separation
121 ¢ ?_ 2 escape MI4 MOYO
}}! 1 Egﬁlg. ® | D18 connection, separation
9 ' escape M1 MOYO
7 escape NIG6 HIRAKI
8 -5 El4 extension NIT connection
T _j 2.)
f 16 extension P4 JOSERI
Bl F B - 18 17 invasion, P MOYO
4 9+ 18 - extension Q5 JOSERI
3 q}“ HI4 extension Q16 enclose,
2l 1 [Jil MOYOD MOYO
1] - T J16 extension H1% endgame

ABCDEFGHJKLMNOPQRST

Figurce 24: Score Table

Fig 26 shows the module structure of Ldit mode.
The following are explanation of each module.

(1) Diagram Editor

Creates the position as a problem and Preserves/Hegenerates it for debngging GOG.
The problem for search (HOKAKU, TSUMEGO and so on), move decision (for the next
move and so on), and recognition of the positions {judgement of the stone’s strength
and so on) can be registered in self judgement. Also during self-judgement, we can
examine the changes of answers after changing GOG’s parameters.

— Display of Data Structures
- Display of Candidate Move
Analysis Mode — - Display of the Situation
Display of Search Process

Tuning for Parameter

Figure 25: Module Structures of Analysis Mode

22

Diagram Editor — Probh.:m Edit
r L— Exercise Self-Judgement

[Edit Mode —;‘—Pﬂteutia] Pattern Editor

i 4 HK [y . -
- Knowledge Editor _—I:‘IT??;” ;j.’tm
e | B 1Lor

Figure 26: Module Structures of Edit Mode

(2) Potential Pattern Edilor
The potential expresses the influence a stone exerts on its neighbor. However, this
influcnce is affected by the corners and edges of the board, so it cannol be decided
impartially,. GOG has prepared some potential patterns corresponding to a slone’s
location on the board. We sct up that distribution so that each of those patterns’
potentials could be modified by an editor.

{3) Knowledge Editor
This editor is established by the JOSEKI editor and TESUJI editor. JOSEKI data is

prepared as a large tree structure. Each branching point of the tree has a condition iof
JOSEKD (ATSUMI, SHICHO-oriented and so on).

Data of TESUJI is organized by filed data for each similar move. Each single data
contains applicable conditions (timing, location, and stone's arrangement) and process
of matching and its knowledge of assessment.

5 Assessment of Present GOG and Its Problem

We explained 5 main themes of Al in the first paragraph. Now we explain what problems we have
solved or not yet done on GOG from the point of view of these themes(except lcarning).

(1) Search

The most important point of this is that GOG is not applied to overall scarch. The
search paradigm just covers a limited search space, adapting it to Chess proportions
louks like the limit. Programming a problem with the same or smaller range of search
space as reeded for Chess could match the hest of human player. Go search is far larger
than that of Chess.

The next point is that as well as accepting the indispensability of search as a procedure
of recognition, we also limit the adoption of search to local search with a single purpose
and target. This limitation also create some limits. We caunot solve double target and
double purpose problems.

23

(3)

A double target problem is shown in Fig.27a. When black places at F1, a string with
E3 or F4 might be captured.

A double purpose problem is shown in Fig.2Th. When black places at H1, the territory
at left corner might be saved or connection between black left and right groups will
succeed.

8 | 8| | J' I

7 7l ¢ ; -

f 1,

5 | -0 00® 50001

Liin®l l | Jelelel o 1090+

3| FO@OOSTHOO T 3 1@ |

[maanti sunmn s SAR A AN N
ABCDEFGHJKL ABCDEFGHJKL

(a) Double target (b) Double purpose

Figure 27: Future Assignment

The third point is the search routine will only start after the main program breaks a
problem down at local search level, This is introduced as pre-procedure which will be
positively used hefore wider search becomes necessary, and which avoids the explosion
ol combinations.

ﬂﬂlhiguitiEﬁ.

Most concepts of Go are quite ambiguous; some are difficult to define. Even if there
are some concepls thal everyone understands, there are any number of difficulties as
to the practical use of those concepts. There is a big difference between reading and
understanding a Go book, teaching Go, and playing Go. However, programming Go
requires us, unreasonably, to define ambiguous things. Let’s look at strength of group as
an example. For human beings, the concept of strength is ambiguous, it has qualitative
and relative siguificance; the strength of group is determined by the location of adjacent
stones and their relations. So we have to define strength for GOG. For convenience, we
defined it as

strength = a x (rate of siege) + b x (size of territory)

The rate of siege and size of territory are probably the most important primary factors
of strength. This function is just equal to the First approximate. So we adjust it for
actual use with a consideration about adjacent groups. However it is still pretty far
from the real feeling of playing Go.

Exceptions

Dealing with exceptions, at least we have to define the irregular situation and make
GOG recognize it. Most irregular situations can be recognized if we define them as “

24

When a player is at a disadvantage and there is no move which makes the tide turn to
his favor with the regular procedure, or when he is attacked at two or more places but
there is no move defending these places simultaneously with the regular procedure.”

Generally, when we don’t notice an enemy attack or we think our enemy is easy to
deal with, we often get a nasty surprise. I the situation changes suddenly, it is a sign
of irregularity. By using this sign, a move is always forestalled. Therefore we shonld
examine the change of the situation after we wasted one turn.

(4) Cooperation
The ability of systematic integration for GGo could roughly be interpreted as the ability
to derive a new measure {rom combination of AJls.

6 Conclusion

The Go playing system, GOG, has been developed as a part of intermediate stage of the Fifth
Generation Computer System Project since 1985, Compared with Western countries, we have less
accumnulation of such researches. T'hercfore ICOT pushed this research forward by organ’zing Al
scholars as a working group (CGS-WG) and conducted this research with the Electroiechnical
Laboratory of the Agency of Industrial Science, which has reached satisfactory results iu this field.

In the first half of 1985, we decided the basic methods of GOG, such as data structures, how to
calculate the potential, and so on. We chose to use ESP running on PSI for a test program, then
designed a concept of the software module. Also we developed a prototype which has board tools
including ATART, AGEHAMA, territory calculation and so on as main functions.

In the second half of 1985, as the next step, we researched human against human Go games and
used that information as data structures. Then we aimed to judge positions and situations. To
actualize this, we designed and produced modules for input and output, recognition of positions,
and analysis of game situations as parts of the Go plaving module which is our system’s essential
clement for experiment. In parallel with this, we designed and produced developinent tools, such as
tools for analysis, search tree analysis, diagram edition, potential tuning, and so on, for experiment.

In 1986, we aimed to actualize a computer playing Go against a human player and reviewed
algorithm for capture, enclosure, actual methods of adaptation, and judgment of life and death;
this last one was particulary difficult. By the end of the year, a prototype with the above functions
and running on P51 had been developed.

In 1987, we improved data structures and knowledge of candidates, expanded functions of them,
and intensified cooperation among knowledge. Also, we reviewed the TSUMEGO program, however
its responding speed reached a limit after the system’s improvement and expansion increased the
processes of caleulation, so we didn't adapt TSUMEGO into GOG. We adapted this TSUMEGO
program as a stand alone system on PSI, and programmed it as a parallel systemn on a parallel
inference computer by way of experiment. Later, we moved it from PSI-I to PSI-II which is a
small-sized and accelerated PSI, and tuned it up. Currently, PIM (Parallel Inference Machines)
have been under development at ICOT, following this we have been rewriting GOG as a parallel
program. As the result of parallel programming, GOG will show us the great increased performance
of problem management. Even if our system use a local search at the recognition of positions and a
trial-and-error method for cooperation among knowledge or results of recognition, our system could
be recognized as the program, which reads just the next move, compared with Chess programs.
By increasing its knowledge, polishing it up, or enriching its local search, it is possible to increase

25

GOG’s ability to play Go. However, rapid progress is not expected at all if GOG reads just the
next move. The reason for this problem is the excessive transaction time that is necessary to
process recognition of positions several moves ahead. For accurate judgement of situations in Go,
it is necessary to recognize not only territories but also each stones' life and death or strength.
Therefore all transactions which are currently adapted into GOG are necessary for recognition of
the positions several moves ahead; if we try to read the entire game, the transaction time will he
the time necessary to recognize each position times the number of positions that the game has.

Some other cflects of parallel programming are expected. ESP’s descriptive ability proved of
great benefit in describing knowledge of Go and cooperation among information. Actually, this
ability decided our system's structure. Therefore, the new parallel environment could sugsost
mauy innovative ideas and techniques. For these reasons, we expect that GOQ's Go playing ability
will get much closer to human’s when we improve the quantity and quality of GOG after rewriting
it as a parallel logic prograimn.

7 Acknowledgment

We would like to thank Mr. Yokoi, the former chief of the second research laboratary at 10O
and the current direclor of EDR, who created the original opportunity to start this research, 'rof.
Torii at Osaka Universily, who is the chairman of CGS-WG, and all members of CGS-W, wha
have given support and helpful comments. We wish to thank Mr. Hikichi at SRA and Mr. Ojiria
at KKK, who are members of CGS-TG and have developed a part of GOG, and to thank rz .
people at Mitsubishi Electronic Co. in charge of the joint research works. Also our thanks go to
Mr. Okada, the director of E1'L, who has always given support. Finally, we wish to thank Mr.
Ogiso at FTL for his effort of translating this paper into English.

References

[1] Sanechika,N. “Strategy of a knowledge-oriented Go program Go.17, IPSJ SIG Reports SYM432
(Nov. 1987) (mm Japanese)

[2] Sanechika,N. et al. “Notes on modeling and implementation of human player’s decision process
in the game of Go", Bul.Electorec.Lab.Vol.45(14981)

[3] Sanechika,N. “Programming the Decision Process in Go”, Tech. Rep. of IPSJ (JUN. 1682} (in
Japanese)

[4] Mano,Y. *An approach Lo Conquer Difficulties in Developing a Go Playing Program”, Journal
of Information Processing, Vol.7,No2.July 1984 '

5] Reitman,W. & Wilcox B. “The structure and performance of the interim.2 Go Program.”
Proceedings of the 6ith international Joint Conference vn artificial intelligence. Tokyo 1979,

206

