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Selection Propagation in Deductive Databases!

— From Pushing Selections to Magic Sets —

MNobuyoshi MIY AZAKI
(Oki Electric Industry Co., Ltd.)?

Abstract. This paper discusses the relationship between two optimization
methods in deductive databases: the distribution of selections and the magic sets
method. The former is a direct generalization of pushing selections in relanonal
databases and the latter realizes a more general view of selection propagaton.
Characteristics of the generalized form of the distribution of selections are
discussed and compared to other methods. It is shown that the dismribution of
selections corresponds to one of the least effective variations of the magic sets
method. It is also shown that both methods have essennally the same power for
non-recursive queries. Hence, the magic sets method can be regarded as a natural

generalization of pushing selections in relational databases,
Keywords. Deductive databases, Relational databases, Query optimization.
l. Introduction

The combination of pushing selections and selection-first evaluation is one of the most
important methods for efficient query processing in relational databases [25]. Pushing
selections ransforms queries based on the commutativity of selections with other operators of
relational algebra. A generalization of pushing selections called the distribution of selections
{(DS) was proposed by Aho and Ullman for recursive queries [2]. It was the first query
transformation (rule rewriting) method designed for the bottom-up evaluation. Several further
generalizations were also proposed [1, 10, 14, 15, 18]. Queries can be efficiently processed
by selection-first evaluation in the bottom-up computation [2, 3, 6] after transforming
queries. However, it is known that DS can optimize only certain queries because selection is
commutative only for specific positions of constants in goals even for simple recursive
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queries [3]. Hence, the direct extension of pushing selections is not considered as a part of a
general framework of guery processing strategy for deductive databases because of its limited
applicability.

Meanwhile, many methods have been proposed for recursive query processing and two
general frameworks have emerged from them. One is the query/subquery (Q5Q) and its
variations, which are based on top-down evaluation [24, 28, 29]. QSQ realizes the selection
first processing in an integrated way, and does not separate transformation and evaluation
phases. The other is the magic sets method and its variations (MS) [4, 8, 17, 20, 21, 23]
MS is designed as a transformation used before the bottom-up computation like DS. Works
reported in [10, 13] can also be regarded as methods that combine the concept of MS with
other optimization techniques in relational algebraic notation, QSQ and MS are considered as
general frameworks because they are effective for a broad class of queries. It is known that
there are strong connections between QSQ and MS [9, 23, 26, 29]. However, the
relationship of these methods to DS (or pushing selections) is not clear, although MS realizes
a more general view of selection propagation [7, 21]. Hence, DS and MS have heen mreated
as independent methods [5, 11]. The situation is illustrated in Figure 1 which shows

relationships among methods.
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Figure 1  Relationships among Methods

Many methods for recursive query processing rely on relational database technigues to handle
large relations. Therefore, it is possible to establish an integrated framework of recursive and



relational query processing strategies, if the recursive strategy is a generalization of the
relational strategy. Even if the former is not a generalization of the latter, we can obtain a
better criterion to choose methods for particular types of queries by clarifying the difference
between methods. Figure 1 indicates that this problem has been almost solved for general
purpose methods because MS (or QSQ) is effective for a broader class of queries than DS.
However, this problem is not formally solved, because the precise relationship between M3
and DS is not known. For instance, results of MS for non-recursive queries look different
than the results of DS. Moreover, DS may be more efficient than MS for certain queries,
because it does not introduce additional predicates. Thus, the corresponding link is shown
with a question mark in the figure. This paper tries to find the missing link and to bridge this

gap. The subject involves two 1ssues:

(1) Formalization of DS in clausal form.
(2) Discussion on the relationship between DS and other methods.

Another motivation for this paper is to investigate properties of MS. The relanonship between
(Q5Q and MS is not symmerric although their correspondence is established. Because MS
usually uses top-down concepts in its formalization and Q50 does not rely on bottom-up
concepts, it is difficult to understand MS without top-down concepts but QSQ is self-
explanatory. The relationship between QSQ and MS becomes more symmetric, if we can give
an alternative explanation of MS by bridging the gap between MS and D5, and make
optimization of bottom-up method self-explanatory.

The organization of this paper is as follows. Section 2 summarizes methods for DS, Section
3 discusses DS in clausal form. The relationship between DS and other methods is discussed
in section 4. The resulis are summanzed in secrion 3.

2. From Pushing Selections to the Distribution of Selections

The first generalization of pushing selections for recursive queries was proposed by Aho and
Ullman [2). The name of the method, the distribution of selections (D5), is also used 1o refer
to its various extensions in this paper. The following example shows how DS is performed
by the Aho-Ullman method.

Example la
=—ancestor{X,taro).

ancestor(X, Y )«parent(X,Y)



ancestor( X, Y pe—parent(X,7),ancestor(Z,Y).
It is known that this query can be expressed in relational algebra |25]:
ANSWET = O aparel ANCESIOT )
ancestor = f{ancestor)
= parent ' ) g(parent |x|;=; ancestor).
The answer for this query can be obtained by first computing ancestor as the least fixpoint
(Ifp) of ancestor = flancestor) and then applying the selection O3_;4, to it. However,
computing the ancestor relation as the Ifp is a time consuming matter. The computation
becomes more efficient, if the selection is distributed. The distribution is performed as
tollows. If the selection 02—, is applied to the fixpoint equation, it becomes:
T 2-tarol NCESIOT) = Go—are{ parent s My g(parent 1x|3-; ancestor))
= O2=pwol PATENT) W Gaoparo{ M g parent Ix|z-; ancestor))
= O2-paro(PATEAL) L Ty g(parent IX]3-) Op-arolancestor)).
Thus, the fixpoint equation becomes the equation for G, a/ancestor) instead of the equation

for ancestor. Hence, the answer can be obtained without computing the whole ancestor.

The Aho-Ullman method can be applied only to simple linear queries. Its generalizations for
more general function-free queries were proposed in [1,10,14]. These methods use different
notations: "the static filtering” uses graphs [14], "push of selection to variables” uses
relational algebraic notation [10] and "moving selection” uses both relational algebraic
notation and graphs [1]. They can be considered as variations of the following algorithm in
relational algebraic notation. Let us suppose a query is expressed as follows to simplify
discussion:

answer = Gp(r), and r=f(r),
The algorithm transforms the query to the following form:

answer = Op(r), and r=cg(f(r)), where Of is another selection,]
It is obvious that the transformed form gives a sound but possibly incomplete answer.
Selection of which gives a complete answer can be computed by the following algorithm.

Algorithm 1: (computation of a commutative selection)
i=0;, Po:=P; F:=Pg;

repeat
distribute selection into function f in r=0p,(f(r)) to obtain r=fi(gp,_, (r))

F:=FwvPjq; 1:=1+1;
until F does not change;

! Selection o should actually be distributed into function f. We use the above expression for the simplicity
of discussion.



Algorithm 1 is obtained by the following observation. We need to compute op(f{r}) in order
0 compute ap(r). Since Up(ﬂr}}:fmc}pjfrﬂ, we need to compute op,(r) = Up_,f_ﬁr}} =
fil crpzrrjj. Then, we need cnnzrrj = mnzm’r),i = faf ﬂqu"rﬂ, etc. Thus, the algorithm obtains a
sufficiently weak condition, F=F v Py v P2 v ..., in order to compute the complete answer.
The Aho-Ullman method corresponds o a variation of algorithm | which transforms a query
only when op=0p.

Example 2a
—p(v.X.Y,Z) /* This means P= (1=v). #/
Pl Y, ZWhe-alX Y, Z W) /* Relations a and g are in the database. #/
PIXYZX)  p(W. XY, Z).q(X.Z).
This query can be expressed in relational algebra as follows.
answer = G-yi{p}
P =aumaaap xa-qaa=2) Q)
The Aho-Ullman method cannot optimize this query. However, the optimization is possible
by transforming the query as follows:
answer = 0-p)
P =Or(a W ng3420p Xl2=1)a4-2) Q)
= OF(a) W Ty 3,4 2(0F(p) X¥(2-1)04-2) QD)
where selection condition F = (1=v) v(2=v)v (3=v) v(4=v) is computed by algorithm .
Methods in |1, 10, 14] transform the guery in cssentially the same way.

An important contribution of extended methods is that the selection expressed as a disjunction
of conditions is sometimes commutative with the 1fp operator even if the original selection
nself is not commutative. These methods assume funciion-free queries. A generalization of
the static filtering for queries with function symbols was proposed in [15]. Although
algorithms for DS always terminate for function-free queries, generalized algorithms may not
terminate if there are function symbols. The generalized static filtering restricts the complexity
of terms in order to guarantee the termination.

There have been some discussions on the relationship between DS and MS [1, 7, 10, 11, 14,
18]. It is known that their performance may be identical for queries such as example 1a [5],
but the precise relationship is difficult to recognize beeause of different notations. The next
section discusses DS in clausal form which enables us to compare it with other methods.

3. Distribution of Selections in Clausal Form



3.1. Fundamental Concepts

Before discussing the algorithm for DS in clausal form, fundamental concepts used in this
paper are introduced.

Definition (Notations)
clause: A clause means a Horn clause in this paper. Function symbols may be used in

clauses.
= Let A be a clause and let B be a set of clauses. A = B means B is a logical consequence

of A.

= : Set inclusion.

iffz 1f and only if.

body(R): Let R be a set of clauses. body(R) is the set of all atoms that appear in bodies of
clauses in R.

Definition Let B and C be definite clauses (or atoms). B is more general than C iff there
exists a substitution 6 such that C = B8. We also say that B covers C iff B is more general

than C.! B is a variant of Ciff B covers C and C covers B. We treat variants as if they are
identical when we discuss a set of clauses (or atoms).

Let us consider examples for the above definition. Clause ancestor(X.Y) «—parent(X,Z),
ancestor(Z,Y) covers ancestor(X taro) < parent(X,Z),ancestor{Z,taro} because the latter is
obtained from the former by substituting taro for ¥. Notice that if B covers C then (Bl =C.
We treat [a(X.Y), a(V,W)} and {a(X,Y)] as identical sets, because a(V,W) is a variant of
alx,Y).

Definition A database (DB) is a finite set of ground unit clauses. A query is the set Q =
l¢-g} u D, where g is a goal atom and D is a set of definite clauses.? A predicate that
appears in the head of a clause in Q is called a g-predicate and a predicate that appears in the
database is called a d-predicate. Let g’ be a ground instance of g, then the answer for the
query is the set G = {g' e BIDw DB= g'} where B is the Herbrand base [16] of D w DB.

! The concept of covering is a special case of subsuming [12]. Clause B subsumes clause C if B covers a
subclause of C,

IUSUHUE'.E(G'&E} is called a query and D is called an intensional database. The above definition is used in
this paper to simplify discussion. Notice that this definition corresponds to the definition of a query in
relational databases.



We assume that a given query is a finite set, although its transformed form may be an infinite
set. We also assume that [g-predicate} m (d-predicate} = & 10 simplify discussion. The
underlying domain of queries and databases is assumed to be fixed, i.e., the Herbrand base

of every set of clauses is a subset of a given set.

Definition Let Q and Q' be queries, and let G and G’ be their answers for a database
respectively. Q 2 Q iff G = G’ for any database. Q and Q' are equivalent, denoted Q = (',
iff Q2 Q and Q = Q. Note that the relation "=" is an equivalence relation.

Definition A query transformation is a mapping from the set of all queries to itself. The
composition of mappings f and g i1s defined by f+g(Q) = g(f(Q)) for any Q.

Definition Query transformation f is complete ift £{Q) 2 Q for any Q. It 1s sound iff
i) = Q for any Q. It is equivalent iff f(Q) = Q for any Q.

3.2. Formalization of Distribution of Selections in Clausal Form

DS rransforms equation r=f{r) to r=0o(fir})) as discussed in section 2. Equation r=fir}
corresponds to a set of clauses of the form re—8 having a same head predicate, where B is a
conjunction of atoms.. There are two clausal forms corresponding to the transformed
equation:

(1} (re=B)8, where 8 is a substitution of variables.

(2) re—r*.B, where r* 15 an atom.
The first form leads to DS in clausal form. The second leads to a variation of MS [17], which
is used 10 investigate the relanonship between DS and MS in section 4.

It is easy 10 see that the results of DS can be expressed by substituted clauses. For instance,
the result of example 1a 1s equivalent to the following set of clauses [3, 21]:
ancestor(X,laro)« parent(X, taro)
ancestor(X. taro)e—parent(X.Z).ancestor(Z,taro).
Let us consider a way to obtain a set of substituted clauses which is equivalent to the set of
original clauses. First, we observe that the above set of clauses can be obtained by applying
the most general unifiers {mgu) of the goal atom and the heads of original clauses to
substitute variables in these clauses. If an atom (r')8 appears in a body of a substituted

clause, this atom 1s used to obtain another set of substituted clauses. We can repeat this



process until it converges. The process obviously corresponds to a generalization of

algorithm 1 in section 2.

We can formulate a ransformation procedure based on the above observation. First, we

define the set of all possible ground and non-ground instances of definite clauses in Q.

Definition Let Q= [«g) v D be a query. The cxtension of (@ is defined as 5{Q) =
{¢g}w {08 CeD A 6 1is a substitution }.

S(Q) is equivalent to (Q, because each clause in 5(Q) is covered by a clause in QQ and 5(Q) >
Q. Thus, the problem of DS is to find the minimal subset of S(Q) that is equivalent 1o Q.
First, we ignore the minimality problem.

Each step of the substitution in the above discussion can be formally defined as follows.

Definition Let Q = {&-g} w D be a query and let R be a subset of S(Q). A mapping Fg
from the power set of 5(Q) to itself is defined as follows.
Fo(R) = [ g} [CBI Ce D A 3r e body(R) A0 = mgu (r, head(C))).

It is obvious that Fo(R) is a subser of S(Q). The mapping Fg distributes selection conditions
in body(R) to clauses whose heads are unifiable with elements of body(R). We can
repeatedly apply it to distribute selections until an equivalent query is obtained.

Example 1b: Let us consider an ancestor query with goal <—ancesior(jirotaro). We
compute a sequence of queries defined by Qjyj = Fo( Q) with Qg = &.
Q1 =) «—ancestor(jiro,taro)
Q2 =Fq(Qq): The rule in Qq and the following clauses are obtained, because
ancesior(jiro,fars) 1s in a body.
ancestor(jiro,taro)—parent(jiro, laro)
ancestor(jiro,taro)«—parent(jiro,Z),ancestor(Z,taro).
Q3 =Fq(Qz): Rules in Q2 and the following clauses are obtained, because
ancestor{Z,tare) 13 1n a body.
ancestor(X 1aro)«parent(X,taro)
ancestor(X ,laro)}parent(X,Z}),ancestor(Z,taro).
Qs =Fo(Q3) =3
Itis clear that Qis1 = Qj fori > 3. The result is equivalent to Q.



The process may not terminate if there are function symbols. However, we can prove that FQ.
has a unigue least fixpoint. The formalization is similar to the fixpoint semantics of logic
programs [16, 27].

Lemma 3.1

(a) The power set L = 25(Q) of the extension of Q is a complete latice under set inclusion.
The botom (L) ix &, and the top element is 5(0).

(b} Fp is monoionic, i.e., Fo{R1) 2 Fp(R2) for R1 = R2,

{c) Fg is continuous, i.e., Fo (lub(X)) = lub(Fgo(X)} for every directed subset X of L. Here,
FolX) means {Fo(C)/ C € X]. X is directed if every finite subset of X has an upper bound
in X.

Proof {a) and (b} are obvious. (¢) 1s proved as follows. Let X be a direcred subset of
L, and let Fg(R) = {CBl Ce D A dre Body(R) A8 = mgu (r, head(C))}. If Fig is
continuous, so is Fg because Fo(R1) = |+ g Fg(R1). Now we have that

Ce Fg (lub(X))

itff C=C8a(CeD adre body(lub(X)) A8 = mgu (r, head(C))

ifffordle X, C=C8 A ( CeD » Jdr e body(l) A8 = mgu (r, head(C?))
(because X 1s directed)

ifft Ce Fg(hfordle X

iff Ce lub(Fp(X)). W

Definition Let L be a compiete lattice, and let T be a monotonic mapping from L 1o L.
Then we define

TTO=1

TTo=T(TT(e—1)), if & is a successor ordinal

TTo=lub(T T[}: fea), if @ 1s a limit ordinal.

We obtain the next lemma from lemma 3.1, Please refer to proposition 5.4 in {16] for the

proof,

Lemma 3.2 Fghas a least fixpoint, ifp(Fg). Furthermore, lfp(Fo) = FoTw, where @ is
the smallest ordinal next o 0.

Next, we prove the equivalence of @ fixpoint to original query Q.

Lemma 3.3 Let e 25(Q) be a fixpaint of Fg, ie., Q' = Fo(Q'). Then @' = Q.



Proof Q= Q' is clear because Q' is a subset of S(Q) = Q. Q' 2 Q can be proved by
inspecting SLD tree of Q, because there exists an atom in a body of a clause in Q' that is more
general than each subgoal in the tree, and every clause in Q which is unifiable with the
subgoal is included in Q' in a substituted form. W

Theorem 3.4 (equivalence of ifp(Fp) and ()
(a) FpTw=Ifp(Fg) = Q.
{b) (' = O for any Q' such that 5{Q) > @' > Up(Fo).
Proof Obvious from lemmata 3.2 and 3.3 because Q= S(Q). W

Thus, the procedure that computes Ifp(Fg) is an equivalent transformarion which distributes
selections for general recursive queries. Note that Ifp(Fp) is the limit of Oy, ; = Fo(Q;} with
Qp = &, and it is computed by the following simple iterative procedure.

Procedure for the distribution of selections:
Q =
while "Q' changes" Q' := F(Q');

Since this procedure is identical to the naive evaluation algorithm [6] except for the mapping

used, we can also consider a semi-naive algorithm.

Example 2b: (same query as example 2a)
We obtain the following sets of clauses by applying Fg repeatedly, Non-recursive clauses are
not shown.
Q: —p(v.X.Y 7).
plxX, Y Z.X) « p(W.XY.Z).q(X.Z).
Q1 = Fo(@): —p(v,X,Y,Z).
Q2=Fg(Qq):  The clause in Q) and the following clause are obtained.
pv. Y, ZV) « p(WW, Y, Z)q(v,Z).
Q3 = Fp(Qn): Clauses in Q2 and the following clause are obrained.
piXVZX) — p(W, X v,Z),q(X.Z).
Qq = Fo(Qu): Clauses in (03 and the following clause are obtained.
pXY v, X) « p(W, X, Y v).q(X,v).
Qi+1=Fg(Qp fori>3,
This result corresponds to the disjunction of conditions in section 2.



The method corresponds to the straightforward generalization of the method discussed in
section 2. However, the result obtained by the procedure may be infinite and the procedure
may not terminate, if there are function symbols. The termination can be guaranteed by

maodifying the procedure in similar ways to those discussed in [15, 18].

The proposed method handles selection conditions embedded in predicates. In relational
algebra, conditions are expressed as combinations of "attribute 8 value” and "attribute 6
attribute”. If © is equality "=", the conditions can be converted to those in the embedded form
in clausal notation. For other types of conditions, we have to modify the definition of Fg in
order to distribute selections. If there are such conditions in bodies of clauses, we can modify
Fg to attach these conditions 1o substituted clauses along with conditions expressed as the

mgu.
1.1, Optimization of the Transformed Result

The procedure in the previous section can distmribute selections {or general recursive queries,
but the result, Ifp(Fg), often contains redundant clauses. For instance, clauses generated in
the second iteration are redundant in example 1b. Hence, we have to consider certain
optimization procedure. We restrict our atiention 1o a special case of redundancy elimination
hecause the problem is difficult in general even for function-free queries [22].

Definition A query Q = [«g} W D covers another query Q' = [«g] w D" iff each
element of 1Y 1s covered by a clause in 1D, We assume that & is covered by any query. A
subset Q' of Q is called a minimion cover of Q iff () covers () and there is no proper subset
of ' that covers Q. Obviously there exists a unique minimum cover for any Q, and the
covering problem is decidable for any finite Q. The function that maps a query O to its
minimum cover, mev((}, can be regarded as a mapping from the set of all queries to itself. A
query Q 1s minimam i Q = mev((Q).!

Note that I) covers D' if D = 1. Hence, (3 and mev(QQ) cover each other. We define a partial

order in the set of minimum queries.

Definition A subset MS(Q) of 25(Q) for a given Q is defined by MS(Q) = (Q1 Qe
25D A Q =mev(Q) A (—ge Qv Q =D)). A relation £¢ in MS(Q) is defined as
follows: O < Q2 iff Q7 covers @ for Qp, Q2 € MS(Q).

! We can consider more general minimality based on subsumption. We discuss the oplimization based on
covering, because it corresponds to simplification of selection conditions in relatonal algebra.



Lemma 3.5

(a) =5 is a partial order, and MS(Q) is a complete lartice under <, Let X be a subset of
MS(Q}. The lowest upper bound of X , luby(X), in MS(Q) is identical to mev(lub(X)), and
the greatest lower bound, glby(X), is identical to mev(glb(X)). The top is mev(S(Q)) =
mevi{Q) and the bottom is €1

(b} Fg*mev is monotonic in MS(Q).

{c) Fo*mcev is continuous in MS(Q).

(d) There exists a least fixpoint of Fg*mev in MS(Q), and Ifp(F g*mev) = Fg*mev Tw,

The proof is shown in appendix.

Lemma 3.6 Ler Q' be a fixpoint of Fg*mev. Then, " = Q.
Proof Same as the proof of lemma 3.3. W

Theorem 3.7 (equivalence of Ifpi{F o*mev) and Q)
fa) Fo*mev Tw = Ifp(Fa*mev) = mewifp(Fo))
(b) Q"= Q for any Q" such that §(Q) > Q' > Ifp(Fg*mev).

The proof is shown in appendix. The theorem implies the elimination of redundant clauses by
covering can be performed any time during the transformation. The least fixpoint,
lfp{Fg*mev), can be computed by the same procedure as the one given in section 3.2, if we
replace mapping Fg by Fo*mev. The modified procedure can be regarded as an improved
procedure for DS.

Example le:  (same query as example 1h)
Clauses generated in the first and second steps are identical to those in exam ple 1b.
Q3 = mev(Fo(Qo)). Fo(Q2) consists of the following clauses.
«ancestor(jiro,taro)
ancestor(jiro,tarp—parent(jiro,taro) /* redundant */
ancestorn(jiro,turo—parent(jiro,Z),ancestor(Z,taro}  /* redundant */
ancestor(X,taro)«parent(X taro)
ancestor(X taro)«—parent(X,Z),ancestor{Z,taro).
Hence, Q3 is given by

«—ancestor(jiro,taro)
ancestor(X, taro)«parent( X tara)
ancestor(X,taro)«parent(X,7Z),ancestor(Z,1aro).



Qi1 = Qifori=2.
Notice that this optimization corresponds to the simplification of selection conditions in
relational algebra. For instance, F = ({1=jiro ~ 2=taro) v 2=taro) = (2=taro).

4. From the Distribution of Sclections to Magic Sets
4.1. The Distribution of Selections and Top-Down Methods

We compare the cffectiveness of DS 0 top-down methods in this section. The following
theorem is a direct consequence of the equivalence of DS.

Theorem 4.1 (the distribution of selections is not move effective than a top-down method)
Let O = {eg} w D, and DB be a database. Let Q' = IfpiFg) = {«yg] 0D’ let Q" =
IfpiFg=mev) = {¢=g} D", let S_Ans be the set of all answers for subgoals in a SLD iree of
O DB, and ler model(R) denate the least Herbrand model of R. Then
model(D o DB) 2 modeliD" W DE) = model{D" DB} 2§ Ans, for any J and DE.
Proof  model{D)w DBE) = model{DD' W DB) is obvious, because Q' is covered by Q.
model(D" ' DB) = model(D" « DB), because Ifp(Fg*mcv) = mev(lfp(Fg)) by theorem 3.7.
model(D' ' DB) = §_Ans is proved in the same manner as lemma 3.3. W

This theorem implies that DS is not more effective than a top-down method based on SLD
resolution 1n restricting computational space. Hence, 1t guarantees that a top-down method
based on SLD resolution is not less effective than the combination of DS and the bottom-up
computation provided selection-first is properly performed in the top-down method. QSQ can
be more effective than (or as effective as) DS because it uses the selection function
(computation rule in SLD resolution) to realize selection-first evaluation [28]. According 10
the correspondence between QS5Q and MS [9, 17, 23, 26, 29], the theorem also implies that
MS can be more effective than (or as effective as) DS if we ignore the overhead of magic
predicates.

The theorem can be explained as follows, In & top-down method, there are two modes of
information passing: unification and sideways information passing (sip) [8]. The distribution
of selection performs information passing enly by unification. Because a top-down method
performs both unification and sip, it is more effective than DS.

Let us consider the ancestor example again. The goal is «ancestor(X taro) and we assume
parent is defined in terms of father and mother. The transformed query by DS is:



i—ancestor( X, taro)

ancestor( X, tarp )¢ parent(X taro)

ancestor(X,taro)«parent(X,Z),ancestor(Z taro)

parent(X,Y) « father(X.Y)

parent(X,Y) « mother(X,Y).
The selection cannot be distributed for parent. Thus, DS is not effective even for certain non-
recursive g-predicates. However, a top-down method with an appropriate computation rule
(and MS) cuan effectively process this query. Note that we need the right-to-left evaluation

strategy, and a Prolog-like wop-down evaluation is not efficient or does not terminare for this

query.
4.2. The Distribution of Selections and Magic Sets

First, we discuss the reason of the ineffectiveness of DS. The following descriptions
summarize algorithms for DS,
(1) Pushing selections in relational databases: Pushing selections is performed vsing the
commutativity of selections with other relational operators.
{2) Aho-Ullman: This method is based on the commutativity of given selections with the lfp
OpCTator.
(3) Generalized distribution of selections : For more complex queries, DS can be generalized
by introducing disjunctions of conditions.

A common characteristic of algorithms for DS is that they extract selection conditions only
from queries. On the other hand, top-down methods propagate binding conditions extracted
from databases as well as from queries. This is considered the principal reason why top-
down methods are more effcctive than DS as shown in theorem 4.1. Hence, DS may be
improved if we can extract conditions not only from queries but also from databases.
However, extracting conditions from a database before the bottom-up computation is difficult
and time consuming. Moreover, the equivalency of the transformed result becomes
dependent on the database, cven if we can extract conditions from the database. A possible
solution to this problem is to express conditions by definite clanses, and dynamically evaluate
conditions during the bottom-up computation. As discussed at the beginning of section 3.2,
there are two clausal forms to express the transformed equation r=o(f{r)): (r<B)8 and
re—=r* B. The second form is more general than the first form because every selection in the
first form can also be expressed in the second form. For instance, a clause {r<B)8 can he
expressed by a pair of clauses, re—r*.8 and r*6. Moreover, we can express selection

conditions by clauses having bodies. Thus, we can dynamically compute selecrion conditions



during the bottom-up computation by expressing conditions by atoms and clauses instead of
substitutions. We proposed a transformation based on this idea, which was essentally a

variation of MS [17].

The above discussion informally shows that MS can be regarded as a generalization of DS. If
this observation is correct, there should be a precise correspondence between MS and DS.
There are two possible ways for such a correspondence. First, MS may be as effective as DS
for non-recursive queries for which DS is known to be effective. In other words, they may
be essentially the same methods for relational databases. Second, DS may correspond 1o a
special case of MS and there may exist a transformation that has the following properties.

(1) It is a variation of MS that extracts conditions only from queries, i.e., 1ts magic sets can

be computed without using the contents of databases.
(2) Its effect is the same as DS except {or the existence of additional predicates and clauses.

We show that the above two conjectures are in fact true. First, we show that there exists a
transformation thar has above properties. Let us consider the ancestor query with the goal

—uncestor(jiro X ),

MS generates the following set of clauses as the transformed result [4, 8]. Here, "+" indicates
a magic predicate.
Goal: « ancestor(jiro,X)
Modified rules: ancestor®(X,Y) « ancestor*P(X), parent(X,Y)
ancestor®{X,Y) « ancestor*P(X},parent(X,Z) ancestor?{(Z,Y)
Seed: ancestor*{(jira)
Magic rule: ancestor*P(Z) « ancestor*b(X),parent(X,Z).

If the adornments of predicates are eliminated and implicit arguments of magic predicates

corresponding to f are explicitly shown, the result can be rewritten as follows:
roal: & ancestor(jiro,X)

Modified rules: ancestor(X,Y) « ancestor*{X,Y),parent(X,Y)
ancestor(X,Y) « ancestor*(X,Y),parent(X,Z),ancestor(Z,Y)

Seed: ancestor*(jiro, X ).

Magic rule: ancestor®*(Z,Y) « ancestor*{X.,Y),parent(X,Z).

Although this result is not bortom-up evaluable [5], it has an interesting property. By

changing only its seed, the resulting set of clauses becomes equivalent to the original query
for any types of goals. For instance, it is equivalent to the original query for goal



«—ancestor(X taro) if the seed is changed to ancestor*(X taro). It is also equivalent for goal
—ancestor(jiro,taro) if the seed is changed to ancestor®(jiro,tare). Note that if the type of
binding in the goal 15 changed then all clauses have to be changed in the usual magic sets
methodd.

Now suppose that parent(X,Z) in the body of the magic rule is eliminated. Then the magic
rule becomes:
ancestor*(Z,Y) + ancestor*(X,Y).

This result is still equivalent to the original query, because the form of modified rules
guarantees the soundness of the transformation. However, the resulting set of clauses has
clearly a weaker effect than the original result in reducing the computation space because the
binding propagated by parent(Z.Y) cannot be propagated. Moreover, the magic sets do not
depend on the database and the effect is exactly the same as that of DS. For instance, binding
on the first argument vanishes for goal «—ancestor(jiro X} because the first argument of the
head of the magic rule does not appear in the body. If the goal is eancestor(X taro), then
the binding is propagated by the magic rule. If the goal is «—ancestor{jiro,tarp), then only the
binding on the second argument is propagated. Thus, the above transformation has the same
effect as DS for the ancestor query.

Ler s define a vanation of MS by generalizing the above example. We first summarize the
basic concepts of the Horn clause transformation by restrictor (HCT/R) proposed in [17].
HCT/R is a wransformation that maps a clause re= 8 to clause(s) of the form rer* B, where
r* s called a resricror. The restrictor corresponds to the magic atom in the usual magic sets
method. The trunsformation gives an equivalent query if clauses for restrictors are defined
properly. The conditions for equivalence are found in [17]. There are two versions of
HCT/R, the method that uses (full) restrictors and the method that uses partial restrictors. The
full restrictor predicate has the same arity as the predicate in the head of a modified rule. The
partial restrictor hias smaller arity with proper adomment like the magic sets method. Ways to
obtain semi-optimal results are also discussed in [17]. The framework of the partial restrictor
version is not less general than those of any other varations of MS [4, §, 20, 21, 23],
because they can be formulated in the framework of HCT/R. A special case of the full

restrictor version corresponds to DS,
Definition A transformation called static HCT/R is defined as follows:

Let Q = {&g} w D be a query. The transformed query Q' = st_hctr(Q) is obtained by the
following steps. It does not change the goal.



(1) Let C = re=ry,....ry be a clause in D. Replace each C by the following modified rule:
ré—r*11,....fy, Where r* is an atom having a new predicate symbol corresponding to r and
the same arguments as the head atom.

(2) Add a seed which is a unit clause g* having the same argument as the goal atom.

(3) Vor each re=1* r1,...,Tn, generaie the following magic rules and add them:

For each i, gencrate a clause, r¥j¢—1*, if the predicate of r; is a g-predicate.

The effectiveness of MS depends on two factors: (1) numbers of atoms in bodies of magic
rules and (2) arities of magic predicates. Static HCT/R is weakest in terms of the first factor
among variations of MS. Tts magic sets do not depend on databases because magic rules
contain only restrictors, Thus, it is a variation of MS$ that extracts conditions only from
queries. The equivalency of static HCT/R can casily be shown by the theorem for the
equivalency of the transformation in [17] or can be directly proved by comparing SLD-trees
of the original and the rransformed quernies.

We need several definitions to show the cormrespondence between DS and static HCT/R. The
following is the definition of the mapping used to define the fixpoint semantics of logic
programs |16, 27].

Definition Let D be a set of definite clauses. Let B be the Herbrand base of D, let 2B be
the power set of B, and let I be an element of 2B, A mapping Tp from 28 to 2B is defined as
follows,
Tn(l) = {re Blré r1,r2,....0p 18 a ground instance of a clause in D
and rq,r7,....Iy are elements of 1}.

We also need a generalized mapping that produces nonground instances.

Definition  Let D be a set of definite clauses. Let U be the set of all unit clauses (that are
possible in the underlying language). Let 2V be the power set of U, and let I be an element of
2U. A mapping T+p from 2V 1o 2U is defined as follows.
THpily= [ e Ul (1 is a unit clawse in D) v
(re= r1.02,....tp € DA Jp1.pae...pne 1A
6; = mgu(ri,pi) » 8 =0102,....05 A r'=10)}.

T+p is a generalization of Tp. The bottom-up computation algorithms should be extended, if

we intend to evaluate queries which are not range-restricted [17, 20). T*p can be used to
define semantics of such algorithms. The following lemma shows the property of T*p.



Lemma 4.2
faj 2Uis a complete lattice under set inclusion. The bottom is & and the top is U.
(b} Tt is monotonic.
e} THp is continuous,
{d) There exists a least fixpoint of T+p, and ifp(T*p) = T+pTar
Proof (a) and (b) are obvious. (c) is proved in the same manner as proposition 6.3
in [16]. (d) is a consequence of (a), (b} and (c). M

The following lemma shows the correspondence between T*+p and Tp. Hence, we can
consider bottom-up computation using T*p instead of Tp.

Lemma 4.3 Ler 1 be an element of 2U, and let ground(I} be the set of ground instances of
elements of I
fa) ground(T*p(l}) = Tp(graund(l}) for any I.
(b) ground(Ifp(T*ph) = Ifp(Tp).
Prool (a) is obvious. (b) can be proved using (1) as follows.
(I) ground(T+pTO) = TpTO = @,
(11} Assume ground(T*+pTi) = TpTi for i=j. Then
ground(T+p Tj+1 J=ground(T+p(T+p Tj) =Tp(ground(T+;3Tj)} = TD'[T];:Tj] = TpTj+1.
Therefore, ground(T+pTi) = TpTi for i<w by mathemarical induction.
Hence, ground({1p(T*p)) = ground(T+p Tew) = ground(lub(T+pTB: B<w))
= lub{ground(T+p TR): Pe<w) = lub(TpTB: P<w) = TpTw = Ifp(Tp). M

Now, we can prove the second conjecture given at the beginning of this section. The
following theorem shows the precise correspondence between DS and static HCT/R.

Theorem 4.4 (correspondence benween the distribution of selections and staric HCTIR)
Let Q = (=g} WD, and let Q" = st_hctr{Q). Q' can be divided to () = {g}) WD D*
where D' is the set of clauses obiained in step 1 of st_hctr and D* is the set of clauses
obiained in steps 2 and 3. Let DB be a database, let DI = {ifp(Fg) —{eg}) DB, and let D2
=D"wD* DB,
fa} There exists a function f such that DS = st_hctr * £+
Let D* = {r'| Jire=r¥rpra,...rm) € D' A Fo* € I(T*peja
Bis mgu(r*p*) A r" = (r « rp.ra,...rm)8)).
Then for any Q. lfp(Fg) = (g} v D*
(b} Equivalence of computational costs:

]E_



Let us consider bottom-up evaluation by T*p. There is a one to one correspondence
berween the executions of the query processing using DS and swaric HCTIR. More precisely,
there are following correspondences:

Query processing using DS consists of two phases: ransformation (DS-trans) and
hottom-up evaluation (DS-exec). Query processing using static HCTIR also consists of two
phases: iransformation (ST-trans) and evaluation (ST-exec). Because restrictors do not
depend on g-predicates, ST-exec can be executed in two sub-phases: evaluation of restrictors
(ST-execl) and evaluation of other predicates {8T-exec?). There is a one-lo-one
correspondence between the steps of DS-trans and $T-execl, and between steps of D§-exec
and 8T-execl.

{c) Equivalence of models:
Let us denote as model(D) instead of as ifp(Typ) 1o simplify nowtion.
Then model{iD1) = model(D2) — modelilD*}, for any Q' and DB.

The proof 15 shown in appendix. Note that §T-trans does not have a corresponding phase in

DS, but the computational cost of this phase is relatively small.

The first conjecture can be proved by theorem 4.4. The following corollary shows that MS 1s

as cffective us DS for non-recursive gueries.

Corollary 4.5 (equivalence of the distribution of selections and the magic sets method for
non-recursive queries)
Let Q be a gquery. Suppose that Q) is non-recursive and there is only one g-predicaie in

Q. Note that any non-recursive query can be easily transformed to the one with one g-
predicate. [f MS generates a seed having all arguments thar represent binding in the goul, then
it is as cffective as DS. Moreover, computations using two methods proceed in the same
manner.

Proof There are no magic rules other than the seed generated by any variation of MS. If
the seed preserves all bindings in the goal, then MS is as effective as static HCT/R. Thus,
MS is as effective as DS by theorem 4.4. W

Note that a variation of MS may eliminate arguments that represent bindings. For instance,
earlier methods such as magic sets [4, 21] and generalized magic sets [8] ignore binding of
the type «p¢X.X). These methods may be less effective than DS for non-recursive queries.
The corollary holds for more general variations of MS such as magic templates [20] and
HCT/R [17].
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We have proved two conjectures given at the beginning of this section. Hence, we can
conclude that MS is a natural generalization of pushing selections in relational databases.

M5 is usually more effective than static HCT/R because MS usually has more atoms in
bodies of magic rules than static HCT/R. Thus, it is usually more effective than DS by
theorem 4.4. When DS is performing most effective, it is as effective as MS. But, it has its
own advaniages:

(1) Because it does not introduce additional predicates, the evaluation of its result can be
more efficient than MS when it is most effective. We observed about twenty percent
difference in query processing time between these two methods in our experimental
system [18].

(2) The arities of predicates can be reduced after the transformation. For instance, the result
of example la can be rewritten as follows by eliminating the second argument:

ANC_garnlX)
4NC_yarp( X e—parent(X taro)
anc_garol X H—parent(X,Z),anc_grolZ).

Reducing arities of predicates improves the performance because it simplifies the

computation of individual steps although it does not reduce the complexity of the whole

processing [5].

Thus, the distribution of selection is more efficient than MS for certain gueries, although the
difference is not very large. We can improve MS using the above correspondence. The
tollowing are the possible but not exhaustive ways for the improvement:
(1) Elimination of magic predicates after the transformation.
(2) Application of DS before MS. The aritics of predicates can also be reduced. The
effectiveness of DS is difficult to check before the transformation, but the effectiveness of
static HCT/R is easier to check using its partial restrictor (i.e., adorned) version.

There are other methods related to DS. First of these is left linear transformation, which is
also a generalization of the Aho Ullman method [19]. It is easy to see that DS is effective for
left linear recursions and is a generalization of the left linear transformation. Another is the
counting method [4] and its generalization. This method frequently fails to terminate where
D5 is effective, because the same subgoals repeatedly appear (see also theorem 10.3 in [8]).
The simplest example is the ancestor query in example 1a.

5. Conclusion



This paper discussed the generalization of the selection-first principle to recursive queries. A
generalized form of DS was proposed, and its relationships to other methods were discussed.
We have shown that QSQ and MS are not less effective than DS as far as the selection
propagation is concerned. We have also shown that DS corresponds to one of the least
effective variations of MS called static HCT/R, and that MS is as effective as DS for non-
recursive queries. Thus, MS can be considered as a generalization of DS, As a result, the
relationship berween general frumeworks of query processing strategies for relational
databascs and deductive databases has become clearer. The revised relationships among
methods are illustrated in Figure 2. The generalization of our result for stratified queries is
possible because both DS and static HCT/R produce stratified results for a srratified query.

Relational Deductive Databases Logic
Databases | Frograms
|
|
. I Dynamic .
[Selection-first]  pocirgion cci'rmﬂr.r'ans Completencss
Pushing selections —— DS —= MS - Selection function
]
Sclection-first Ly  Bottom-up > QSQ =— Prolog
cvaluation computanon (Top-down evaluation)
— (eneralization DS : Distribution of selections
<—p Comrespondence MS : Magic set and its variations

Q5Q : Q5Q and s variations

Figure 2 Revised Relationships among Methods
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Appendix  Proofs of lemma 3.5, theorem 3.7 and theorem 4.4
Proof of lemma 3.5

(a) Itis obvious that Q1 = Q1 for all Q1 € MS(Q). Q1 £,Q2 and Q2 =, Q1 imply Q1 =Q2,
because minimum cover is unique. Q1 25 Q2 and Q2 = Q3 imply Q1 =5 Q3. Therefore, < is



a partial order. It is easy to see that mev(lub(X)) gives the lowest upper bound of X and
mev(glb(X)) gives the greatest lower bound.

(b) Let us assume Q2 <5 Q1 for Q1, Q2 € MS(Q). Then,
S(Q1) = 5(Q2)
implies FQ(5(Q1)) o Fo(S(Q2)) because Fg is monotonic
implies F(Q1) covers Fg(Q2)
implies mev(Fo(Q1)) covers mev(Fol(Q2))
implies mev(Fo(Q2)) < mev{Fg(Q1)).

(c) Let X be a directed subset of MS(Q). Let Y = {Q1i3Q2 e X A Q1 =5(Q2)). Then, Y is
a directed subset of 25(Q), Fo*mev is continuous because
Fo*mev(lubg(X)) = mev(Fgimev(lub{X))))
= mev(Follub(X))) and
lubg(Fo*mev(X)) = mev(lub(Fo*mev(X)))
= mev{lub(mev(Fo(X)))
= mevilub(Fg(X)))
=mev(lub(Fo(Y)))
= mev(Fglub(Y))) (because Fg is continuous in 25(Q))
= mev(Follub(X))).
(d) This is a consequence of (a), (b)and (c). W

Proof of theorem 3.7

The left hand side of (a) is given in lemma 3.5, and (b) is obvious by lemma 3.6. The proof
of the remaining part of (a) is shown in the following two steps.
(1) Fo*mevTo = mev(Fg Ta) for o < . This is proved as follows.
{1} Fq*mcv'm = ch[FqTDII =@ fora=0
(2) Assume Fo*mevTa = mev(FoToy) foro =i,
Fo*mevTi+] = Fo*mev(Fg*mevTi) = Fo*mev(mev(FgTi)=
mev(Fo(mev(FqTi))) = mev(Fo(FoTi)) = mev(EgTis1).
Hence, FQ*mchu = m-:v{FqTr:.} for & < w from (1) and (2) by mathematical induction.
(ID Fo*mevTe =lubg{ Fo*mev Ta: o < w)
= lubg{mev(FyTa): o < v}
=mev(lub{mev(FgTa) : o < w})
=mev(lub(FoTe: e < m})
= mev(FgTw)



=mev(lfp(Fg)) W

Proof of theorem 4.4

{a)  We note that step 3 of st_hctr generates following set of clauses.
Original clavse: re=ry,....Ty
Magic rules: Tyt er*
rote—r*

Ty er* {except for non-y-predicates).

(I) First we prove the following property. Let body"(R) be the subset of body(R) that
corresponds to predicates which also appear in the heads of clauses in R. Then, lfp(T*p+) =
body" (Ifp(Fg)) except for the difference in corresponding predicate symbols. We prove this
by showing T+psTi = hmlj,.r"[Fq.Ti]I for i<w by mathematical induction. Because both lips
correspond to w, the property  holds if this equation holds,

(1) T+p=T0 =@,

Folo=@.
T+psT1 = {g*).
Foll = {«g).

Thus, T*p=T1 = bady"(FoT1) if we ignore "+" attached to restrictor.
(2) Assume T*psTi= bod}r"(FqTij for i=;j.
TrpsTj+1 = T+ps(T*p+Tj) =
{r'e Ul {r'is a unit clause in D*) v
(e~ q* e D* A 3p* e T+p+Tj A 8 = mgu(g*p*) A r=r*0)]
={g*lu [fe Urteqg*e D* adp*e TrpsTj A
8 = mgu(q*,p*) A r'=r*0)}
=lg*lu [Fe Ur*~qg*e D* » 9p*e hndy"{FqTi] A
6 = mgu(g*,p*) A r'=r*0)}.
FqTi+1 = FQ{FQTH
= [ gJuw {COI CeD  3re body(FgTi) A8 = mgu (r, head(C)) ).
Thus, T+p+Tj+1 = body"(FoTi+1).

(I1) Next, we prove Ifp(Fg) = [&g) v DY
D* = [f'] re r*r,0m,..,me D' adp*e Up(THp*)a
B is mgu(r*,p*) A 1’ = (r & 11.12,....10 )0} ]
= [rl| re r*r,0r2,...qme D' A p* e body"(lfp(Folia



B is mgu(r*,p*) A ' = (r & 11,12,....T0 )3}
= {r'l rer102,...,me Dadpe body"(1fp(Fq))A

B is mgu(r,p) A ' = (r & r1,12,...,1p)8) }
Therefore, Ifp(Fg) = («g} v D¥,

(b) The correspondence between DS-trans and ST-exec] is obvious by the proof of (a). The
correspondence between DS-exec and ST-exec2 is proved as follows:

DS-exec starts from D2. ST-exec? starts from D3 = D1 w Ifp(T*p+). Here, note that
Ip(T*p+) is u set of unit clauses and it does not change in ST-exec2. By (a), we can show
that each modified rule in D3 produces the sume result as the corresponding clause in D2 in
each iteration step during the bottom-up evaluation as shown below.

Letr ¢ r*, B be the modified rule generated from re~B. Let Dy be the subset of Hp(T+p=)
that corresponds to predicate of atom r. Let D2, be the set of clauses that are generated from
ré-B. Then, re=r* B and elements of D2, produce identical sets of unit clauses in each slep.
(I) Both sets are empty at the heginning of ST-exec2 and DS-exec.

Suppose a unit cause r1 is produced in ST-exec?. There exists a unit clause r1* e D,
which is more general than r1. Let 8 be mgu(r*r1*). Then there exists a clause (reB)8 in
D2 (see (a) above), and it also produces r1. The reverse is also Casy to prove,

(I} Suppose both sets are identical at the i-th iteration,
The corresponding clauses shown in (1) produce identical results at the i+1th siep.
Therefore, the later part of (b) can be proved by mathematical induction.

(¢) model(D2) = model(D' v D* U DB)
= model(ID" U Ifp(T*ps) U DB).
model(D1) = model((Ifp(Fg) = {«g))u DB).
It is obvious that bottom-up computations of both clause sets using T*p produce identical
results for g-predicates as shown in the proof of (b). Therefore, model(D2) = model(D1)
model{D*) by lemma 4.3, N
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