ICOT Technical Report: TR-536

TR-536

Unfold/ Fold Transformation of
Stratified Programs

by
H. Seki (Mitsubishi)

February, 1990

(© 1990, ICOT

Mita Kokusai Bldg. 21F (03) 456-3191~5

|GDT 4-28 Mita 1-Chome Telex ICOT] 32064

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

UnroLp/ForLn TRANSFORMATION OF STRATIFIED PROGRAMS®

Hirohisa SEKI

Central Research Laboratory,
Mitsubishi Electric Corporation,
8-1-1, Tsukaguchi-Honmachi,
Amagasaki, Hyogo, TAPAN 48]

Abstract

This paper describes some extensions of Tamaki-Sato’s [16] unfold/fold transformation of definite
programs. We first propose nunfold/fold reles also preserving the finite failure set {by SLD-
resolution) of a definite program, which the original rules proposed by Tamaki and Sato do not.
Then, we show that our unfold /fold rules can be extended to rules for stratified programs, and
prove that both the success set and the finite failure set (hy SLDNF-resolution) of a stratified
program are preserved. ['reservation of eguivalence of the perfect model semantics [12] is also
discussed.

Key Words: Unfold/Fold Transformation, Equivalence of Programs, SLDN F-resolution, Finite
Failnre, Stratified Programs, Perfect Model Semantics

A preliminary version of this paper appeared in the 6th Interaational Confersnce on Leogic Programming,
Lisben, 19589,
"This wark was done while the author was at [COT {Institute for New Generation Computer Technology).

1 Introduction

Program transformation provides a powerful methodology for program development, especially
for derivation of an efficient program preserving the same meaning as that of an original and
possibly inefficient program. Thus, one of the maost important properties of program transforma.
tion is preservation of equivalence (Maher [10] investigated various formulations of equivalence
for logic programs).

Tamaki and Sato proposed an elegant framework for unfold /fold transformation of logic pro-
grams [16]. Their transformation rules preserve the equivalence of 2 definite program in the scnse
of the least Herbrand model. Kawamura and Kanamori (7] recently proved that Tamaki-Sato’s
transformation also preserves the success sef of a program, that is, a transformed program has
the same computed answer substitution as that of the original program for any goal. Thus,
the transformation rules by Tamak and Saio seem to be sufficient, at least as far as positive
information inferred from a program is concerned.

In general, however, their transformation does not always preserve the finite failure set (by SLD-
resolution) of a definite program. The evaluation of a goal in a transformed program might not
be terminating, even if the evaluation of that goal is finitely failed in the original program. Thus,
when we are interested in negative information inferred from a program and Clark’s Negation
as Failure rule [3] is used, their transformation is not sufficient. Furthermore, when we consider
an extension of their rules to a general logic program where the body of a clause may contain
negative literals, the failure to preserve the finite failure of & program would lead to failure to
preserve positive information inferred from the program.

In this paper, we propose unfold/fold rmles which also preserve the finite failure set of a definite
program. Then, we extend them to a stratified program and show that our transformation
preserves both the success set and the finite failure set (by SLDN F-resolution) of a given stratified
program. Preservation of equivalence of transformation in the perfect model semantics [12] is
also discnssed,

The organization of this paper is as follows. After summarizing preliminaries, section 2 gives
transformation rules which preserve the finite failure set of a definite program. Section 3 extends
them to stratified programs. Section 4 discusses transformation rules which preserve the perfect
model semantics. Finally, a summary of this work and a discussion of related work are given in
section 5.

Throughout this paper, we assnume that the reader is familiar with the hasic concept of logic
programming, and the terminology follows that in [9]. As notation, variables are denoted by
X,Y,---, and atoms by A, B,---. Multisets of atoms are denoted by L, K, M,.--, and #,0,---
are used for snhstitutions.

2 Unfold/fold Transformation

2.1 Preliminaries: Rules of Transformation

This section describes Tamaki-Sato’s unfold/fold transformation for definite programs [16].
The following deseriptions of transformation rules are borrowed mainly from [15] and [7].

Definition 2.1 [nitial {Definite) Program

An inttial (definite) program Fj is a definite program satisfving the following conditions:

(11} Fyis divided into two disjuint sets of clauses, P, and P The predicates defined in
Fricw are called new predicates, while those defined in Fyy are called ofd predicates.
{(I2) The new predicates appear neither in Py nor in the bodies of the clauses in Fy.,. O

Example 2.1 Let Py = {0, 05, U3, Cy, Oy, Ca. (72}, where

iy plo, o).

g XYY — eqlX,Y0LplX, V)
Cy g(0,0).

c, A X, Y) — plusl(X,Y), q(X,Y).
Cy eq(X, X).

Cs @ plus1(X,s(X)).

[Srp (X, Y) — p(X,Y),e(X,Y).

and FPoy= {C;,C3,C3,C4,Cy,Cg}, Paew= {C:}. Thus, ‘r' is a new predicate, while the other
predicates are old predicates. o

We call an atom. A. a new atom (an old atom) when the predicate of A is a new predicate (an
old predicate), respectively.

Definition 2.2 Unfolding

Let F; be a program and € a clawse in P of the form: H — A, L. Suppose that Cp,---, C), are
all the clauses in F; such that C; is of the form: A; — Kj and A4; is unifiable with A4, by an
mgu, say, #;, for each j (1 < 7 < k).

Let C1 (1 = j < k) be the result of applying #; after replacing 4 in € with the body of Cj,
namely, C! = 08 — K;f;,L8;. Then, Piyy = (P~ {CHU{C],---.CL}. C is called the
unfolded clause and Cy, -+, are called the uwnfolding clauses. (]

Example 2.2 (Continued from Fxample 2.1)

By unfolding C; at atom ‘p(X,Y) in its body, program P,={C,,Cs,C3,Cy, Cs, Cs, Ca, Ca} is
aobtained, where

T+ r(0,0) — g(D,0]. O
Cy : r[AY) = eq(X,Y),p(X,Y),q(X,Y).

Definition 2.3 Folding

Let © be a clause in P; of the form: 4 — K, L and D a clanse in Py’ of the form: B — K.
Suppose that there exists a substitution # satisfying the following conditions:
{F1) F'4=K
(F2) Let Xy,---, Xj,-++,Xx be internal variables of D, namely, appearing only in the body
K’ of D but not in B. Then, each X;# is a variable in € such that it appears in none of 4,
L and Bf. Forthermore, X0 # X011 # 7.
{F3) D is the only clause in P,., whose head is unifiable with B,

(F4) Either the predicate of 4 is an old predicate, or € is the result of applying unfolding at
least once to a clanse in F.

Then, let €' be a clause of the form: 4 — B#, L, and let Fj4; be (B, - {CH U {C'}. Cis ca.]led
the folded clause and D 15 called the folding clause,

Example 2.3 (Continued from Example 2.2)
By folding the body of Cy by @7, program Po={C,Cs, C3, 0y, Cs, C, O3, Cip} is obtained,

where

Cip @ rlX,Y) — egX,¥V),r(X,}). O

2.1.1 Previous Results

Definition 2.4 Transformation Sequence

Let F; be an initial program and F;y; (i > 0) a program obtained from F; by applying either
unfolding or folding. Then, the sequence of programs Fy, Py, -+, Py is called a transformation
sequence starting from Fy. 0

For the above unfold /fold transformation, Tamaki and Sata proved the following result [16].

Theorem 2.1 [Tamaki-Sato 84] The least Herbrand model, Mp,, of any program F; in a
transformation sequence starting from initial program Fp, is identical to that of Fp. 0

Recently, Kawamura and Kanamori [7] showed that Tamaki-Sate’s transformation also preserves
answer substitutions for any goal

Definition 2.5 Success Set

Let P be a (definite) program. The set of all the atom-substitution pairs (A, o), such that there
exists a successful SLD-derivation of PU {~ A} with computed answer o, is called the success
set of P, and is denoted by SS(P). o

Theorem 2.2 [Kawamure-Kanamori 88] The success set SS(F;) of any program F; in a
transformation sequence starting from initial program Fy, is identical to that of Fy. i

Example 2,4 (Continned from Examples 2.1 and 2.2)

"Mote that D is not necessarily in P,

Since r{0,0) € M(F) holds, r{0,0) is also in M(F) from Theorem 2.1. More precisely,
(r(X,Y), 0 = {X/0,Y/0}) is in S5(Py), thus, that pair is also in SS(P,), from Theorem 2.2. O

2.2 Modified Folding Rule and Preservation of FF
2.2.1 Modified Folding Rule
This paper also considers the finite failure set (by SLD-resolution) of a program.

Definition 2.8 Finite Failure (FF) Set

Let P be a (definite) program. The set of all atoms A such that there exists a finitely failed
SLD-tree for Pu (= A}, is called the (SLD) finite failure sef of P, and is denoted by FF(P).
]

The partial correctness of the transformation wrt FFis easily shown,

Proposition 2.1 (Partial Correctness wrt FF) Let £, -+, Py be a transformation se-
quence, Then, FF(Py) C FF(Fy) forall N > 0.

Proof: Let G be a definite goal, and suppose that Py UG has a finitely failed SLD-tree. From the
soundness of SLD-resolution [3], comp(Py) + G. It is casy to see that comp(Fo) b comp(Pn}
holds®. Thus, G is also a logical consequence of comp{Fy). Then, from the completeness of
SLD-resolution [53], Fy U G has a finitely failed SLD-tree. o

Tamaki-Sate’s unfold /fold transformation, however, does not preserve the fotal correciness wrt
FF. That is, FF(F,) C FF(F;) for all ¢ (¥ > 1 > 0) does not hold in general.

Example 2.5 (Continued [rom Example 2.1, 2.2)

The failure set of the original program Fy is nof preserved. For example, r(s(0),5(0)) €
FF(Py), while r(s{0), 5(0)) is not contained in FF(P;). In fact, any SLD-derivation of Py u{—
r{s(0),s(0))} is infinite. Thus, FF(Fo) QFF(Pa). u

We now give a modified transformation mle which also preserves the total correctness wrt FF.
In order to specily such z rule, we need several definitions.

Definition 2.7 Inherited Atom

Let Fp,- -+, Py be a transformation sequence starting from Fy, and © a clause in F; (N > ¢ = 0}
whose head is a new atom. Then, ap atom in the body of € is called an atom mherited from Fy
if one of the following conditions is satisfied:

(i) € is a clanse in Py.,. Then, each atom in the body of C is inkerited from Fy.

(ii) Let C be the result of unfolding in F:. Suppose that Cy in F,_y is the unfolded clause
of the form: 4 — B, By, -+, By, and that C_ in F._; is one of the unfolding clauses of the
form: B' — K. Thus, C is of the form: A8 — K8, B,8,---, B0, where # is an mgu of B

#Note that the converse does not hold in general, that is, comp(Pu) Feomp(o).

and B'. Then, each atom B;# (1 < j < n)in C is inherited from Fy if B; in Cy is inherited
from Fp.

{iii) Let C be the result of folding in F,. Suppose that C4 in F_; is the folded clause of the
form: A — K, B,,---, B, and that D in P,,, is the folding clause of the form: B — K.
Thus, € is of the form: 4 — B#, By,---, By, where # is an mgu such that A= K. Then,
each atom 5; (1 €7 < n)in C is inherited from By if Bj in Cy is inherited from Fy. w

Intuitively, an inherited atom is (a possibly instantiated version of) an atom such that it was in
the body of some clanse in Fy,y and no unfolding has been applied to it.

Example 2.6 In Example 2.1, both ‘p(X.Y)" and ‘9(X,Y)" in the body of Cr are inherited
atoms. In the body of clause Cy (Example 2.2), atom ‘g(X,Y) is inherited from P, while
neither "eg{ X', ¥Y)" nor *p{ X, ¥')" is inherited from F. o

Now, we can define a modified folding rule.

Definition 2.8 { Modified) Folding

Let C and D be defined similarly in Definition 2.3, namely, C is a clause in F; of the [orm:
A — K, L and D is a clause in F,,, of the form: B «— R”. Suppose that there exists a
suhstitution & satisfying the following conditions:

(F1), (F2) and (F3) are the same as those defined in Definition 2.3.

o (F4") Either the predicate of 4 iz an old predicate, or there iz no atom in K which is
inherited from Fy. |

Example 2.7 (Continned from Example 2.2)

Consider clause Cy in Example 2.2. As noted in Example 2.6, atom ‘g{ X,Y)" in its body is
inherited from Fy, thus the modified folding does not allow it to be folded by C5.

Instead, by unfolding Cp; at atom ‘g{X,Y) in its body, program FP"={C,Cs.
Ca, 04, Cx G, Cr, Cry Cm} is obtained, where

Cu @ 7(0,0) — «g(0,0),p(0,0).
CI‘J: r[);r}r} - t'i":X:YLP[XnY:'-W““[-xuY}-'i’[xry]-

Now, atom ‘g(X,Y)" in the body of Cy2 is not inherited from Fy, so that the modified folding
is now applicable to Cis. That is, by folding the body of Cy2 by Cr, program PP*={C|,C3,
1, Oy, O, Oy, Cg, C11, Cla} is obtained, where

Cia o (X)) — eg(X,Y), plusl{ X, Y}, 7 X, V). O

Hereafter, except in section 4, by folding we mean the modified folding defined in Definition 2.8,

and by a transformation sequence, we mean the one obtained by applying either unfolding or
modified folding.

2.2.2 Preservation of FF for Definite Clauses

In this subsection, we show that the unfold /fold transformation (using modified folding) guar
antees the total rorreciness wrt FE for definite programs. We need one more definition and a
lemma.

Definition 2.9 F.-expansion

Let A be an atom and let I be a sequence of atoms. [is called a P, -erpansion of A, denoted
by A, if the following conditions are satisfied:

w When A is an old atom, L is A sell
s When 4 isanew atom, L is cither A, or a sequence of atoms "B 8, - B, 8 such that there
exists a clause in Pa., of the form: Ag — By, -+, B, and #is an mgu of A and Ay.

Similarly. Jet M be a sequence of atoms of the form: (7y,---, Gy Then, [is called a Fo..-
erpansion of M, denoted by W, if L=Gy, -, Gy o

Example 2.8 (Continued from Example 2.1)

Since p{A,Y) is an old atom, a Py.,-cxpansion of p{.¥,Y) is itselfl. On the other hand, a
P...-expansion of r(0,Y) is either itself, or a sequence of atoms ‘p(0, ¥}, g(0, ¥')". O

Lemma 2.1 (Py-simulation of SLD-derivation in Fy)

Let Py, ---, Py be a transformation sequence. Let G be a goal, and suppose that there exists an
SLD-derivation Dr of PyU{G}, Gy = (- -, G, - - using input clanses in Fyy and substitutions
8, B - Then, there exists an SLD derivation Drg of Fy U G}, Fa=G, -+, F,»+ using
input clauses in Py and substitutions oy, -+, 0, - - -, satisfying the following conditions:

(i) For each k (& > 0), there exists some ! (> 0) such that Fyry - 05 an P, .o -expansion of
Gyl i, and

(i) the restriction of oy -~y Lo the variables in G is the same as that of #; - - 8.

{ili) (farrness) Furthermore, if the SLD-derivation Gg = G-+ -, G, - 1s fair, then so is the
SLD-derivation Fo =G, - Fp - --

Dry is called a FBy-simulation of Dr.]
The proof is shown in Appendix A.2.

Example 2.9

Consider an SLD-derivation Dry of PJ*U{Gy =— r(s(0},s(0))}, where Py" was given in Example
9.7. See the right-hand side in Figure 1. Dry has a Py -simulation Fo = G, Fi, Fy, F3, which is
shown in the lefi-hand side in the figure (underlined atoms mean selected atoms). Note that Fs
is a Ppew-expension of Gy,]

We can now show the total correctness wrt FF for definite programs.

Foi— r{s(0),s(0)) Gy — r(s{0), 5(0))
| Cs i Cus

Fy o p(s(0), 5(0)), g(s(0), s(0)) Gy :— eql{s(0), s(0)), plusi{s{0), s(0)),
| Ca r(s(0),s(0))

Fy = eq(s(0),5(0)), p(s(0), 5(0)), |
gl s(0), =(0}) fail
| Cs

Fy e eq(s(0),5(0)), p(s(0), 5(0))
plus1{s{0), s{0)).q(s{0),s(0))

|
fail

Figure 1: Fy-simulation (left) of an SLD-derivation of PJ" U {— r{2(0), 5(0))} (right}

Proposition 2.2 (Total Correctness wrt FF)
Let Fy, -+, Py be a transformation sequence. Then, FF(F) € FF(Py) forall &N > 0.
Froof:

For simplicity of explanation, we assume here that G is a ground atom (a more general case is
shown in Proposition 3.3). Suppose that an SLD-tree of FyU {— 7} is finitely failed. Suppose
[urther that Py U {— G} has a fair SLD-tree which is not finitely failed. Obviously, no SLD-
derivation Py U {— 7} ever succeeds; otherwise, a Fp-simulation of such a derivation would also
succeed, which is a contradiction. Let BR be any non-failed infinite branch in the fair SLD-tree
for Py U {+~ G}. From Lemma 2.1, there exists a fair SLD-derivation Dy of Fy U {— G}
which is a Fy-simulation of BR. Thus, Dry is & non-failed fair infinite derivation. From the
result by Lassez and Maler [8], & is in the SLD finite failure set of Py iff every fair SLD-tree for
Fyu {— (7} is finitely failed. Thus, Dry should be finitely failed, which is a contradiction. 0O

3 Unfold/Fold Transformation of Stratified Programs

3.1 Preliminaries

We now consider an extension of the unfold/fold transformation from definite programs to
stratified programs.

Definition 3.1 Stratified Program [1]

A general logic program, P, is stratified if its predicates can be partitioned into levels so that,
in every program clause, p + Ly, ..., L,, the level of every predicate in a positive literal is less
than or equal to the level of p and the level of every predicate in a negative literal is less than
the level of p. U

Throughout this paper, we assume that the levels of a stratified program are 1, ..., r for some
integer r, where r is the minimum number satisfying the above definition. In this case, Fis
said to have the maximum level r and is denoted P = P! 4+ ... 4+ P", where P' is a set of clauses
whose head predicates have level 2. Note that P is a set of definite clauses. When L is a literal
whose predicate has level i, we denote it level(L) = 1. Furthermore, the siratum [12] of 2 goal
is defined us follows. For any positive atom A, let stratum(A) = level(A) and stratum(-A)=
stratum{A) + 1, Suppose that G is a goal of the form: — Ly,--+, Ly, where n > 0 and L;’s are
literals. Then, stratum(G) is 0 if G is empty, and maz{stratum(L;) : 1 <1 < n}, otherwise.

As in the previous section, we need to define an initial program, unfolding/folding and a trans-
formation sequence for siratified programs. Although they are almost the same as the previous
ones, we impose Tnrther restrictions on an initial stratified program.

Definition 3.2 Initial (Stratified) Program
An initial (stratified) program Fj is a stratified program satisfying the following conditions:

e {I1) and (12) are the same as those defined in Definition 2.1, and
s (13) The definition of each new predicate consists of exactly one clause.
s (I4) Furtliermore, the body of each clanse in Fo.y contains no negative literal. O

Condition (I3) above guarantees that a stratified program is also stratified after the unfold/fold
transformation as shown below (Proposition 3.1}, and most cases found in the literature seem Lo
satisfy this condition, On the other hand, condition {(I4) is due to the fact that we do not employ
such “unfolding” as it is applicable to a negative literal in the body of a clause. Thus, if a clanse
C in P... contained a negative atom * ~ A4’ in its body, then, after applying unfolding (possibly
several times), ¢ would be unfolded into a clause, say, €', where (a possibly instantiated version
of) ~ A in the body of €' would remain as an inherited atom from Fy. Thus, it would prevent
us from applying the folding rule v C'. Needless to say, Fag is an arbilrary giratified program,
and the budy of a clause in Pyy can thos contain negative literals.

Unfolding, (modified) folding and a transformation sequence are the same as those defined in
Definition 2.2, Definition 2.8 and Definition 2.4, respectively. First, we have to confirm that our
unfold/fold transformation preserves a stratification of an initial program.

Proposition 3.1 (Preservation of Stratification) Let Fy,---, Py be a transformation se-
guence. Then, if Fy is a stratified program, so is F; (N > i > 0).

Proof: Let p be a new predicate, and let € € P,.,, be its definition of the form: p — [. Then,
we define the level of p by level{p)=maz{level(B;) | B; € L}. Then, the proposition is obvious
from the definitions of unfolding and [olding. a

3.2 Partial Correctness of Transformation

The success set (SS) and the finite failure (FF) set of a stratified program are defined similarly to
those of a definite program. Thatis, S5 (FF) of a stratified program is defined by replacing “SLD-
derivation {SLD-tree)” in Definition 2.5 (Definition 2.6) with “S LDNF-derivation (SLDNF-tree)”

[9], respectively.

In this subsection, we show the partial correciness of our transformation wrt both 55 and FF.

Proposition 3.2 (Partial Correctness wrt S5 and FF)
Let Fy,---, Py be a transformation sequence. Then,

(SS) : If S5(P,)=55(Fy), then SS(P41} € SS(P:) for i=0,. -, N — 1,
(FF) : If FF(P)=FF(R), then FF(P,y,) C FF(P) for i=0,... N — 1. 0

Lhe proof of the above proposition is shown in Appendix A.1.

3.3 Total Correctness of Transformation
1.2.1 Totsl Correctness wrt FF

We now show the total correctness of our unfold/fold transformation. We prove the total
correctness wrt FF first. Asin the case for definite programs, we show Lemma 2.1 for stratified
programs, replacing “SLD-derivation” in it with “SLDNF-derivation”. That is,

Lemma 3.1 (Fy-simulation of SLDNF-derivation in Fy)

Let Fy,---, Pxv be a transformation sequence. Let G be a goal, and suppuose that there exists
an SLDNF-derivation Dr of Py U {G}, Gy = G, -, Gy, -+ using input clauses in Py and
substitutions #y,---,@,---. Then, there exists an SLDN F-derivation Drp of Py U G}, Fo =
G-+, Fy -+ using input crauses in Fy and substitutions oy, -, a9, -, satisfying the following
conditions:

(i) For each k (k > 0), there exists some { {> 0) such that Fioy -+ o is 2 Phey-expansion of
Gy - -8, and

(i) the restriction of oy -- .oy to the variables in G is the same as that of 8, --- 8.

(iii} (fasrness) Furthermore, if the SLDN F-derivation Gy = G, -+, Gy, -+« is fair, then so is
the SLDNF-detivation Fy =G, -+, F}, - -

Do is called a Fy-simulation of Dr. o
T'he proof is given in Appendix A.2, Now we can show the total correctness wrt FF.

Proposition 3.3 (Total Correctness wrt FF)

Let Fy .-, Py be a transformation sequence, where P, is an initial stratified program. Then,
FE(F) C FF(Py) forall N > 0.

Froof: Suppose that an SLDNF-tree of Py u {— A} is finitely failed. Obviously, no SLDNF-
derivation Fy U {— A} ever succeeds. Furthermore, it does not flounder, from the proposition
shown by Shepherdson [14], which says that, if a query @ flounders under a computation rule,
then it cannot fail under any computation rule.

10

Suppose that Py U {— A} has a fair SLDNF-tree which is not finitely failed. Let BRy be any
pon-failed branch in that fair SLDNF-tree for Py u {— A}

From Lemma 3.1, there exists a fair SLDNF-derivation BRp for Fy U {— A} which is a
Py-simulation of BRy. BRy neither succeeds nor flounders as noted above, Thus, Biy is a
non-failed fair infinite derivation. Then, we can show that comp(Fy) U {34} has a model, using
similar methods in the proofs of completeness of Negation as Failure rale by (8], [2], which is a
contradiction.]

3.3.2 Toial Correctness wrt 85

Finally, we state the total correctness wri S5, whose prool is given in Appendix A.3.

Proposition 3.4 (Total Correctness wrt 55)

Let Py, .-, Py he a transformation sequence, where Fjy is an initial stratified program. Then,
S55(F) C S5(Py)forall N > 00

4 On Preservation of Perfect Model Semantics

The semantics we have considerad is somewhat operational, in that the success set and the finite
failure set of a stratified program are given by specific procedures such as SLD{NF) resolution.
In this section, we consider more declarative semantics, that is, the standard (minimal Herbrand)
model Mp by Apt, Blair and Walker [1] and Van Gelder [17], or, more generally, the perfect
model semantics for stratified programs introduced by Przymnsinski [12].

[t seems to be a more direct extension from Tamaki-5ato’s original unfold/fold rules to consider

transformation rules preserving the equivalence of Mp or the perfect model semantics, since their
framewark preserves the least Herbrand model for a definite program. Recall that, Tamaki-Sato’s
unfold /fold transformation does not preserve the finite failure set. However, from the viewpoint
of the perfect model semantics, it poses no problems, since a goal: “— G” which has neither
a successfnl SLID-derivation nor a finite failed SLI-tree is simply considered to be false. We
assume familiatity with the perfect model semantics (see [12]).

Definition 4.1 [nitial Program
An initial program Fy is a strafified program satisfving the following conditions:

e (11}, (12} and (13) are the same as those defined in Definition 3.2, O

Thus, condition (I4) in Definition 3.2 is not necessary.

The unfolding rule and the folding rule are the same as those defined in Definition 2.2 and
Definition 2.3, respectively. Note that we do not have to consider the modified folding rule. A
transformation sequence is also defined similarly to Definition 2.4.

Then, we have the following proposition.

11

Proposition 4.1 (Preservation of Perfect Model Semantics)

The perfect model semantics of any program P, In a transformation sequence starting [rom
imitial program Fs, is identical to that of Fa. o

The proof is given in Appendix A.4.

5 Conclusion

There have besn several studies on equivalence-preserving transformation of logie programs.
Tamaki and Sato's result [16] and its elaboration by Kawamura and hanamen [7] are already
described in section 2.1.1. Maher extensively studied various formulations of equivalence for
definite programs [10]. In that paper, he considered a trapsformation system similar to that
of Tamaki and Sato, and stated that his unfold /fold rules preserve logical equivalence of com-
pletions, while, as stated in section 2.2.1, those of Tamaki-Sate do not preserve i, Kanamori
and Horiuchi 6] proposed a framework for transformation and syntliesis based on generalized
unfold /fold rules. Their system was shown to preserve the minimum Herbrand model semanties,
but the finite failure sel is not preserved in general. In a very recent paper, Gurdner and Shep-
herdson [4] proposed a framework for unfold/fold transformation of normal programs, where
negative literals are allowed in the bodies of cleuses, and they showed that their transformation
preserves procedural equivalence based on SLDNF-resolution. "'heir work, however, is not com-
parable with our version, nor with that of [16] and [7] ; their folding rule [4] specifies that, when
a program Py, is obtained from F; by folding € € F: by D, I’ should be in F;, while, in our
framework like [16] and [7], D is not necessarily in F,.

Compared with previons work, the contributions of this paper will be summarized as follows :

1) The modified folding rule for a definite program was proposed.
The unfolding rule together with the modified folding rule was shown to preserve the finite
failure set (by SLD-resolution) of a program as well as the success set. This guarantees a
safer use of Tamaki-Sato's transformation when negation as failure rule is used.

2] The urfold /fold rules for stratified programs were proposed.
The modified folding rule has made it possible to extend the applicability of unfold/fold
transformation rules to a stratified program, so that they preserve both the success set and
the finite failure set of a stratified program by SLDNF-resolution.

3] Preservation of equivalence of the perfect model semantics was discussed.
We showed that unfold/fold rules by Tamaki and Sato can be extended to rules for a stratified
program and preserve the equivalence of the perfeet model semantics.

Acknowledgement
This work is based on the result by Tamaki and Sato, and the sncceeding work by Kawamura

and Kanamori, I would like to express deep gratitude to them for their stimulating work. The
idea of modified folding arose from discussions with Kazunori Ueda and Tadashi Kanamori.

12

References

[1] K.R. Apt, I[. Blair, and A. Walker. Towards A Theory of Declarative Knowledge. In J.
Minker, editor, Foundalions of Deductive Dalabases and Logic Programming, pages 83-148,
Morgan Kaufmann, 1987, Los Altes, CA

[2] L. Cavedon and 1. W, Lloyd. A Completeness Theorem For SLIONF-Resolution. Technical
Report C5-87-06, Computer Seience Department. University Walk, Bristol, 1987,

[3] K.L. Clark. Negation as Failure, In H. Gallaire and J. Minker, editors, Logic and Database,
pages 283-332, Plenum Press, 1878,

[4] P. A, Gardner and J. C. Shepherdson. Unfold/Fold Transformations of Logic Programs.
subumitted for publication.

[5] J. Jaffar, J.-L. Lassez, and J. W. Lloyd. Completeness of the Negation as Failure Rule. In
[JCAI-83, pages 500-506, Karlsruhe, 1983,

[6] T. Kanamori and K. Horiuchi. Construction of Logic Programs Based on Generalized
Unfold/Fold Rules. In Proceedings of the Fourth fnternational Conference on Logic Pro-
gramming, pages T14-768, Melbourne, 1887,

(7] T. Kawamura and T. Kanamori. Preservation of Stronger Equivalence in Unfold/Fold Logic
FProgrom Transformation. ICOT Techuical Report, ICOT, 1988, also in FGCS'88.

[8] J.-L. Lassez and M.J. Maher. Closures and Fairness in the Semantics of Programming
Logic. Theorefical Compuier Scrence, 29:167-184, 1984,

[9] J.W. Lloyd. Foundations of Logic Prograrmming. Springer, 1987, Second, extended edition.

[10] M_.J. Maher. Equivalences of Logic Programs. In Proceedings of the Third [nternational
Conference on Logic Programming, pages 410-424, London, 1986. also in Foundations of
Deductive Databases and Logic Programming, (edited by Minker, 1.}, pp. 627-658, Moargan
Kaulmann, 1987,

[11] A. Martelli and U. Montanari. An efficient unification algorithm. ACM TOPLAS, 4(2):258-
282, 1982,

[12] T.C. Przymusinski. On the Declarative and Procedural Semantics of Logic Programs.
submitted for publication. [ts extended abstract appears in 5th International Conference
Symposium on Logic Programming, Seattle, 1988,

[13] J.A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM,
12(1):23-41, 19865,

(14] J.C. Shepherdson. Negation as Failure: A Comparison of Clark’s Completed Data Base
and Reiter’s Closed World Assumption. J. Logic Programming, 1:51-79, 1984,

[15) H. Tamaki. Program Transformation in Logic Programming, pages 19-62. Kyoritsn Pub.
Co., 1987, in Japanese. :

[16] H. Tamaki and T. Sate. Unfold/Fold Transformation of Logic Programs. In Proceedings
of the Second International Logic Programming Conference, pages 127-138, Uppsala, 1984.

[17] A. Van Gelder. Negation as Failure Using Tight Derivations for General Logic Programs.
[u Proc. 1986 Symposium on Logic Programming, pages 127-138, [IEEE Computer Society,
1986.

[18] D. A. Wolfram, M.J. Maher, and J-L. Lassez. A Unified Treatment Of Resolution Strate-
gies For Logic Programs. In Proceedings of the Second International Logie Programming

13

Conference, pages 263-276, Uppsala, 1984,

A Appendix

In the following proofs, for the ease of understanding and simplicity, we sometimes use such a
representation that unifiers in SLD{NF)-resolution appear only implicitly and instead, we write
the equations corresponding to the unifiers explicitly. For example, let Go=+«— B;,---, By,---, B,
be a goal in an SLD{NF }-resolution, where Hy is the selected (positive} atom and C is an input
clause H — T. Then, the derived goal G| from Go and © is writien:

‘_Blr"':Bk—hr:Bk-Hr"':BmBk= H

Namely, an mgu # of 8y and H is not applied to Gy, but the equation By = H corresponding to
¢ is added at the end of the goal. This formulation of SLD-resolution was proposed and studied
by [18]. Since properties of this formulation play a crucial role in our proofs, we cite here the
relationship hetween a nsual SLD-derivation and the above formulation [18].

Consider an SLD-derivation Dr. Let (Ag, A fg, -+, A, 80 --08,_,) be the list of selerted atams
in the goals of Dr, written in the order in which they have been selected and let (Hy, 1y, -, H,)
be the list of corresponding heads of the input clauses used in the derivation and (s, #;, - . 8,)
the list of the mgus’ such that

Aglly, = Hobo,

Afpolio- ol 08, = H.0,

We assume the process of standardising the variables in the input clanses apart as usual. Then,
Ao, faey do not affect H,, so that H.0, = H.fpod, 0. -08,. The sequence ol identities
built by the SLD-derivation can therefore be rewritten as -

Aoy = Holp
Anlaolio--0fl, = H.0io08o - ob,
It then shows that the SLD-derivation attempis io compute an mgu #=fs 0 o --- o f, {if it
exists) whick is a solution to the set of equations:
S={do=Ho, Ay =Hy, -, Ax = Ha}
On the other hand, when we consider a variant Dr' of Dr where each mgu is not applied to a

goal but an equation corresponding to the mgu appears explicitly, we have exactly the same set
of equations & in the last goal of Dy’

Due to the unification theorem [13], [11], § gives the same mgu as § modulo renaming if and
only if it exists. Moreover, the order in which the substitutions are computed is immaterial. It
is easy to see that this discussion can be extended to the case of SLDNF-derivation.

14

Based on this observation, we sometimes utilize the following notation. Let I' be a sequence of
literals, § a set of equations such that it gives an mgu #. Then, an expression F of the form ['¢
is denoted also by “T,8". We call T the literal part of F', while § is called the equation part of

F.

As an example of this formulation, we prove the following lemma.

Lemma A.1 Let Cy (resp., C-) be a clause in a program P of the form: H — By, L (resp.,
B_ — K') such that By is unifiable with B_ by an mgn #, and C4 shares no variables with C_.
Let G he a goal — A, A, where A is an atom unifiable with K, and A is a (possibly empty}
sequence of literals, and variables in G appear neither in Cy nor in C.. Consider an SLDNF-
derivation of P U {G} consisting of geals Gp = G, Gy, Gy, whete G, (resp., Ga) is derived from
Gy (tesp., () and Cy (resp., C-), selecting A (resp., possibly an instantiated version of Byl

On the other hand, let ¢ be the result of applying unfolding to Cy at By by C_, i.e., C is the
clause of the form: H# — K8, L#. Consider a resolvent G| of G and C, selecting A. Then, G2
is equivalent to G| modulo variable renaming.

Proof: Using the above-mentioned notation, G; and Gz can be written as follows:

G'.I H """.H.hL,ﬂ,H =4
Gj : ‘—K,L,.&,Bq.:B_IH:A.

On the other hand, G} is of the form:
Gy, : — K8, L8, A Ho=A

Since the equation By = H_ gives the substitution # and variables among A and A are not
affected hy 8, Go can be rewritten as — K8, L8, A, H6 = A, which is equivalent to G}. O

We prove one more technical lemma.

Lemma A.2 Let C be a clause of the form: H +~— J, K and D a clause of the form:8 — Jp
such that Jo#=J for some substitution 8, and €, D and @ satisfy the conditions of folding
(F1) ~ (F4) in Definition 2.3. Let D’ be a variant of D of the form: B’ — J; such that variables
in D' appear neither in € nor in D. Then, J is a variant of Jy7, where T is an mgu of B' and
B# such that B'r= B@. Moreover, J is different from Jjr only with respect to those variables
in ¢ which occur only in J but neither in H norin K.

Proof: Let z; (tesp., ') be those internal variables which occur only in Jo (resp., Jg) but not
in B (resp., B'), and let y; (resp., ;) be those variables which occur in B (resp., B') (i, j = 0).
We thus denote Jy (resp., J§) by Jo(z;;9;) (resp., Jo(z};4})). From the conditions of folding,
substitution @ can be written in the form: f= 8, U 04, where 8;, = {z;/z;} and 8, = {3;/1;}
such that

(i) 8i, is a renaming substitution and each variable z; appears only in J but in none of H, K,
and y;0, and

15

(i} ¢; does not contain any z;.

Therefore, 7 is equivalent to 0, = {33/t;}. Thus, Jyr = &, =Jo(z};1;). On the other hand,

I = Joft = Inlziys{zifz) Ul f;}) = Jolz:1;). Comparing Jo(r);1;) with Jo(z51;), the
lemma {ollows, O

A.1 Proofs of Partial Correctness

Instead of proving Proposition 3.2, we show a more general proposition. For this, we also
generalize the definitions of the success set and the finite failure set of a given program as
follows.

Definition A.1 Success Set

Let P be a program and T a sequence of literals. The set of all pairs (T, #) such that there exists
& successful SLDNTF-derivation of £ U {— I'} with computed answer substitution o, is called the
suceess sof of Poand is denoted by S5(F). O

Definition A.2 Finite Failure (FT} Set

Let P be a program and [a sequence of literals. The set of all " such that there exists a finitely
failed SLDINF-tree for P U {— T}, is called the (SLDNF) finite failure set of P, and is denoted
by FF(P).]

Moreover, we use the following notation convention. Let G be a goal of the form: — A, where
A is a (possibly empty) sequence of literals. Then, when (A, #) € SS(P) (resp., A € FF(P))
holds, we denote it simply by (G,) € SS(P) (resp., G € FF(P)).

Proposition A.1 (Partial Correctness wrt SS and FF)

Let Py, -+, Py be a transformation sequence. Then,

(SS) : If 55(F)=55(Fy), then S5(P:yy) € SS(P:) for i=0,..., N — 1.
(FF) : If FF(F)=FF(F,), then FF(F;41) € FF(P) for i=0,---, N - 1.
Proof:

The proof is by mutual induction on s = stratum(Gp) of goal Gy. It is obvious when 5 = 0.
Suppose that the proposition has been proved for all goals (G whose stratum(Gy) < s, where
g >0,

Proaf of (55): Suppose that there exists an SLDNF-refutation Driyy of Py U {Go} with the
computed answer substitution &, where stratum((7p) is s+ 1. The proof is by induction on the
length of the SLDNF-refutation of Py, U{Gg}. Let Gy =— A, A, where 4 is a literal and A is
a (possibly empty) sequence of literals. Suppose further that A is the selected literal in Gy,

When A =~ A'is a negative atom, A should be ground and there exists a finitely failed SLDNF-
tree for Fiyy U {— A'} and (55 has the successor (7, = — A. Since stratum({— A') is less than
atratum({Gq), P;uU {+~ A"} has = finitely failed SLDNF-tree from the induction hypothesis on

16

the pariial correctness wrt FF. Let Dr; be an SLDNF-derivation of P U {Ge}. Then, Go has the
successor (7, also in Dr;. From the induction hypothesis of the length of an SLDNF-refetation,
(G, o) € §55(F), thus (Gy,#) € 55(F).

Next, suppose that 4 1s a positive atom. Let € be the input clanse.

(case 1) C is inherited from . Then, the proof is ebvious from the induction hypothesis,

(case 2) C is the result of unfolding. Let €y € F; he the unfolded clause of the form He 8., L
and C_ & P bhe the unfolding clanse of the form B « K. Then, €' can be written as
H — K8, L8, where # is an mgn of By and H_.

Then, in the SLDNF-refutation Dris; of Py U {Go), Ga has the successor Gy of the form:

Gl A .ﬁrﬁrLﬂ.:ﬁ.,_-l = g

and (Gy,o) € S5{ Py,). On the other hand, consider an SLDNF-derivation Dr; of ;U {Gol.
Using €. as an input clause, Gy has the successor G} of the form:

G . — By LAA=H
Again, using C_ as an input clause, G| has the successor G of the form:
Gh : — K, LA By=B-,A=H

Since (Gy, o) € SS(F,) from the induction hypothesis and G, is equivalent (modulo renam-
ing) to GY from Lemma A.1, it is shown that (Go,v) € SS(F}.

{case 3) C is the result of folding. Let C4 € Fi be the folded clause of the form H — J, K and
D € P,.. be the folding clause of the form: B — Jy, where Jofi=J for some substitution 0.
Then, Cis H — BA K.

In the SLDNF-refutation Dry; of Py U {Gg), Gy has the successor

G, @ —BILK A A=H

Sinee (G, o) € SS5(F;) from the induction hypothesis and SS(F,)=55(F) from the as-
sumption of the proposition, it fullows that (G, o) € S5(13).

Let Ga be the derived goal from G and an input clause D' in P with B¢ as the selected
atom, where D' is a varant of D, say, ' = B' — J} such that no variables in D’ appear
elsewhere. Then, (749 iz of the form:

Gy 1 —J)K,0,A=H B8=§

From the folding condition (F3), D' is the only clanse in Py which is unifiable with B#, so
(Gs, o) is ulso in $SS(Fy). Again, from the assumption of the proposition, (Ga, o) is also in
S8(1),

On the other hand, consider an SLDNF-derivation Dr; of P;U{Gg}. Using C4 as an input
clause, Gy has the successor &) of the form:

Gi : — LKA A=H
From Lemma A.2, G} is a variant of G4, it follows that (Gy,0) € 55(F;), thus (Gy, o) is
also in S5(F). o

17

Proof of (FF) :

Let Go=+- A, A be a goal, and suppose that there exists a finitely failed SLDNF-tree Triyy for
Figp U {Gp}. We show that P, U {Cg} also has a finitely failed SLDNF-tree Tr;. The proof is
by induction on the size (the number of nodes) of Tr;;1. Suppose that A is the selected atom
in G{] of TT,:_H_.

{Induction basis): Suppose that the size of Triyq is 1. Then, the following two cases are to be
considered.

(1) < is a positive atom and there iz no clause in P.; whose head is unifiable with 4. When
P, has no clause whose head is unifiable with A, the proposition is obvious. Otherwise,
since only unfolding might change the head of a clause during unfold /fold transformation,
there exists only one clanse C in F; such that the head of € is unifiable with 4 and that,
for the head H of each unfolded clause of C, H is not unifiable with A. In this case, it is
straightforward to show that there exists a finitely failed SLDNF-tree for PiU {— A},

{1} A is a ground negative literal, say, ~ A", and there exists a successful SLDNF-derivation of
Piyi U {— A'}. From the partial correctness wrt S5, (A, §) € S5(P:), where ¢ is an empty
substitution. Thus, Gy € FF(F).

{Induction Step):

Suppose that the proposition has been proved for any geal whose finitely failed SLDNF-tree has
the size less than ¢ (> 1) and that the size of a finitely failed SLDNF-tree for Py U {Gg} is
i+ 1.

(i) When A is a negative atom, say, ~ A’, A" should be ground and there exists a finitely
failed SLDNF-tree for Py U {— A'}. In this case, Piyy U {— A} also has a finitely failed
SLDNF-tree. Then, the proposition holds from the indnction hypothesis.

(i) Suppose that A is a positive atom. In the SLDNF-tree Tr; for P, U {Gg}, let A be the
selected atom in Gp. Let fyy,--+, & be the children of Gy in Try, and €y, -, Ck the
corresponding input clauses. We show that there exists a finitely failed SLDNF-tree for
FiU{G} for each 3 (5 =1,---k&).

When € is inherited to F4,, the proposition is obvious. When folding is applied to some
C;, it is easy to see that the proposition holds from the similar discussion in the above proof
ol (55) (case 3). Thus, we prove the proposition when unfolding is applicd to some C;.

Let C; be of the form: H — B,,L and suppose that unfolding is applied to B,. Let
L.+, C%(n > 0) be all the clauses in P such that €1 (1 <1< n)is B — K; and B is
unifiable with By, by an mgn, say, 8. Then, the result of unfoling is Py = (P — {C;}) U
{C1, -, Ch}, where C/=Hé; — K,0;, L8,.

Note that Cy; is denoted by

Gy : — By, LA H = A

Consider an SLDNF-derivation of P; U {G1;} with B4 as the selected atom. Since C* ... C™
are all the clauses in F; whose heads are unifiable with B4, 1 has the children Gay,- -+, Gag,
where

Gy : —K,LLAH=AB,=8

18

assuming that any variable in €' daes not appear elsewhere.

Omn the other hand, consider the finitely failed SLDNF-tree Trigy for Py U {— G}, Recall
that A is the selected atom. Fach €] has two cases: either A is unifiable with the head H#
of €] or not. When it is not unifiable, the set of equations: {# = A, 84 = B'} has no
solution. Thus, goal Go is finitely failed. Otherwise, Gy in Tryyy has a child

Gif' 1 — K8, L6, 8, He = A

which is finitely failed in P.x,. From the induction hypothesis on the size of 2 finitely failed
tree, G7" has u finitely failed SLDNF-tree also in F,. Since Bo=BL_ gives the substitution
G:“'{ is equivalent to (7a;. Thus, (Gy has also a finitely [ailed SLDNF-tree in F;. This
completes the proof O

A.2 Proof of Lemma 3.1

In this subsection, we give a proof of Lemma 3.1. For this, we first prove the following lemma,
which says that, for a one-step SLDNF-derivation of Py U {— A}, there exisis a “corresponding”
(possibly several steps) SLDNF-derivation of By U {— A}, where Py, ---, Py is a transformation
sequence and A is an atom. In the [ollowing, for a clause C of the form: H — By,.--, B, we
denote its head IT by head((7) and its body By,---, By by body(C).

Lemma A.3 (FPp-simulation of one-step SLDNF-derivation in Fy)

Let Py,---, Px (N > 0) be a transformation sequence and G = — A be a goal, where A is an
atom. Let € be a clanse in Py of the form: H — Hy,---, B (m > 0) and let G‘f‘r he a resolvent
of GY and €, written in the form:e— By,--- B, A= I.

(i) Then, there exists an SLDNF-derivation Dry of U {— 4} consisting of Go = — 4, -+,
Gy (k> 0) using input clauses in Py and substitutions oy, -+, oy such that the literal part
of G, is a P,...-cxpansion of that of GJ’. Namely, the following condition is satisfied:

(D) (ry is denoted by — B, -, By, A= H, where there exists a bijection y from the
multiset {By,---, B} to the multiset {Bi, -+, Bm} such that

(B)=F = B, if By is either an old atom or a negative literal
LB =B = body(I;), head(D;) = B; otherwise

where 1), &€ P,... is a clause whose head is unifiable with B; (i= 1,---,m] (see Figure
).

(i) Moreover, when A is a new atom, there exists a variant Cy of some clause in Ppew such
that € is 4y «= Ly and we can consiruct an SLDNF-derivation Dr{ of Py U {— Lp, 4o = 4},
consisting of G, = “ — Ly, Ag = A",---, Gy (K’ = 0) using input clauses in Fp and
substitutions o1, -- -, o)., satisfying the condition (D1) replacing & with £. Furthermore,
(D2) For each U in Lo such that I/ is left unrcsolved in the SLDNF-derivation Dryg, let

B; (for some j, m > j > 0) in G}, be the possibly instantiated version of ['. Then,
H_,-:y:':l[E} iz an inherited atvm in C.

19

Gy:— B, B, A=FH

Figure 2: Py-simulation (left) of an SLDNF-derivation of Py U {— A} {right)

Proaf:
The proof is done by induction on the length of a transformation sequence N,

{Induction Basis): The base case { N =0) trivially holds, since it suffices to consider the SLDNF-
derivation of Fy U {~— A} using the same clause € as its input clause. Moreover, when A is a
new atom, let Oy he © itself. Then, it is easy to see that the above (ii) is satisfied.

(fnduction Step): Suppose that the above proposition holds until N — 1. We consider the
fullowing three cases.

{Case 1): € is inherited from Py—;. Then, it is obvious by the induction hypothesis.

(Case 2): C is the result of unfolding. Let Cy € Py-, be the unfolded clause of the form:
H « By, Jand C_ € Py_, the unfolding clause: B_ — K. Then, C is H8 — K8, J#, where 8
is an mgu of #4 and B_. The resolvent G}¥ of C and G = — A can be denoted by

GY : —K0,J0,HO= A

(i) First, we show that there exists an SLDNF-derivation Dry of Py U {— A} satisfying the
condition (D1). Consider an SLDNF-derivation of Py_; U {+~ A}. Using C, as an input
clause, Gy ~'=« A has the successor G~ of the form: «— By, J, H = A. Since the above
lemma holds for Py_; from the induction hypothesis, Py U {«— A} has an SLDNF-derivation
which satisfies the condition (D1), consisting of Go= — A,---, Gy, for some k; (> 0) such
that G, =~ By, J, H = A. Let i, be a bijection from the multiset {B:,.J} to the multiset
{m,?} such that ¢y, satisfies the condition in (D1). We consider the following two cases
depending on whether B, =B, (i.e., B, is an old atom) or not.

(-1} Suppase that Bi=B,. Consider a resolvent of — By and C_ € Pn_;, which is
denoted by — K, B_ = B,. Since the above lemma holds for Py_; from the induction
hypothesis, there exists an SLDNF-derivation Drg(B4} of By U {— B,} which satisfies
(D1), consisting of Fy = — By, ---, Fy, =— K,B_. = B, for some ka(> 0). Let
@k, be a bijection from the multiset {A} to the multiset {K} such that g,, satisfies
the condition in {D1). Thus, by concatenating the SLDNF-derivation Dro{ Bs) to B
in Gy,, the SLDNF-derivation of Py U {+ A} consisting of Go= — A, -, Gy, can be
extended to the one consisting of Go= — A,---, Gy, -, Gi, 44y, Where Gy, 4u, is of the
form: — K,J,B_ = By, H = A. Recall that # is an mgu of B_ and B, and, we can

20

assume that @ does not affect thosze variables in 4, thus 48=4. Moreover, it is easy 10 see
that, for a {possibly empty) sequence of literals T' and a substitution r, T'r is equivalent
to I'r. Consequently, G, 4k, can be written as:

Giysny, @ — KO,JO.HO= A,

whose literal part is exactly a P,..-expansion of that of G{”-. Moreover, a bijection

from the multiset the literal part of GI¥ to that of Gy, 44, is defined in an obvions way
from iy and]

(i-2) Suppose that Bs is of the form: “I;, 4y = B." for a variant 4; — L, of some
clanse in P.... From the induction hypothesiz for Pwy-i, there exists an SLDNF-
derivation Dro{ B.) of Py U {~— L1, 41 = B.} which satisfies (D1}, consisting of Fo =
— I, A, = By, -, Fi, = K. B_ = B. for some k3 {> 0). Then, the proposition follows
from the similar dizcussion to (i-1).

{ii) Next, suppose that 4 is a new atom. We show that there exists a clause Cp : Ap — Lp
€ P,.. and an SLDNF-derivation Ur) of Py U {— Ly, Ay = A} satisfying the both conditions
{D1) and (D2). From the induction hypothesis for Py_;, there exisis an SLDNF-derivation
of PyU {— Ly.Ag = A} which satisfies the conditions (D1) and (D2}, consisting of Go=

“em Lo, Ao = A", -+, Gy, for some ky(> 0) such that Gy, = — By, J, H = A. Again, we
consider the following two cases depending on whether By=B4 (ie., By is an old atom] or
not.

(ii-1) Suppose that By=B,. Consider a resolvent of — By and C- € FPr—y, which is de-
noted by — K, B_ = B;. Again, from the induction hypothesis, there exists an SLDNE-
derivation Dro(B4) of By U {~ By} which satisfies {D1), consisting of Fy = «— By, -+,
Fi, =— K,B_ = B, for some k(> 0). From the similar discussion to that in (i-
1), there exists an SLDNF-derivation Dl of FyU{— Lg, Ag = A} consisting of Go=
“e Ly, Ag = A", -+ Gy oo Gy 4ky» Where Gy gy, is of the form: — K0, J8, Hi = A.
The proof that Dr} satisfies (D1} is quite similar to that of the case (i-1). We thus
only show that Dr} satisfies {D2). Let @i, be the bijections defined as in (i-1). If
there exists an atom, say U, in Lp such that it is left unresolved in Dry, its possibly
instantiated version, say, B; should be contained in J. Then, such an unresolved atom
U/ exists in Drf if and only if Bj=¢ '(B;) in J is an inherited atom in Cy from the
induction hypothesis, which holds if and only if B;# is an inherited atom in C from the
definition of an inherited atom. Thus, the condition (D2} holds for Dry.

{ii-2) Next, suppose that B, is a new atom. As for the condition (D1}, the proof is quite
similar to that of (i-1). Moreover, the condition (D2} is also shown from the same
discussion in (ii-1).

(Case 3): € is the result of folding. Let C4 € Py -y be the folded clause of the form: H — J, K
and 1) € P, be the folding clanse: B — Jp, where Joff=J for some substitution . Let #ry be
the restriction of @ to those variables occurring only in Jo. From the condition of folding (F2),
8;y is a renaming substitution of the form: {X;/Z;} (£ 2 0), where X; is an internal variable in
D and Z; is a variable occurring only in J. The result of folding C is H — HY, K. The tesolvent
G of € and GY'= — A can be denoted by

GV . — B8,K H=A.

21

(i) First, we show that there exists an SLDNF-derivation Dy of Fy U {~— A} satisfving the
condition (D1). Since B? is a new atom, what we should prove is that Py U {— A} has an
SLDNF-dernivation Dry, consisting of Gy= — A,---, &, for some ky (> 0) such that

Gy, @ —Jo, K. B=B0H=A4,

where D is an arbitrarily chosen and fixed variant of D of the form: B — J3 such that
none of variables in [) appear elsewhere. Moreover, let ¢ be a renaming substitution from
variables in D to those in D,

Consider an SLDNF-derivation of Py U {~— A}. Let) be a variant of C; of the form:
H — ,.If‘..f'n-, where J= is JI'?;# o, that is, rﬁplacing variable Z;(= J‘?fp-[_.:f;ﬂ m J h}' e Xi)
Using €, as an input clause, G5 ~'=— A has the successor G¥~': — J* K H = A. From
the induction hypothesis and the fact that J= consists only of okl atoms, there exists an
SLDNFE-derivation Drg of Fy U {— A} which satisfies the condition (D1), consisting of Go=
— A, -, Gy for some k{ (> 0) such that

Gy @ = J K, H=A
1

From the similar discussion in Lemma A.2 and the definition of J*, it is easy to see that
“lo, B= B#" is equivalent to J=, which means that GL.: is actually a Fy.-expansion of ¥
and that Dry satisfies the condition (D1).

(i} Next, suppose that 4 is & new atom. We show that there existe a clause Cy : 45 — Ly in
Prew and an SLDNF-derivation Drf of Py [— Ly, Ay = A} satisfying the both conditions
{D1) and (D2). From the induction hypothesis for Py_, and the similar discussion in (i),
there exists an SLDNF-derivation Drg of Py U {— Lg, A4y = A} which satisfies the conditions
(D1) and (D2), consisting of Go= — Lo, dg = 4,---, Gy, for some k; (> 0) such that Gy, =
— J*,RK,H = A, where J* is defined in the above (i). The condition (D1) is shown similarly
to the case (i). As for the condition (D2}, note that an nnresolved atom in Drj (if any),
say U, is not contained in J*; otherwise, let B; J* be the possibly instantiated version
of U. Then, B! is an inherited atom in C}, thus folding can not be applied to C, nor to
€'y, which contradicts the assumption. Consequently, the unresolved atom I/, if it exists,
would be contained in K. Again, from the induction hypothesis, it is an inherited atom in
€', and so is in C4. From the definition of the inherited atom, it is also an inherited atom
in € € Py, which proves the condition (D2). O

Using the above lemma, we can now show Lemma 3.1,

Lemma A.4 (fy-simulation of SLDNF-derivation in Py)

Let Fy, .-, Py be a transformation sequence and let G be a goal. Suppose that there exists
an SLDNF-derivation Dr™ of Py U {G}, Gy = G,--+,Gy, -, using input clauses in Py and
substitutions #;,---,8,--.. Then, there exists an SLDNF-derivation Dr? of By U {G}, Fy =
G,--+ Fy,, -, using input clauses in P, and substitutions a4y, ---,ay,, - -, satisfying the following
conditions:

(i} Foreach k (k > 0}, there exists some I (> 0) such that F}, oy e---0m, is a Foy-expansion
of Gedyo--- 08, and

22

(ii} the restriction of oy 0 --- 0 gy, to the variables in G is the same as that of §; 0.+ 0 f;.
{ii1) {fairness) Furthermore, if the SLDNF-derivation Gg = G, ---, G, - -- is fair, then so is
the SLDNF-derivation Fo =G, -, F,,- -

Dr" is called a Py-simulation of DrV,

Proof:

The proof is done by induction on the length k of SLDNF-dezivation Dr™. The induction basis
(i.e., k=0) is obvious. In the following, we define a hijection ¢, from the multiset of literals in
(7; to that of literals in ﬂk. For k=0, &y = F, and let ¢ be an identity. Suppose that the
proposition held until & — 1 (& > 0) and ¢, is already defined. Let ﬂ'ff_l be the segment
of Dr™ from Gp to Gr_y, and let Gg.; he the form: — A4, A, where A is a possibly empty
sequence of literals and A is the selected literal in Gy—;. We first show the conditions (i) and
{ii).

* When A=~ A" is a negative literal, A should be ground and there exists a finitely failed
SLDNF-tree for Py U{— A'}. In this case, Gy is of the form:— A and #; is an identity
substitution. From the partial correctness wrt FF, Py U {— A} also has a finitely failed
SLDNF-tree. Thus, it is easy to see that the above (i) and (i) hold. wy is @r_; except that
the selected atom A is deleted from its domain,

o Otherwise (namely, A is a positive atom), suppose that A is an old atom. Let C € Py bean

input clause of the form: # — L, where [is a possibly empty sequence of literals. Then,
the resolvent (7, of Gy_y and C, is the form: = [, A, 4 = H, where §; is a substitution
given by the equation A= H.
On the other hand, from the induction hypothesis, there exists an SLDNF-derivation Drf
corresponding o ﬂrf_l, which satisfies the conditions in the lemma. Suppose that Drf'x_l
consists of Fy = G,---, F,_ . Note that Fj, | can be denoted by — A /A, Since A s
assnmed to be an old atom, A is equivalent to 4. Moreover, due to Lemma A.3. there
exists an SLDNF-derivation DY of Pyu {— A} consisting of a sequence of goals — 4, ---,
— T, 4 = H, which satisfies the conditions given therein. Thus, using D', it is easy to see
that we can extend Drj, into an SLDNF-derivation Drﬂ so that it satisfies the conditions
(i) and (ii) in the lemma. Let ¢p be a bijection from the multiset {L} to {L}. Then, using
@1, @ is obtained by extending wy—; in an obvious way.

s The proof of the conditions (i) and (ii) for the case where A is 2 new atom is done similarly
to the above-mentioned case,

Finally, we show the fairness condition {iii). Suppose that A is selected in some goal G, of Dr'
and let G;y, be the resolvent of G; and an input clause €. Then, in D+?, the corresponding
sibgoal — ¢;(A) in Fp, is tried, obtaining some descendent node Fy,,, of Fy, which corresponds
t0 Gi4,. Thus, in order to show the fairness condition, it suffices to consider the case where A
is a new atom. Let @;(A4) is of the form: By, -+, By, H = A, where H « By, -+, By is a variant
of a clause in Py whose head is unifiable with A. If there exists any literal, say Bj, in F,
such that it is left unresolved from Fj, to F,,, it follows from from lemma A.3 that it should
be an inherited atom in €. Thus, g::all{H_,-] (= B;)is an old atom in G,4,. From the fairness
condition of Dr™ | its possibly instantiated version will be eventually selected, which means that

23

B in D% will be also eventually selected. |

A.3 Proof of Total Correctness wrt 55

In erder to prove the total correctness wit 55, we need to prepare several definitions and nota-
tions. Most of the following definitions are originally given in [153] and (7] for definite programs.
We extend them for general programs in a suitable manner. Let # be a substitution and A an
atom. Then, the restriction of # to the variables in A is denoted by 8] 4.

Definition A.3 weight of derivation

Let Fy be the initial program of a transfommation sequence and ' a sequence of literals. Let
Dr he a finite SLIN F-derivation of P U {— T'} consisting of goals Gg =— [, G, -, Gn. The
welght of Dr is defined as [ollows:

(1) When Dr ends in an empty clause {i.e., Dr is a successful derivation), the weight of Dr
is the number of those goals in Dr whose selected literals are either old atoms or negative
literals.

{2) When Dr ends in a goal G, = — ~ B|,---,~ 8 (£ > 1) such that each B;(k > 1 > 1]
iz a non-ground atom, the weight of Dr is the number of those goals in Dr whose selected

litecals are either old literals or negative literals, plus k (i.e., the number ol negative literals
in {i,). (]

Definition A.4 weight of atom-substitution pair

Let Py be the initial program of a transformation sequence. Let A be an atom and o a substi-
tution. Then, the weight of a pair (A, r), denoted by w(4,), is defined to be the minimam of
the weight of the SLDNF-derivation of PpU {— A}, consisting of goals Gy == A, Gy, -, G,
and substitutions &y, .-+, 8, snch that

{1} Gy 15 either an empty goal or a goal consisting only of negative non-ground literals, and
(i) o is the restriction of 8, 0.« 0 f, to the variables in 4.

Similarly, let T be a sequence of literals and + a substitution. Then, the above definition is
extended to the definition of the weight ol a pair (I', 7), denoted by w([, 7], in an obvious way.
O

The following notion of a descent clause plavs an important role in the proof of the total cor-
reciness wrt 55,

Definition A.5 descent clause

Let P he a program in a transformation sequence starting from an initial program Fy. Let C
be a clanse in P of the form: H — L, where I is a possibly empty sequence of literals. Suppose
that A is an atom such that (4,0) € S5(F) for some substitution . Then, € is called a
descent clause for (A, o), if there exists a substitution r such that

(W1) ((L, H = A),7) € 55(F;) and the restriction of v to the variables in 4 15 &,

24

(W2) w(A, o)z w((L, H=A)r) and
{W3) if C satisfies the folding condition (F4), then w(d, o) > w({L, H = 4).7). O

Definition A.6 Weight Completeness

Let P; be a program in a transformation sequence starting from the initial program Fy. Then,
P, is weight complete if and only if, for any atom-substitntion pair {A,0) € SS(Fy), there exists
a descent clause in F; for that pair. (m|

After showing the following lemma, we proceed to the proof of the total correctness wrt 55.

Lemma A.5 Let By, -, Py be a sequence of program transformation and C be a clause in B,
(D<i< N) IfC does not satisfy the folding condition (F4) in definition 2.3, ther all the atoms
in the body of C are old atoms.

Proof: Since C does not satisfy the condition (F4), the head of € is a new atom and unfolding
has not been applied to € during the transformation. Thus, €' should be inherited as it is from
Py Then, the lemma obviously holds from the definition of an initial program . o

Following [15], the outline of the proof of the total correctness is as follows:

(1) We first show that the weight completeness is a sufficient condition for the total correciness
wrt 55 (Lemma A.G).

(2) Next, the initial program Py of a transformation sequence is shown to be weight complete
{Lemma A.T).
(3} Finally, the weight completeness is preserved during program transformation (Lemma A 8).

Lemma A.6 (Weight Completeness is sufficient for total correctness wrt 55)

Let Fy,- -, Py be a sequence of program transformation. If P, is weight complete, then SS{F,) 2
SS(P) (N iz 0)

Proof: We prove a more general proposition that, under the same condition, if (T',7) € S55(PFy),
then (T,) € SS(P), where [is a (possibly empty] sequence of literals.

First, we introduce the following well-founded ordering = into the set of pairs (I',) in S5 R,
1.e., [1-'1101} = [Ty, 2} if and only if

(1) wi{ly, o) > w(le, 09), or
(2) w(Ty,01) = w(T,2) and the number of new atoms in Ty is greater than that of new
atoms in [a.

We show the lemma by induction on the above defined well-founded ordering,.
As for the induction basis, i.e., when T is empty, the lemma is obvious.

Next, suppose that [is of the form: A, A, where A is a possibly empty sequence of literals and
A is the selected atom in the initial goal Go of an SLDNF-refutation of Py U {Go =— A, A}
with the computed answer substitution &, When A is a negative literal, say, ~ A', A’ should

25

be ground and there exists a finitely failed SLDNF-tree for Fyu {— A'}. Thus, Gg has the
child node G = «— A such that (A, 7) € 55{F;). On the other hand, from the total correctness
wrt FF {Proposition 3.3), F; U {— A’} also has a finitely failed SLDNF-tree. Thus, also in an
SLDNF-derivation of P U {— A4, A}, when A is selected in the initial node Go, Gg has the child
node (7. From the induction hypothesis on the well-founded ordering =, (4,0} is in S5 F;)
Thus, sois (T, o).

Otherwise, suppose that A is a positive literal. From the definition that (I', ¢)=((A4,4),) is in
SE(FPa), there exists a SLONF-derivation of Py U {— A, A} with a computed answer substitution
. Thus, it follows that its subgoal Fy U {— A} has an SLDNF-derivation which satisfies the
following conditions:

(D1) Tt ends in a goal Gu=— A, where A" is a possibly empty sequence of negative non-
ground literals.

{D2) Let o s be a substitution for variables in — A, computed during this derivation, Then,
there exists a substitution oy such that (Aea, o) € S5(F) and 7a v oy=0,

(D3} Moreover, Aoy is ground and — Aoy has a successful SLDNF-derivation.

In the following, we consider such an SLDNF-derivation of Fo U {+— A} that it satisfies (D1} ~
(133} and the weight w(&, 74) is the minimum.

As P is weight complete and {Aey, o) € S5(Fy), there exists a descent clause C for (Aey, ap)
in 1%, Let he of the form: H — [, where no variables in € appear elsewhere. Then, from the
definition of the descent clause, the following conditions hold:

(W1) ((L,H = Ara),7) € S5(F,) and the restriction of v to the variables in Aoy is oy,
(W2 w({Aes, o) 2 w{(L, T = Aoa), 1), and
{W3) il C satisfies the folding condition (F4), then w{doa, o} > w({L, H = Aga), 7).

Now, consider an SLDNF-derivation Dr of P;U{— A, A}, Then, using C as an input clause,
the initial goal Gp= — A, A has the successor Gy 1 — LA A= H.

We first show that there exists an SLDNF-refutation Drg of Fy U {G;} with the computed
answer substitution whose restriction to the variables in G, is #. Resolving the subgoal A in
{7y first, from {I}1) in the above, (7} has a descendent (7, of the form: — L.N,H = Aoy with
the substitution e computed from G to Gy,.

From the above condition (W1), Po U {— L, H = Ara} has a successful SLDNF-derivation with
the computed answer substitution r. Thus, G;, has a descendent G;, = N'r1. Since the
restriciion of 7 to the variables in Aoa is oy and, as noted in (D3), Ny is ground and — Aoy
has an SLON F-refntation, it follows that F U {(51} has an SLDNF-refutation with the computed
answer substitution o, o 7 whose restriction to the variables in Gq is o (see Fignre 3). Thus,
the weight w({{L, A, H = A),ra o 7) is defined.

wi{d,A)g) = wldea,m) +w(h oa)

26

Gyim LAA=H G -— I
|

Gy 1= LN H=Ag,

Gy o= 10O

a

Figure 3: an SLDNF-derivation of /U {Gy} (left) and an SLDNF-derivation of F u{Gg}
(right}

I

w((L,H =Aea),7)+uw(d, os) {from (W2))
= w((LAH=A)oacor).

When w(({d,A),¢) > wi(l, A, H = A),7a o 7) holds, from the indunction hypothesis on the
well-founded ordering =, F; U {7} has a successful SLDNF-derivation with a compnted answer
oao7. Thus, P, U {Gp} also has a successful SLDNF-derivation with a computed g5 o 7 whose
restriction to the variables in (7n is . So, we have that ((4, A), o) = ([,) € §5(F).

On the other hand, when w((A, A).#) = w({L,A H = A),7a o) holds, from the condition
(W3), € does not satisfy the folding condition (F4). From Lemma A.5, the predicate of
H is a new predicate and so is that of A, while all atoms in L are old atoms. Thus, it fol-
lows that ((A,4),e) = (LI = A, A), 74 o 7). Consequently, from the induction hypothesis,
Piu{— L, A H = A} has a successful SLDNF-derivation with a computed answer aer. From
the same discussion in the above, it is shown that ({4, A), o) = (T, r) € S5(F). =

Lemma A.T The initial program Fp is weight complete.

Proof: Let (A,) be an atom-substitution pair in SS(Fy) and let Dr be an SLDNF-refutation of
Pyu {Gg =— A} with answer substitution o such that the weight of Dr is w(A, o). Furthermore,
let € = H — I be the input elanse used in Ggp. Then, Gp has the child node Gy = — L, i = A
and there exists an SLDNF-refutation of Fy U {G,} with answer substitution 7 such that the
restriction of r to the variables in A is ¢. It is easy Lo see that C satisfies conditions (W1) and
(W2) of the definition of a descent clause. Moreover, C satisfies the folding condition (F4) if

27

and only if K is an old atem. Thus, it follows that w{d, o) > w(({L, H = A),7), so O satisfies
also the condition (W3). m|

Lemma A.8 (Preservation of Weight Completeness)

Let Fy,---, Py be a sequence of program transformation. If B is weight complete, then Fii, is
also weight complete (N -1 2§ > 0).

Proof: Let {A,) be an atom-answer substitution pair in §5(F;). Since F; is weight complete,
there exists a descent clanse Cp for (A, 7) in F. We will show that there exists a descent clause
for (A.o) also in Py, by considering the following three cases.

{Case 1) Cqis in Fiyy. Then, Cp itsell is a descent clause for (A4,) also in Fiy,.

{Case 2} Cpis unlolded. Let Cg be H — B, J, where J 15 a possibly emptly sequence of literals
and suppose that atom By is unfolded. Since C; is a descent clause for (A4,), there exists
an SLDNF-refutation of PoU {— By, J, H = A} with a computed answer substitation r
such that the restriction of v lo the variables in A is . Thus, it follows that its subgoal
Fyu{— I, H = A} has an SLDN F-derivation which satisfies the following conditions:
(D1) It ends in a goal of the form: — A, where A" iz a (possibly empty) sequence

consisting only of negative literals. Let 7 be a substitution computed during this
SLDNF-derivation.
Then, it is easy to see that Fy U {+— Bym} has an SLDNF-refutation with a computed
answer substitution 5 such that
(D2) A'ryis ground and Py U {— N1z} has an SLDNF-refutation, and
(D3 riom =T,
Again, from the weight-completeness of Fy, there existz a descent clauwse C_ in A for
{(Byr,7g). Let C_ be BL — K. Then,
(D) Fyu {~~ K,B- = Byr,} has an SLDNF-refutation with & computed answer sub-
stitntion 5 such that the restriction of g to the variables in Bym is m.
Since B_ and Byr are unifiable, so are B, and B.. Thus, Cp is unfolded by C~, chiaining
an unfolded clause C in Py of the form:H 3 — K§,J3, where 3 is an mgu of By and B,
Now, we show that ' is a descent clanse for (A,).
Condition {W1):
Consider an SLDNF-derivation Dr of Fyu {Gy =— K 3,78, HF = A}. Due to the unifica-
tion theorem, an SLDNF-derivation Dr' of Py U {G], =— K, B. = B, J H = A} is equiv-
alent ta Dr, as far as a computed answer substitution restricted to the variables in A is
concerned.
From (D1}, Gy has a descendent node G} — K, B_ = Byn,N. From (D4), G| has a
descendent node G3: — A'y. Finally, from (D2) and from the {act that the restriction of
7 to the variables in Byr is 73, Dr' has a successful SLDNF-derivation with a computed

28

answer substitution r, o g, Moreover,

(rionla,n)la
(ne Tz:'LJ.
= 71|a

o.

(rion)la

Condition {W2):
Since Cg (resp., €_) is a descent clauses for (A4, o) (resp., (B4, 7)), we have
w(A, o) > w((By, T H = A),7),
w(Byrn,m) 2 w{(K,B. = Bsin).n)

Thus,
wid o) > w{(By JH=A4)71) (1)
= u'l{{B+T1,T3J - zr:lf[_.f, H = A}I,Tl]
w((A,B- = Bar),n) ¢ w{(J. H = A).) (2)

| 1

wi{K,B_ =By, L H=A),noy)
w{{f‘-.ﬂ1 JIH: HIE = A}I T149 ﬂ]

Condition {W3):
Note that C satisfies the condition (F4). Thus, we have to show that

wd,o) > w((KB,J8,Hi=A)r on) (3)

When B, is a new atom, C satisfies (F4). Thus, the strict inequality in (1) holds. Otherwise
(i.e., when B4 is an old atom), C— satisfies (F'), thus the strict inequality in (2) holds.
Consequently, in either case, it is shown that the strict inequality holds in (3).

Thus, it is shown thul C is a descent clause for (A, 7).

(Case 3) Cp is folded. Let Cp be H — J4, K and D € Pp.w be the folding clause of the form:
B — J_, where J_#=J, for some substitution #. Then, the result of folding ¢ € Fiq1
is H— B#, K. Since Cy is a descent clause for (A, 7), there exists an SLDNF-refutation
PoU{Gyp=— J. K,H = A}. Let v be its computed answer substitution such that the
restriction of 7 to the variables in 4 is o,

We show that this < is a descent clause for (A, 7).

Condition (W1): Consider an SLDNF-derivation Dr of Py U {Gp =— B8, K, H = A}

Let D' be a variant of D, say, D' = B' — J. such that all variubles in ' are newly
introduced ones. Then, G has a successor G of the form: — JLA, K, H = 4, where 3 is
an mgu of B' and B such that B’ = B,

From Lemma A.2, G} is a variant of G such that they are different only with respect to
the internal variables in J*. Thus, Py U {G}} has an SLDNF-refutation with a computed
answer substitution 7’ such that the restriction of ' to the variables in A4 is 7.

29

Condition {W2) and {W3): Note that Cp is & descent clause for (A4, #) and it satisfies the
condition (F4). Thus, we have

wld sl > w{Jy A H =407
= wmi{J A K. H =417

Since H iz a new atom, it is shown from the definition of the weight that

wiA.e) > w{{B) K. H =4},

A.4 Proof of Preservation of Perfect Model Semantics

In this section, we give the proof of Proposition 4.1. The important property of the perfect
model semantics we will use in the following proof is that every perfect maodel is supported [12].
That is, we first fix u pre-interpretation (e.g., [9]) J of a program P. Let M be the perfect model
of P based on J. Then, for every J-ground atom A in M, there exists a J-ground instance of a
clause in P such that its head is equal to A4, all positive premises belong to M and none of the
negative premises belongs to M.

From this property, we can consider a “ground proof derivation™ analogous to an SLDNF-
derivation. Namely, let ' be a (possibly empty) sequence of ground literals such that A | I
Then, a ground proof derivation of P U {Gy =— ['} consists of a sequence of goals : G, Gy, - -+,
(s, =— O {an empty goal), a sequence C',---,Co_y of J-ground instances of clauses (called
input clauses) in P or negative ground literals, satisfying the following conditions:

(i) Let G; be of the form:— A;,---, A, -, An, where A, is the selected positive literal in
Gi. Let Cypp € P be an input clause of the form: A, — L, where L is a possibly empty
sequence of ground literals and M E L. Then, Gy 1s — Ay, Amen, Ly A, -5 Ane

(i) Gyis == Ay, A, Ay, where A=~ A" is the selected negative literal in G: such that
M hf- .-'1". Tl‘lEl‘l. G1'+1 is — ..4.[, sl J‘i.m_l..AmJ.h ety r‘i“.

The purpose of defining the above ground proof derivation is to prove Proposition 4.1 by
[ollowing exactly the same lines as in the proofs of Proposition 3.2 and Proposition 3.4.

In the following, for a fixed pre-interpretation J, we denote the perfect model of P based on J by
PERF(F). Moreover, as we did in section A.1, we consider PERF(P) as a set of all { possibly
empty) sequences of ground literals T' such that PERF(P) = I, or equivalently, P U {— T} has
a ground proofl derivation. As we did in section AL3, we also need the definitions of weights and
descent clauses modified suitably for the current purpose.

Definition A.7 weight of a ground proof derivation

Let Fy be the initial program of a transformation sequence and I' a sequence of ground literals.
Let Dr be a ground proof derivation of Fy U {— T'} consisting of goals Gy =~ I, Gy, ---, Gy.

30

The weight of Dr is defined to be the number of those goals in Dr whose selected literals are
pither old atoms or negative literals. SR]

Definition A.8 weight of atom

Let f be the initial program of a transformation sequence and 4 a ground atowm such that
PERF(P;) E A Then, the weight of 4, denoted by w(A), is defined to be the minimum of the
weight of the ground proof derivation of Fpu{— A}

Similarly, let T be o sequence of ground literals such that PERF(Fy) & T. Then, the above
definition is extended to the definition of the weight of T', denoted by w(D'), in an obvious way.
o

Definition A.9 descent clanse

Let P; be a program in a transformaton sequence starting from an initial program fy. Let C' be
a gronnd instance of a clause in P; of the form: A — [, where L is a possibly empty sequence of
ground literals. Suppose that 4 is an atom such that PERF{F) | A holds. Then, C is called
a descent clanse for A, if the following conditions are satisfied:

{(W1) PERF(F) E L holds,
{(W2) wid) > w(L), and
(W3) if € satisfies the folding condition (F4), then w(A) > w(L). O

Definition A.10 Weight Completeness

Let P; be a program in a transformation sequence starting from the initial program Fp. Then,
P is weight complete if and only if, for any ground atom A € PERF(Fy), there exists a descent
clause in Fy for A,]

Proposition A.2 (Preservation of Perfect Model Semantics)
Let Fy,---, Pyv be a transformation sequence. Then,

(PC) : It PERF(P)=PERF(Fy), then PERF(P,4;) C PERF(P,) for i=0,-.-, N - 1.
(TC) : It PERF(P))=PERF(P), then PERF(P;) C PERF(P,yy) for i=0, -+, N — 1.

Proof: The proof is by mutual induction on s = stratum(Go) of goal Go = —T. It s obvious
when s = 0. Suppose that the proposition has been proved for all goals Gj whose stratum{Gy) <
&, where 5 > 0,

FProaf af (PC):

Suppose that there exists a ground proof derivation Driyy of Py U {75}, The proof is by
induction on the length of the ground proof derivation of Fiyy U {Gp =+ I'}. Let I' be of the
form: A, A, where A is a ground literal and A is a (possibly empty) sequence of ground literals.
Suppose that stratum(Gg) is s + 1. Suppose further that A is the selected atom in Ga.

When 4 = ~ A’ is a negative literal, PERF(P41) F~ A’ holds and Gp has the successor
G, = — A, Since stratum{— A") is less than stratum(Go), PERF(P) |~ A’ from the

31

induction hypothesis on the total correctness {TC). Let Dr; be a ground proof derivation of
P, UGyt Then, Gy has the successor G, also in Dr;. From the induction hypothesis of the
length of a ground proof derivation, PERF(F) E A, thus PERF(F;) ET.

Mext, suppose that 4 is a positive atom. Then, the proof is quite similar to that of Proposition
3.2 (see section A.1), except that we should consider a ground proef derivation instead of an
SLON F-refutation. So we omit the proof.

Fraaf of (TC): The proof of the total correctness (TC) is done quite similarly to that of Propo-
sition 3.4. First, note that Lemma A.5 and Lemma A.7 hold also in this case. Thus, what
we should prove are those lemmas corresponding to Lemma A.8 and Lemma A.8. Since the
proofs of both lemmas are shown as in their eonnterparts in the previons section, we only show
in the following the proof of the counterpart of Lemma A.86.

Lemma A.9 (Weight Completeness is sufficient for total eorrectnass wrt the perfact
model semantics)

Let [h,.-, 'y be a sequence of program transfonmation. If Py is weight complete, then
PERF(Fs) 2 PERF(F (N =121 2 0).

Froof: VFirst, we intioduce the following well-founded ordering > into the set of a (possibly
empty) sequence of ground literals T in PERF(#%y), ie., I} = U3 if and only if

(1) wil') > w(l4), or
{2) w(Ty) = w(l1) and the numher of new atoms in T, is greater than that of new atoms
in ['.

We show the lemma by induction on the above defined well-founded ordering.
As for the induction basis, i.e., when I is empty, the lemma is obvious.

Next, suppose that 1' is of the form: A, A, where A is a possibly emply sequence of ground
literals and A is the selected literal in Gy of a ground proof derivation of Py U {Gy =— A, A}
When A is a negative literal, say, ~ A', PERF{F;) E~ A’ holds. Thus, Gy has the child node
(fi= — A such that A € PERF(Fy). On the other hand, from the partial correctness (PC),
PERF(Fi41) E~ A" holds. Thus, also in a ground prool derivation of Py U {Gg =— A, A},
when A is selected in Gy, Gy has the child node 7). From the induction hypothesis on the
well-founded ordering =, A is in PERF(P41). Thus, sois T.

Otherwise, suppose that 4 is a positive ground literal. From the definition that I'=A. A is in
FERF(Fy), there exists a ground proof derivation of Py U {~ A, A},

As Flyy is weight complete and 4 € PERF(Fy), thete exists a descent clanse C for A in Fiy,.
Let © be of the form: A — L. Then, from the definition of the descent clause, the following
conditions hold:

(W1) PERF(P) L,
(W2) w(A) > w(L), and
(W3} if C satisfies the folding condition (F4), then w(A) > w(L).

32

Now, consider a ground proof derivation Dr of Py U {— A4, A}. Then, using € as an input
clausze, the initizl goal Gy= — 4, A has the successor Gy - — L, 4,

If w(id) > w(Ll) holds, then (4, A) = (L,A). Thus, from the induction hypothesis on the
well-founded ordering =. we have that PERF(FP,) = 4 A

On the other hand, when w(A) = w(L) holds, from the condition (W3), C does not satisfy the
folding condition [F4). From Lemma A.5, A is a new atom , while all atoms in [are old

atoms, Thus, it follows that (4. A) > (L, A). Consequently, from the induction hypothesis, it
is shown that PERFIF)= 4, 4. i

33

