ICOT Technical Report: TR-537

TR-537

CAL: A Theoretical Background of
Constraint Logic Programming
and its Applications (Revised)

by
K. Sakai & A. Alba

Febroary, 1990

© 1990, 1COT

Mita Kokusai Bldg. 21F (03) 456-3191~5
“ 301 4-28 Mita 1-Chome Telex ICOT ]32964
Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology



CAL: A Theoretical Background of Constraint Logic
Programming and its Applications
(Revised)

KO SAKAI and AKIRA AIBA
nstitute for New Cencration Computer Technology
21F, Mita Kokusai Building.
4-18. Mita 1-Chome, Minato-kn, Tokyo 108, Japan
sakaifiicot.jp. aibatlicol.jp

Abstract

Constraint logic programming {CLP) is an extension of logie programming by introdue-
ing the facility of writing and solving coustraints in a certain domain. CAL {Contrainle
avec Logique} is a CLP language in which {possibly non-linear} polynomial cquations can he
written as constraints, while almost all the other CLP Janguages proposed so far have con-
centrated only on linear equations and inequations. This paper describes a general semantics
of CLP including CAL, and shows the validity of CAL m this framework.

1 Introduction

A paradigm called Constraint Logic Programming (CLI") was proposed by Colmerauer |2], and
Jaffar and Lassez [7). A similar paradigm (or language) was proposed by the ECRC group [3].
Programs written in logic programming languages like Prolog are execnted by unification. CLP
is an attempl lo increase the descriptive power of logic programming by employing constraint
solving instead of unification as its execution mechanism. In this sense, constraint solving can
be viewed as a generalization of unification.

The idea of programming by constraints is not new, e.g. [1] and [12]. However, it is in the
framework of logic programming that constraints give full play to their ability. There are many
advantages in the combination of logic programming and constraints. 'I'he most outstanding
feature of constraint programming iz that it allows the declaralive description of problems. This
feature should be preserved when controls are described as well. Declarative description of
problems is also a feature of logic programming and, therefore, is inherited by the combination
naturally.

In fect, there is a simple and unified framework for the declarative and operational semantics
of CLP. This may not be true for a language in which controls are described operationally. A
simple generalization of the ordinary goal-reduction technigue of logic programming can be
viewed as the operational semantics of CLP.

Traditional logic programming possesses logical, functional, and operational semantics, which
coincide with each other [8], [10], and [15]. Jaffar and Lassez showed that CLP is a generaliza-
tion of traditional Jogic programming in the sense that it possesses these three semantics [7]. In
addition. they introduced algebraic semantics of CLP. According to [7], execution steps of CLF



programs depend upon decision of the satisfiability of constraints in a given domain. However,
we tequire more; the canonical forms of constraints should be computed if the constraints are
satisfiable, This is a very similar situation to that in ordinary logic programming where the uni-
fication procedure decides the satisfiability of equations in the Herbrand universe and computes
the most general unifier if satisfiable. Therefore, unification can be considered constraint solving
under the above requirement. The operational model of CLP is an extension of the model {of
usual logic programming) based on unification.

This paper deseribes the theoretical foundation, implementation, and application of CAL
(Contrainte avec Logique), which is the CLP language we are developing. We are almost on
the side of Jaffar and Lassez [7] in the theoretical argument, but arc on a different side in the
details. Afier a preliminary definition of the logical semantics of CLI in Section 2, Section 3
presents functional semantics and Section 4 presents operational semantics. Section 5 discusses
the canonical forms of constraints which are appropriate as the answers from the system. The
language, CAL, which treats polynomial equations as constraints is introduced in Section 6,
and Hoolean CAL. which is a version of CAL that treats Doolean equations as constraints, is

described in Section 7.

2 CLP on Many Sorted Algebra

This section presents basic notions Lo deseribe the semantics of CLP. Let 5 be a finite set of
sorts, F' a set of function symbals, (© a set of constraint symbols, P a set of predicate symhbols,
and V a set of variables. A surl is assigned to each variable and function symbel. A finite
( possibly empty) sequence of sorts, called signature, is assigned 1o each function, predicate, and
consirainl symbol. We write v : s, f:8;87...8, — s, and p: s152... 8, if a variable, v, has a
sort, s, if a function symbol, f, has a signature, sys;...8,. and a sort, s, and il a predicate or
constraint symbol, p, has a signalure, 88, ... 8, respoctively.
Terms and their sorts are defined inductively as follows.

1. A variable of sort 5 is a term of sort s,

2 If fis a function symbol such that f:s80...8, — 35, and #;,12,....0, are terms of sorts
81,83, ..., 8, respectively, then fliy, 12, .., 1;) is a term of sort 5.

Atomic formulae and an atomic constraints are defined as follows.

3. If pis a predicate symbol such that p @ sys3...8,, and t3,1g,.. .1, are lerms of sorts
81,89, ..., 5, Tespectively, then p(ly,ts,.. ., ta) is an atomic formula.

4. Il ¢ is @ constraint symbol such that ¢ : 5183... 50, and t3,13,...,1; are terms of sorts
81,82, .., 8, Tespectively, then ¢(fy,fa,...,1,) is an alomic constraint.

We write £ : s if @ term f has a sort &. The set of terms, alomic formulae, and atomic
constraints are denoted by T(F, V), A(P, F,V), and A((, F, V'), respectively. A constraint is a
finite { possibly empty) set of atomic constraints. Intuitively, a constraint is a finite conjunction
of atomic constraints. The empty constraint means true.

We assume that for each sort, s, there is a special constraint symbol, =,, of signature ss.
For this symbol, we use infix notation, and the suffix s may be omitted if there is no danger of
vonfusion,

A combination I of a class of sets, { D{s)ls € §}, a class of functions, {D([)|f € F}, and
a class of functions, {D{c)lc € C'}, satisfying the following conditions is called a structure. A
stenetire plays the same role as the Herbrand universe does in the semantics of ordinary Prolog.



I. i f is a function symbol such that f : sy8...8, — & then D{f) is a [unction from
Ds) % Dsz) w0 % Daa) to s).

2. If ¢ is a constraint symbol such that ¢ : sp55...5,, then D(e) is a function [rom D{s ) x
Dsq) % --« o Ds,] to {false true}.

In what follows. let I be a fixed structure. Suppose that D=, ). which is a function from
D(s) x D(s} to {false. true}, satisfies the following condition.

M=)z, 9} = il # =y theu true clse false

Note that =, here plays the same role as unification in ordinary Prolog.

A class, 1. of functious, {[(pl|p € P), satisfying the following conditions is called an inter-
pretation, which plays the same role ag an Herhrand interpretation in the semantics of ordinary
Prolog.

3. If pis a predicate symbol such that p @ sysp...5,, then [ip) is a Tunction from D{s;) =
Disgh s oo s, ) 1o {false, true).

Here the reader can see a small difference between Juffar and Lassez’s CLP and ours. We
separate the constraint symbols from the predicate symbols. In general, a CLP programmer
knows whal function symbols and constraint symbols mean, but does not know how the system
solves constraints, In this sense, these symbols are built-in in a CLP system. On the other hand,
a programmer mnst kuow all about the predicate symbols because he introduces the symbols.
Therefore, the semantics of constraint symbols and function symbols should he given a priori
as a structure, while predicate symbols should be defined by a programmer. In this situation,
separating the symbols at the beginning enables us o define the semantics naturally.

An assignment is a lunction, @, from V' te |, D(s) satisfyving the following condition.

4. If v 1 &, then v@ € D(s). (We use the syimbol, @, in postfix notation as usual.)

An assignment, €, can be naturally extended to a function of T{F, V') and A(C, F. V). Then
t6 € D(s) if tis a term of sort s, and p@ is false or true if p is an atomic constraint. Let
be a constraint. If there exists an assignment, @, such that ¢@ = true for every ¢ € ', then
C is said to be satisfiable, and @ is called a solution of C. Similarly, € can be extended to a
function of A{ P, F,V) into {false,true}, denoted €, if an interpretation, I, is given. Namely,
pl:f-hfg, oty 18y = Hplih &, 6, ..., 1.0,

A program clause, which is an extension of a definite clause, is an expression iu the form of
= PP s Pn (0 2 (1), where pis an atomic formula and each p; is an atomic constraint
or an atomic formula. The reader can see another difference between Jaffar and Lassez’s and
ours. In [7] the constraints are supposed to go ahead of the other literals in a clause. For
flexibility, we do not assume this. A finite set of program clanses is called a (constraint lugic)
program. Let I. be a program. An interpretation is called a model of L if for any program clause
(p:— PrsPas----pu)E L. and for any assignment, &, p1@; = p20; = --- = p.&; = true implies
p; = true.

3 Functional Interpretation of a Program

In what follows, let L he a fixed program. First, we extend the function given by van Emden
and Kowalski [15] for CLP. Based on an interpretation, [, let us define another interpretation,
T(I), as follows.



?I[!:I{_p”d'hd'zull'.dﬂ] =
if there is a program clanse p(t;,fz2,.... %) 1 = P1yPas- o P € L and an assign-
ment.@, such that ;&7 = pe€t = ... = pu@ = true and d; = 110, d; = 1,0,

cenntly, = 1,0
then true
else  false

Then T i= a function which maps one interpretation to another. An interpretation, [, is
said Lo be less than another interpretation, J, denoted [ < J, if the following hold. For every
predicate symhbol p: sysy.. .8, and for every element dy € D{s),dz € D{sz), ..., dy € D50},
if I{p)(dy.dy,....d,) = true. then J{p)(dy.d;,...,d,) = true. Proof of the following lemma is
a routine.

Lemma 3.1 The set af all the interpretations forms a complete lattice with respect to <, and
T 15 continuous. That is to say, the following conditions hold.

1 0f1 < J then T(I) < T(J}.

2Ifh < I < ..., thensup T(I;} = T{sup I;).

For any ordinal number, o, interpretations T | o and T | o are defined by transfinite
induction as follows.

T 1w = if ois asnceessor ordinal, 3+ 1. then {1 1 3) else sup{T 1 8 | 7 < a}
T]a = if ais asuccessor ordinal, 8 + 1, then T(T | §) else inf{T | 3| 8 < a}

The definition after “else™ is adopted also when a = 0. Thus, T' 1 0 becomes the least element
with respect to <. That is to say, for every predicate symbol p : s152...5,, and for every
element, dy & D{s),dz € D{sa)y. ., dy € Ds,), (T 1 0 p){dy,dz,... dy) = false. On the
other hand, T | 0 becomes the greatest element with respect to <, That is, for every predicate
symbol, p 1 81,82,...,8,, and for every element, dy & Mis),dy € D(sa),...,dy € Disg),
(1| DY piedy,dy.....d,) = truoe,

It is casy to show the following.

T10<T11<T12<
T|o>2T|1>2T|2>...

From Lemma 3.1 (1) and the fixed-point theorem with respect to order homomorplisms of
a complete lattice, T' has the least and the greatest fixed-points. We write them Ifp('f") and
glp(T). respectively. Then, for some sufficiently large ordinals, @ and 3, lfp(T) = T T @ and
gfp(1) = T | 4. In fact, it is easy to show that lfp(T) = T | w from Lemma 3.1 (2). In general,

the greatest fixed-point gfp(T') is different from T | w.
Lemma 3.2 The following conditions held.

I, Ty < I if and only if I is a model of L. Especially, the greatest element, T | 0, is the
grealest model of L.

2, Up(T) is a model, and for any model, I, Up(T') < I. Therefore, Ifp(T') 15 the least model
of L.



4 Operational Interpretation of Programs

This section defines an operational model for CLP. Let ¢ be a string of atomic formulas and
atomic conslraints and ¢ a satisfiable constraint. Then the pair (a,C') is called a goal A goal
of the farm of {A,C), where A is the empty string, is called a suecessful goal. The (extended)
§1,0-resolution is the proress which obtains a new goal from another goal ¢ = (ppz-- - PusC)
in the following way.

I If py is an atomic constraini such that 0 = {p} U C is satisfiable, then the goal,
(P2 Puy L), 15 obtained.

2 My = pisg.sg. . 8 ) is an atomic formula such that there is a variant (p{t1.t2,..., tm )
- 2 gy) of a pragram clause in F such that D = {87 = 1,82 = lgyeonbm =
tn U (7 Qs satisfiable, then the goal, (qigz -~ qepa - Pa. ) i oblained.

A pariant of a clause () is a clause that differs from @ at most in the names of its variables.
In case 2, we further assume that the variant does not have any cominon varaibles with &.

A sequence of goals, (.0, ..., 0y, is called an SLD-resolution sequence if each G4, is
obtained from (3, by SLD-resolution. Here, we define the success set, §5.

§§={(oe:-Cle QA
there oxizts ap SLD-resolution sequence which begins with the goal, (o7, #),
and ends with the successful goal, (A, C)}.

Intuitively, the success set §5 is the set of all pairs of a quiry ¢ and an answer (7in a CLP
svstem. Proof of the following lemma is a routine.

Lemma 4.1 Let (0,0 be a goal and (v, 12) be u yoal obtained from (o,C) by SLD-resalution.
Let T be an arbitrary model and & be an arbitrary substitution. Assume @ is a solution of [
and q@; for any element ¢ in v, Then € is a solution of " and p@; for any element pin o.

Therefore, let there be an S1L.D-resolution sequence, Go = (0, C),G1,..., Gy = (7, D). Then
iLis clear from the above lemma that, for any model I and any subslitution @, if & is a solution
of I and ¢@; for any element g in 7, then & is a solution of C and p8y for any element p in @.
In particular, the next theorem holds.

Theorem 4.1 (Soundness of (extended) SLD-resolution) Let I be a model and let p :
~ € € 85, Then, if @ is a solution of ', p@ = true.

Of course, this theorem holds in the special case that I = Ifp(T") and guarantees thal, if
p:—-C €58, C isacorrect answer to query p with respoect to the least fixed point.

Let p be an atomic formula, & a substitution. A p-variant of € is a substitution that
conincides with @ at all the variables vecuring in p. I'roof of the next lemma is also a routine.

Lemma 4.2 Let I be an interprelation. Assume that | has the following property: For any
atomic formula p and uny substitution & such that pd; = true, there is a constraint C and a
p-variant @ of @ such that p:— € € §5 and ' is a solution of C. Then, T(1) has the same

property.



By mathematical induction, For any n < w, i.e. natural number, T' | n is easily prooved to
have the same property. From the definition of 7' 1 w, il p@yq, there is an n < w such that
PO, Therefore, Ifp(T')(= T | w} also have the same properly. Thus, we can conclude the
following.

Theorem 4.2 (Completeness of {(extended) SLD-resolution) For any etomic formula p
and any substitution @ such that Py = true, there is a constraint (! and o p-variant @' of
& such that p: — " € 585 and @ is a solution of (.

This theorem gunarantees that, il a query p has a solution @ in the least fixed poini, the
SLbr-resolution can find a constraint represeating the solution.

5 Constraint Solving and Canonical Forms

According to the operational model of CLP described in the previons section, decision of the
satisfiability of constraints is necessary and sufficient to exceute a program by (extended) SLID-
resolution. However, a salisfiable constraint, as it is, may not be satisfactory as output from the
system if it is assured to be only satisfiable. For example, the constraint, {z4y =13, z—y =1},
is satisfiable, and is therefore qualified to be output as an answer according to the definition
in the previous section. It is the answer {r = 2, y = L}, however, that users actually waunt in
many cases. In this sense, constraint solving should not be a mere decision of the satisfiability
of constrainls but conversion of constraints into another form that users can understand casily.

Two constraints are said to be equivalent if they have the same solutions. We write ¢ ~ )
if € and D are equivalent. For example, {z +y =3, 2 -y = 1} ~ {z = 2, y = 1}. Clearly,
~ defines an equivalence relation for constraints. Suppose that for each equivalence class, E,
there is a representative, E |. The equivalence class to which ¢ belongs is denoted [C], and the
representative, [C'] |, is called the canonical form of €. Let us call an algorithm, A, satisfying
the following conditions, a constraint solver with respect Lo |,

L. A decides the satisfiability of an arbitrary constraint.

2. A computes the canonical form of an arbitrary satisfiable constraint.

When there is a constraint solver, as defined above, the SLD-resolution in the previous
section can he improved; it computes the canonical form of the union, I, of constraints instead
of merely making the union. Actually, unification of ordinary logic programming can be seen as
computation of the canonical form of equality constraints in the Herbrand universe. Mareover,
computation of the canonical forms may make program execution more efficient, if there js an
algorithm that solves coustraints incrementally based on the canonical forms.

6 CAL (Contrainte avec Logique)

A language named CLP(#) was developed at Monash U niversity as an instance of CLP languages
(9] and [5]. Tn CLP({R), constraints in the form of linear equations and linear inequations can be
handled. There is another important CLP language: Prolog I11 of Colmerauer {2]. In Prolog ITT,
linear constraints over rational numbers and Boolean constraints can be handled. This section
describes our CLP language, CAL (Contrainte avec Logique). The main feature of CAL is that it
has the facility of handling constraints in the form of {possibly non-linear) polynomial equations.



6.1 Language and Domain

The language of CAL is defined as follows.
5 ={AN}

5 ={
F = {=,+}u{fraction}
C={=}

P={

string of alphanumeric characters starting with a lowercase letter}
V = {string of alphanumeric characters starting with an uppercase letter}

In the actual CAL system. there is a sort of Herbrand universe for a compatibility with
Prolog. Here, however, we assume that therc is only one sort AN of algebraic number for
simplicity. If there is only one sort, the sort of each symbol need not be specified, and each
signature is determined only by arity.

We define a structure for the above language as follows.

HAN) = the set of all algebraic numbers
D{x = multiplication
I+ = addition
Difraction) = the rational number it denotes

Tt is clear that we can write polviomial equations as constraints.

6.2 Constraint Solver: Buchberger Algorithm and Grobner Bases

Buchberger introduced the notion of Grébner bases and devised an algorithm to compute the
Grishmer base of a given finite set of polynomials [1]. This algorithm has been widely used in the
field of computer algebra over the past few years. Grobner bases satisfy the conditions which
are listed in Section 5 almost perfectly. Therefore, the CAL interpreter utilized the Buchberger
algorithm as the constraint solver. First of all, we describe the theoretical background of Grobner
bases and the Buchberger algorithm.

Without loss of generality, we can assume that all polynomial equations are in the form of
p=0. Let £ = {p = 0....,pn = 0} be a system of polynomial equations, and I the ideal in
the ring of all the polynomials generated by {p,...,pn}. The following close relation between
the elements of I and the solutions of E is well known as the Hilbert zero point theorem [6].

Theorem 6.1 Let p be a polynomial. Every solution of E is also a solution of p = 0, if and
only if there exists a natural number n such that p* is an element of I.

Moreover, the following corollary is important to determine the satisfiability of constraints.

Corollary 6.1 E has no solution if and only if 1 € I.

Thus, the problem of solving constraints is reduced to the problem of determining whether a
polynomial belongs to the generated ideal. Buchberger gave an algorithm to determine whether
a polynomial belongs to the ideal. A rough sketch of the algorithm is as follows (see [1] for a
precise definition).

Let there be a certain ordering among monomials and let a system of polynomial equations
be given. An equation can be considered a rewrite rule which rewrites the greatest monomial
in the equation to the polynomial consisting of the remaining monomials. For example, if the
ordering is lexicographic, a polynomial equation, Z - X + B = A, can be considered as a rewrite
rale, Z — X — B4+ A. Two rewrite rules whose left hand sides are not mutually prime are said to



averlap. In this case, the least common multiple (LCM) of their left hand sides can be rewritten
in two ways by Lhese two rules, which may produce different results. The resulting pair is called
a eritical pair. If further rewriting does not succeed in converging a critical pair, the pair is said
to be divergent and is added to the system of equations. By repeating this procedure, we can
eventually obtain a confluent rewriting system. The confluent rewriting system thus ohtained
is called & Grobner base of the original system of equations. The following theorem establishes
ihe relationship between ideals and Gribner bases.

Theorem 6.2 Lei R be a Grabner base of a system of equations {py = 0,...,p, = 0}, and let I
be an ideal generated by {p1,....pu}. A polynomial, p, belongs to Iif and enly if p is rewriiten
to 0 by K.

Mareover, the following theorem guarantees the validity of considering the reduced Grobner
bases as the canonical forms of constraints. A (Grobner base is said to be reduced if it has no
two rules, one of which rewriles Lthe other,

Theorem 6.3 Suppose that the ordering among monomials is fired. Let E and F be systems
of cquations, Then if the ideal generated from E is the same as that from F, then the reduced
(rrobmer base of E 15 same as that of F.

Since the relation hetween the solutions and the ideal described in theorem 6.1 is incomplete,
the reduced Grébner bases do not satisfy the requirements in Section 5 completely, For instance,
constraints {X = 0} and {X¥? = 0} have exartly the same solutions. However, the reduced
Grobner bases are different. That is, that of the first constraint is {X — 0}, while that of the
second is {X? — 0}. Namely, the Grohner base of the radical of the generated ideal, [, ie.
{plp™ & I}, is more desirable than that of ideal I itself for the purpose of the CAL system. In
fact, theoretically, it is possible to compute the the Grébner bases of the radical. However, there
is no efficient implementation. Fortunately, since there is a simple algorithm that determines,
given a polynomial p, whether p helongs to the radical, computation of the Grobner base of
radical is not critical for actual application of CAL. Moreover, the algorithm enables CAL to
handle polynomial disequations (#).

6.3 Program Example

First. we will illustrate feartures of CAL by several examples. As explained in the previous
section, CAL can distinguish itself when constraints are non-linear. The following is an example
of proving a geometrical theorem; The program is as follows.

sur(H,4,5) :- A*H=2:3,

right(4,B,C) :- A"2+4B"2=C"2.

tri(4,B,C,5) :- C=CA+CB, right(CA,H,a), right(CB,H,B), sur(H,C,S5).
where A2 is a syntax sugar of A=A, and so are the others.

The first predicate expresses the formula to compute the area of a triangle from its height and
baseline length. The second is the Pythagorean theorem. The third asserts that every triangle
can be divided into two right-angled triangles. {See Figure 1.)



CA B
Figure 1  Area of a Triangle

If the goal, tri(A.B,C.S). in which all the parameters are free, is given, this program com-
putes a Grobner base consisting of seven rules. An outstanding feature of this base is that it
includes a formula constructed by variables A, B, C, and 3 only, namely:

S 2=(-hA"&-B 4-C 4+2eB " 2wC 242w  2x T2+ A" 2%B72) /16

which is the famous Heron's formula in developed form. Of course, this program can be executed
by a goal with concrete parameters. For example, when the goal tri(3,4,5,8) is given, the
program answers thal 8°2=38,

The next example is to compute the conditional extremum using Lagrange’s method of
indeterminate coeflicients. The following CAL program realizes the method.

ex(F, Constraint,Vars) :-
lag(Constraint, Lag),
difs{Vars, F, Lag).
lag([ 1, 0) := 1.
lag([L=R |[Cs], Mult*(L-R)+Lag) :-
L=k,
lagiCs, Lag}, !.
difs([ ], ., ) = '.
difs([Var [Vars], F, Lag) :-
dif(F, Var)=dif(Lag, Var}, !,
difs{Vars, F, Lag).

The first argument for predicate ax is the objective function whose extremum will be com-
puted, the second argument is the list of conditions on the computation, and the third argument
iz the list of variables (that is to say, the other symbols represents constants). dif (F,Var) de-
notes the partial derivative of polynomial F with respect to variable Var. Strictly speaking,
dif (F,Var) is not a polynomial but a Prolog term (a meta-represention of a polynomial) and
so it is illegal to write it in a constraint. ITowever, the notation is built into the actual CAL
interpreter {or programming convenience,

This program can be used, for example, to solve the following problem.

Divide a circle into two fans by two radial cuts, making two cones. The problem is to obtain
Lhe angle between the two radial cuts which maximizes the sum of the volumes of the two cones.



VAN
CH D

Figure 2 Conditional Extremum

We can assume that the circle is of radius 1, since the answer doesn’t depend on the size
of the circle. After making the first eut, make the second one at distance 2:[% + r} along the
circumlerence, measured in one direction, 27(L — r) in the other. Suppose the cones have height
sk and sB respectively. Then, factoring out constants, we obtain the following query.

ax({1/2+r) " 2%sh+(1/2-7) " 2#sE,
[sA=2+(1/2+1)"2 = 1, sB"24(1/2-r}"2 = 1],
[s4, =E]).

This program oulpuls a Gribner-base of three rmles, among them the following degree-7
polynomial which contains r as its only variable.

7 = (20/12)*r 5+ (-17/48)*r~3+(B/5T76)*r

In fact, the sum of the volume takes its extrema at the solutions of this equation between
~+ and ; It may be surprising for the reader that the solution r = 0 does nol give a maximal
but gives o minimal.

7 Boolean CAL

(Al deseribed in the previous section is for constraints in the form of polynomial equations over
algebraic numbers. We also implemented another version of CAL, in which Hoolean equations
can be written as constraints. A typical domain for this version of CAL is the set of truth
values. This constraint solver employed a similar algorithm to Buchberger’s but was modified
for Boolean constraints [11].

In Boolean CAL, we can write programs which need logical evaluation very easily and natu-
rally. For instance, it is an easy task to write a program which verifies the correctness of logical
circuils.

_lﬂ_



7.1 Language and Domain

First. let us define the language and the structure of Boolean CAL as follows.

§ = {BA.}

F={n04,T}

C={=

I' = {string of alphanumeric characters starting with a lowercase letter}
V' = {string of alphanumeric characters starting with an uppercase letter}

DMBA) = an arbitrary BDoolean algebra
Di{n) = conjunction

DiF) = exclusive disjnnction
Dil})= false
D(TY= true

I the actual system. other logical connectives such as disjunction, implication, and negation
are also included in F. However, since it is well known that they can be defined from A, @, L
and T, we have omitted them for simplicity.

7.2 Boolean Grobner Bases

There are many known procedures to decide the satisfiability of Boolean equations. Of these
procedures, the semantic unification method is one of the most promising. For instance, the
FCRC-group employed it as a constraint solver for their language 3].

However, a Gribner base type approach can he applied to the Boolean equations as well as to
ordinary algehraic equations. This approach is more user-friendly than the semantic unification
method in the following points.

I. It is not necessary Lo introduce extra variables which are not explicitly written in the
program or the goal. Thus, ontput from the system is easy for the user to understand.

2. Every coustraint has its canonical form in the sense of Section 5, and the canonical form
is compnted efficiently.

There is an algorithm to compute a Boolean Grébner base of a given Boolean constraint [11].
Here, we summarize several important properties of Boolean Gribner bases. Let E be a system
of Boolean eguatious, p a Boolean polynomial, [ the ideal generated by E, and R a Boolean
Grisbner hase of E. The following is the Boolean counterpart to the Hilbert zero point theorem.

Theorem 7.1 Every solution of E is also a solution of p= 0 if and only ifpe I.
Corollary 7.1 E has nwo solutions if and only if 1 € 1.
Theorem 7.2 p is rewritten to 0 by R if and only if p is an element of I.

Theorem 7.3 Suppose that the ordering among monomials is fired, and let E and F be systems
of Boolean equations. Then the reduced Boolean Gribner bases of E and F' are the same if and
only if the generated ideals are the same.

Note that the relation between the solutions and the ideal is complete for Boolean equations.
Therefore, the reduced Boolean Grobner bases satisfy the requirement in Section 5 perfectly.



7.3 Program Example

As we mentioned above, Boolean CAL handles boolean equations. Here we present the verifica
tion of a logic cirenit as an example. The problem is to prove that the following planer circuit
is a cross circuit.

14

i_{>5 1A I8 » :
:1_]]3 S 1

<
|
[==]

Figure 3 Cross Circuit

First of all, we describe the specification of the circuit in terms of boolean equations. Ac-
cordingly, the following program is obtained. The parameters X and ¥ are the input to the circuit
and A and B are the output.

cir{¥,Y,A.B) :-
14 = ~XVI3, 13 = EAY, I6 = ~YvI3,
I8 = ~T4VvI3, 19 = ~IEAT3,
A = I4nT11, I11 = I8vIS, B = ISATI11.

The following query is evaluated against the above program. In the query, all arguments are
left free.

?- cirlx,y,a,b).
The resulting oulput proves that the input signals cross each other logically.
x=b

y=a

8 Conclusion

The argument on semantics is mainly along the lines of that by Jaffar and Lassez [7]. Here we
summarize the dilferences. We separated the constraint symbols from the predicate symbols for
discussing the semantics naturally. In [7], the constraints are supposed to go ahead of the other
literals in a clause. For flexibility, we did not assume this. We did not discuss finite definability,
solution compactness, or satisfaction completeness, since we are not very interested in negation
as failure, in particular, in CLP. There are many predicates which do not fit negation as failure.
Even il a predicate fits such negation, there is most likely to be a decision procedure for the
predicate, and in such a case, it seems to be more natural in CLP to incorporate the decision
procedure into the constraint solver. Instead, we discussed the canonical forms of constraints,
which are suitable as output from the system.

— 12 =



As shown in the examples, we can obtain an answer in the form of a relation among parain-
sters, in particular, in the case where many parameters in a goal remain free. This effect is very
similar to that of partial evaluation, e.g. {13, or the unfolding techunigue in logic programming,
e.g. [14]. However, the result is more impressive and effective in CAL, since computation of
Grobner bases is much heavier and much more camplicated than mere unification.

In the current version of CAL. the value of a variable in constraints may be {virtually) any
algebraic number, i.e. a complex number which can be a solution of a polynomial equation with
integer coeflicients. However, if a certain variable, say x, can take its value only in real numbers,
then the constraint, r>4 1 = (, is inconsistent. Therefore, if we have a power[ul constraint solver
which knows a lot about the smaller domain of real numbers, the execution time is expected Lo
be reduced drastically for some practical problems. On the other hand, the user may want to
write non-algebraic conslraints, such as sinlz) = 1. or ¥ = n. In this case, it may be necessary
to extend the domain to the set of all complex numbers.

Thus. there must be a tremendous variety of requirements in writing and solving constraints.
To satisfy all unpredictable user requirements, the constraint solver should be desipned to be
completely open and customizable. According to this policy, the system is designed to accept
the redefinition of a constraint solver suitable for the user’s purpose. A user who remakes the
constraint solver is required to clarify the language and the domain of his constraints according
to Gection 2 and to show that his constraint solver satisfies the criteria described in Section 5.
At the very least, the user should implement an algorithm which determines the satisflability of
his constrainls.

Refercnces

[1] B. Buchberger. Grithner bases: Au Algorithmic Method in Polynomial Ideal Theory. In
N. Bose, editur, Multidimentional Systems Theory, pages 184-232. 1. Reidel Publ. Cowp.,
Dwordrecht, LA85.

[2] A. Colmerauer. Opening the Prolag 111 Universe: A new generation of Prolog promises
some powerfnl capabilities. BYTE, pages 177-182, August 1987,

[3] M. Dinchas, P. Van Hentenryck, Ii. Simonis, A. Aggoun, T. Graf, and F. Berthier. The Con-
straint Logic Programming Language CHIP. In Proceedings of the International Conference
on Vifth Generation Computer Systems 1988, November 1988,

4] R. E. Fikes. RFI-ARF: A system for solving problems stated as Procedures. Artificial
Infelligence, 1:27 120, 1970,

(5] N. C. Heintze, J. Jaffar, . 5. Lim, S. Michaylov, P. Stuckey, R. Yap, and C. N. Yee.
The CLP Programmer’s Manual, Version 1.0. Departiwent of Computer Science, Monash
University, 1956.

[6] D. lilbert. Uber die Theorie der algebraischen Formen. Math. Ann., 36:473-534, 1890.

[7] J. Jaffar and I L. Lassez. Constraint Logic Programming, In 4th IEEE Symposium on
Logic Programming, 1957,

8] J. Jaffar, J-L. Lassez, and M. Maher. Logic Programming Language Scheme. In 1). DeG-
root and G. Lindstrom, editors, Fogic Programming: Functions, Helations and Fguations.
Prentice-Hall, 1986,

- 13 —



(9] J. Jaffar and S. Michaylov. Methodology and implementation of a constraint logic pro-
gramming system. Technical Report TR 54, Department of Computer Science, Monash
University. June 1985,

[10] J. W. Llovd. Foundations of Logic Programming. Springer-Verlag, 1984,

[11] Y. Sato and K. Sakai. Boolean Gribner Base, February 1982, LA-Syvmposivm in winter,
RIMS. Kyoto University,

12| G. L. Steele Jr. and G J. Sussman. CONSTRAINTS. Technical Report 502, MIT Al Lab.,
Cambridpe, Massachusetts, 14978,

13] A. Takeuchi and K. Furukawa. Partial evaluation of Prolog Programs and Iis Application
to Meta Programming. In Information processing 86, Dublin. North-Holland, 1986,

[14] H. Tamaki and T. Sato. Unfold/Fold transformation of Logic Programs. In Second Inter-
national Logic Programming Conference, Uppsala, 1984,

[15] M. H. van Emden and R. A. Kowalski. The Semantics of Predicate Logic as a Programming
Language, Journad af the ACM, 23(4), October 1976,



