ICOT Technical Report: TR-534

TR-334

A Proposal for Reflective GHC

by
J. Tanaka & F. Matono

February, 1990
(11990, 1ICOT
Mita Kokusa: Bldg. 21F (03) 456-3191—5
|[:D | 4-28 Mita 1-Chome Telex 1COT 32964
Minata-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Proposal for Reflective GHC

Jiro Tanaka! and Fumio Matono?

fIIAS-SIS, FUJITSU LIMITED,
1-17-25 Shinkamata, Ota-ku, Tokyo 144, JAPAN

IFUJITSU SOCIAL SCIENCE LABORATORY LIMITED,
1-6-4 Osaki, Shinagawa-ku, Tokyo 141, JAPAN

Abstract

After defining meta and reflection as basic terminology, we define meta-computation
system in logic programming languages. Especially, we consider the correspondence be-
{ween the representation at the meta-level and the object at the object-level. Based on
these considerations, we propose a reflective system in parallel logic language GHC. This
system has the following two features comparing to the previous approaches: First, this
system is formulated without using quote. Secondly, it has the reflective mechanism in
which reflective tower can be constructed and collapsed in a dynamic manner.

1. Introduction

If we look for an ideal programming language, it must be simple and, at the same
time, powerful language. Looking back the history of programming language, we note
that the developments of the programming language are generated by the repeated trials
which look for such languages within a limitation of the available hardware.

Recently, it seems that the concept which is called as meta or reflection is attracting
wide spread attention in programming language community [Maes 88]. We have already
proposed to introduce reflection mechanism into parallel logic program language GHC
[Ueda 85) and shown several examples, mainly from application aspects [Tanaka 88a]
[Tanaka 88b) [Tanaka 90]. However, the reflection mechanism has been introduced as
special built-in predicates and they lacked the generality as seen in 3-Lisp [Smith 84).
Therefore, we would like to propose Reflective GHC, which has the expressive power
compatible to 3-Lisp, in this paper.

The organization of this paper is as follows. In Section 2, we try to define meta
and reflection first. In section 3, we examine the disadvantages of the simple 4-line
meta-programs. In Section 4, we propose a real meta-system which does not have the
disadvantages of the 4-line meta-programs. In Section 5, we propose Reflective GHC where
the reflective tower can be constructed dynamically. Related works and conclusions are

deseribed in Section 6.

Execuior

Figure 1: A computational system

Meta-system Object-system
0 SR
Executor Execulor
Complte Compute

Program Program

Figure 2: A meta-system

2. Meta and reflection

We would like to model a computational system first. We follow the description of
Maes [Maes 86] in this section.

Though there exists various way to express a computation system, we assume that it
consists of an ezecutor, a program and data, as shown in Figure 1.

Here, the executor corresponds to the CPU of the ordinary computer. We model
certain features of the problem domain into the program and dala of the computational
system. Generally speaking, the algorithm of the problem solving s modeled into the
prograra and the structures of the problem domain is expressed by the data. The executor
tries to compute a certain feature of the problem domain using the program and the data.

2.1. Meta-system

A meta-system can be defined as a computational system whose problem domain is
another computational system, as shown in Figure 2.

The program and data of the meta-system model another computation system. This
another computational system is called the object-system. Especially, the program of
meta-system is called meta-program and it models the algorithm of the problem solving

Executor

Program

Problem
Domain

Figure 3: A reflective-system

at the object-level. On the other hand, the data of meta-system models the structure of
the object-system, i.e., the data of meta-system contains the representation of the object-
system,

We ordinary realizes the meta-system by representing the algorithms of problem solving
using meta-interpreters. However, in general, we only need the capability to represent a
computational system in some way. Historically, FOL [Weyhrauch 80] is the well-known
example of a meta-system which does not rely on the meta-interpreter. On the other
hand, EVAL in Lisp 1.5 [McCarthy 65] is a well-known example of the meta-interpreter.

2.2. Reflective-system

Reflection is the capability to feel or modify the current state of the system dynamically
[Smith 84] [Maes 86]. A reflective system is shown in Figure 3.

As shown in the figure, the program and data of the computational system point to
themselves, besides pointing to the specific problem domain. We can look the reflective
systemn as a specific meta-system where the meta-system and the object-system are over-
lapping each other. In the meta-system, we could observe and manipulate the behavior
of the object-system. However, in the reflective system, we can observe and manipulate
ourselves,

If a computational system has such reflective capability, it becomes possible to catch
the current state while executing the program and takes the appropriate action according
to the obtained information.

We usually utilize a meta-system to realize these reflective capabilities. Since object-
system is expressed as data in the meta-system, we simply add the means of communi-
cation between the meta-system and the object-system. We prepare the way which takes
out the current computation state from the object-system. We also need the mean which
replaces the current state of the object-system to the modified state.

There exist two approaches realizing such frameworks. One is just preparing built-in
functions which can catch or replace the current state of the system. We actually adopted
this approach in implementing reflection in [Tanaka 88b]. This approach has a merit that
the implementation is relatively straightforward. However, at the same time, it has a
disadvantage that this may easily cause the confusion of levels because meta-information

is processed at the object-level. This approach is not the accurate implementation of
reflection since meta-level state may change while processing meta-level information at
the object-level.

The other way is to create meta-system dynamically when needed. If a reflective
function is called from the object-system, the meta-system is dynamically created and
the control transfers to the meta-level in order to perform the necessary computation.
When the meta-level computation terminates, the control automatically returns to the
object-level. This mechanism was originally proposed by B. C. Smith in 3-Lisp [Smith
84]. Comparing to the first approach, this method has the merit that the distinction of
levels are more clear. Also this is the more accurate implementation of reflection, though
the implementation becomes more complicated.

2.3. Reflective tower

In 3-Lisp, the meta-system and the object-system are exactly the same computation
system. A mela-system is dynamically created when reflective procedures are called at
the object-level. However, there is a possibility that reflective procedures are called while
executing the meta-system. In this case, the system creates the meta-meta-system and
the control transfers to that system. Similarly, it is possible to consider the meta-meta-

meta-sysiem, the meta-meta-meta-meta-system, and so on.
Conceptually, it is also possible to imagine the infinite tower of meta. We can also

think that the infinite tower of mela exists from the very beginning and they move together
in a synchronized way.

3. Description of the meta-system in logic programming lan-
guages

As shown in Figure 4, the logical computational system consists of an erecutor, a
dalabase, execulion goals and variable bindings. We easily notice that this is the special-
ization of Figure 1.

Comparing these two, we note that the data in Figure 1 corresponds to the execution
goals and variable bindings in Figure 4. The ezeculion goals contain the current goal
sequence to be computed. It initially contains the query to be processed. The binding
information of the variables in the erecution goals is kept in the variable bindings.

3.1. Simple meta-programs
In Prolog world, the following 4-line program has been known as Prolog in Prolog or

vanilla interpreter [Bowen 83].

exec(true):~!.
exec((P,Q)):-!,exec(P),exec(q).
exec(P):-my_clause((P:-Q)),exec(q]).
exec(P):-sys(P),!,P.

Here, the program of the object system is defined in “my.clause” predicate. Initial
goal “p” is executed by the form “exec(P).” This “exec” program works as follows:

1. If the goal is “true,” the execution of the goal succeeds.

4

Reprasent

Figure 4 A logical computation system

2. If it is a sequence, it is decomposed and executed sequentially.

3. In the case of a user-defined goal, the predicate “my_clause” finds the definition of
the given goal and the goal is decomposed to the body part of its definition.

4, If it is a system-defined goal, it is solved directly.

Though this 4-line program is very simple, it certainly works as Prolog in FProlog.
The GHC version of this meta-interpreter can similarly be written as follows *:

exec(true):-truel|true.

exec({P,7)) :-truelexec(P),exec(Q).

exec(P) :-not_sys(P) | reduce(P,Body) ,exec(Body) .
exec(P):-sys(P)IP.

We omit the detailed explanation of this program since its meaning is self-explanatory.
The correspondence between object-level and meta-level can be summarized as follows:

Object-level Meta-level
constant constant
variable variable

ﬁmc{ﬂon symbol function symbol
predicate symbol function symbol
defintion clause special definition clause

3.2. Disadvantages of simple meta-programs
However, this “Prolog in Prolog” or “GHC in GHC" 1s insufficient as a meta-system
because of the following reasons.

UThough Prelog in Prolog and GHC in GHC look very gimilar, one difference is that system-defined
predicates have more stronger reason for their existence in GHC. In Prolog, system-defined predicates
are assumed mainly for efficiency. On the other hand, they are first-class citizens in GHC.

3

§

F'igure 5: A logical meta-computation system

1. This program only simulate the top level execution of the program and we can-
not obtain the more detailed executing information such as unification or guard
execution from the program.

2. There is no distinction between the variable at the meta-level and the one at the
object-level. Therefore, we cannot manipulate or modify ohject-level variables at
the meta-level. For example, we cannot check whether the given variable is bounded,
nor can we check whether the given variable is identical to the other one.

3. At the meta-level, a function symbol corresponds to the predicate of the object-level.
In the case of Prolog, a special definition clause “my_clause” corresponds to the
object-level definition clause. Therefore, we can distinguish object-level definition
clause from the meta-level one. However, we cannot modify these definitions at the
meta-level without using assert or retract. Though this is not clear in the case of
GHC, the situation is exactly the same if we look at the definition of “reduce.”

4. Constructing a real meta-computation system

Therefore, we would like to propose the real meta-computation system which does
not have the disadvantages described in the previous section. Qur proposal for such
meta-computation system is shown in Figure 5.

Here, the representations of the object-system, ie., an executor, a database, execu-
tion goals and variable bindings, are all contained in the execution goals of the meta-
computation system.

We show how the elements of a object-system should be expressed at the meta-system
in the following subsections.

4.1. Constants, function symbols and predicate symbols
Constants and function symbols of the object-system are expressed by the same con-
stants or function symbols. Predicate symbols of the object-system are expressed as

function symbols.

The other possibility is using quote to distinguish the level. In this approach, '3 {quote
three) corresponds to the 3 at the object-level. 3-Lisp, R-Prolog [Sugano 84] or Godel
[Lloyd 88] adopts this approach. However, we do not adopt this approach.

Iu Lisp, both of programs and data are expressed as S-expression. In evaluating a
program, quote is essentially used to separate data from the program and to stop the
evaluation. However, in logic programming languages, there exisls a clear separation
between predicates and functions. Logic programming languages do not have a notion
of evaluation. They simply find out the binding of variables contained in the initial
query. Our claim is that there is little practical merit in using quote in logic programming

languages.

4.2. Variables

As explained previously, we cannot manipulate object-level variables well if it is ex-
pressed as variables. To manipulate object-level variables, we need the information about
the representation of variables, i.e., we need to know where and how the given variable is
realized.

Therefore, we use a special ground term to express a object-level variable. This special
ground term has a one-to-one correspondence to the object-level variable and we can
distinguish it from the ordinary ground term at the meta-level. Since the tower of meta
can be created to the arbitrary levels, the special ground term also needs to contain
information about its level. _

Variables are usually expressed by the identifiers which starts with a capital letter.
We assume that a variable is expressed as “@number” at the meta-level, in which its
own number is assigned for each variable at the object level. We assume that it is ex-
pressed as “/@number” at the meta-meta-level. Similarly, it is expressed as “N@number,”
“@number,” “!NM@number,” and so on, as the level increases.

4.3. Terms

Keeping consistency with the notations of Sections 4.1 and 4.2, we denote object-level
terms by corresponding meta-level special ground terms. In those corresponding special
ground terms, every constant and function symbols are not changed. However, every
variable is replaced by its meta-level notation.

For example, the abject-level term

pla, [HIT],£(T,b))

is expressed as
pla, [01l02],£(®2,b))

at the meta-level. It is also expressed as
pla,['e1]102] ,£(102,b))

at the meta-meta-level.

=]

4.4. Variable bindings

Variable bindings at the object-level are represented as a list of address-value pairs at
the meta-level. Note that this list is expressed as a special ground term. The followings
are the examples of such pairs.

(@1, undf) ... the value of 01 is undefined

(02, a) ... the value of ©2 is the constant '‘a’’

(03, @2) ... the value of 03 is the reference pointer
to @2

(04,£(01,02))

. the value of 04 is the structure whose
function symbol is ‘‘f,’’ the first argument
is the reference peinter to @1, and the
second arpgument is the referance pointer to @2

We can regard these pair as expressing the memory cells of the object-level. Similar to
the ordinary Prolog implementation, reference pointers are generated when two variables
are unified. Therefore, we need to dereference pointers when the value of a pair is required.

4.5. Definition clauses

The program of object-level, i.e., the collections of asserted clause deﬁmt.jonu are also
expressed as a spectal ground term, i.e., a list of ground representations of clause defini-
tions, at the meta-level.

For example, the following “append” program

append ([AIB],C,D) :-truel
D={AIE], append(B,C,E).
append([],A,B) :-true|A=B.

is expressed as follows.

[(append([01]02],03,04) : ~truel
t4=[e1]e5]), append(02,03,05)),
{append([],®01,82) :-truel01=02)]

4.6. Correspondences between the meta-level and the object-
level

The above mentioned correspondences between the meta-level and the object-level can
be summarized as follows:

Object-level Meta-level
constant constant
function symbol function symbol

predicate symbol function symbol
variable special ground term
term special ground term
variable bindings special ground term
defintion clause special ground term

5. Proposal for Reflective GHC

Based on the considerations described in the previous section, we propose Reflective
GHC. Reflective GHC is the reflective extension of GHC and can be defined as a superset
of GHC. We show the language features and the outline of the implementation in the

following subsections.

5.1. Reflective predicates

Reflective predicates are user-defined predicates which invoke reflection when called.
Similar to 3-Lisp, we can easily access to the internal state of the computation system
and obtain them to the object-level by using reflective predicates. Or we can modify the
internal state of the computation system from the object-level. We can define reflective
predicates and use wherever we want, in the user program or in the initial query.

For example, reflective predicate “p(A,B)” can be defined as follows:

reflect(p(X,Y),(G,Env,Db), (NG,NEav,NDb,R))
:~ guard | bedy.

We should note that extra arguments, ie., (G,Env,Db) and (NG,N Env,NDb,R), are
added to this definition. Here, (G,Env,Db) expresses the computation state of the object-
level, where G expresses the ezecution goals, Env expresses the variable bindings and Db
expresses the detabase. (NG,NEnv,NDb,R) denotes the new state to which the system
should return when the execution of the reflective procedure finishes. NG expresses the
new ezecution goals, NEnv expresses the new veriable bindings NDb expresses the new
database and R expresses the computation result of the reflective procedure.

When the goal “p(A,B)" is called at the object-level, we automatically shift one level
up and this goal is executed at the meta-level. At this level, wecan handle “p(X,Y)” where
X and Y are the meta-level representation of the arguments, and (G,Env,Db), which is the
representation of the object-system. When we finished executing this reflective goal, we
automatically shift one level down and (NG,NEnv,NDb,R) changes to the new object-level
state.

For example, a reflective predicate “var(X),” which checks whether the given argument
X is unbounded or not, can be defined as follows:

reflect{var{X),{G,Env,Db), (NG,NEnv,KDb,R))
1= unbound(X,Env) |
(NG, NEnv,NDb,R)=(G,Env,Db,success).

reflect(var(X), (G,Eav,Db), (NG,NEnv,NDb,R))
:= bound(X,Env) |
(NG ,NEnv,NDb,R)=(G,Env,Db,failure).

We simply shift up one level and checks the value of the given argument from the
environment list. If it is unbounded the execution of this predicate succeeds. If it is not,
the execution of this predicate fails.

The “current_load(N)” predicate, which obtains the number of goals which is in the
goal queue of the object-system, can be defined as follows:

reflect(current_load(N), (G,Env,Db), (NG,NEnv ,NDb,R))
:= true |
length(G,X),
NEnv=[(N,X) |Env],
(NG ,NDb,R)=(G,Db, success).

We shift up one level and computes the length X of G. This value X is contained in
the environment list as a value of N, and the execution finishes successfully.

The “add_clause{(CL)" predicate, which adds a given clause definition to the database
of the object-system can be defined as follows:

reflect(add_clause(CL), (G,Env,Db), (NG,NEnv,NDb,R))
t= true |
dereference(CL,Env,NCL),
add_db(NCL, Db, NDb) ,
{NG,NEnv,R)=(G,Env,success).

We dereference CL in the current environment and get NCL ®. Then we simply add
this NCL to Db.

5.2. Shift-up and shift-down

It is explained that, when a reflective predicate is called, the system is automatically
shifted one-level up. When the execution of the reflective procedure finishes, the sys-
tem is automatically shilted one-level down. In that sense, shift-up and shift-down are
automatically carried out and we do not need to specify them explicitly.

By using reflective predicates, we could easily access to the internal state of the com-
putation system and obtain them to the object-level, as shown in the previous subsection.
However, the obtained information was always the ground information.

We sometimes need to obtain the meta-level information which includes the represen-
tation of variables. Or we sometimes would like to replace the meta-level information to a

2Ginee variables in NCL are used as formal arguments, it is also possible to perform renumbering here.

10

certain object-level information. For such purposes, we prepared two kinds of predicates,
i.e., “shift_up” and “shift_down.”

“shift_up(Exp,Up_Exp)” transforms the given expression “Exp” to the one-level
higher expression “Up_Exp.” “shift_down(Exp,Down_Exp)” transforms the given ex-
pression “Exp” to the one-level lower expression “Down_Exp.”

For example, “get_q" predicate which obtains the contents of execution goals as its
meta-level notation can be defined as follows:

raflect(gat_q(q},{G,Env,ﬂb).{HG,HEuv,Hﬂh,R}}
:- true |
shift_up(G,Up_G),
NEnv=[(Q,Up_G) |Env],
{NG,NDb,R)=(G,Db,success) .

We need to shift up the execution goals in this definition because we want to get the
contents of execution goals as its meta-level notation.

On the other hand, “put_q” predicate, which replaces the contents of execution goals
to the given expression “Q,” can be defined as follows:

reflect(put_q(Q), (G,Env,Db), (NG ,NEnv,NDb,R))
:= true |
shift_down(Q,NG),
(NEnv,NDb,R)=(Env,Db,success).

Note that we cannot get the expected result, if we forget to shift down “0.”

5.3. Meta definitions

Reflective predicates are executed at the meta-level. If all of guard and body goals
consist of system-defined functions, we have no problem. If it includes user-defined goals,
they must be defined in the database of the meta-level computation system. Therefore, we
prepare “meta” predicate to define the given definition clause to the meta-level database.

For example, if we would like to define a clause
G :- H | B.
to the meta-database, we can define it as
meta(G):- H | B.

using “meta” predicate.

Though reflective or meta predicates are executed at the meta-level, these reflective or
meta definitions are kept at the object-level database initially. It is explained that meta-
level is dynamicaily created when a reflective predicate is called. At that time, reflective
or meta definitions are transformed to the appropriate form and copied to the meta-level

database.

5.4. Enhanced meta-interpreter and interpretive execution
The simple 4-line meta-program of GHC in Section 3.1 can be enhanced to fit to
the requirements of Section 4. The enhanced “exec” has five arguments. These five

11

arguments, in turn, denote the ezecution goals, the variable bindings, the database, the
new variable bindings after the execution and the execution result.
This five-argument “exec” can be defined as follows:

exec{[],Env ,Db.NE:I:I.".F,H}

:= truel
(NEnv,R)=(Env,success) .

exec([true|Rest] ,Env,Db,NEnv,R)

i~ truel
exec(Rest,Env,Db,NEnv,R).

exec([GlRest] ,Env,Db,NEnv,R)

:= user_defined(G,Db) |
reduce(G,Rast,Env, Db ,NG,Envi,R1),
exec(NG,Envi,Db,NEnv,R2),
and_result(R1,R2,R).

exec([G|Rast],Env,Db,NEnv,R)

:- system(G)|
sys_exe(G,Env,Envl,R1),
exec(Rest,Eavl,Db,NEnv,R2),
and_result(R1,RE2Z,R).

By transforming these “exec” definitions to “meta” definitions, we can install them to
the meta-level database. After that, it becomes possible to execute a given goal “p” in
an interpretive manner. This is performed by using reflective predicate “interpretive,”
which is defined as follows:

reflect(interpretive(P), (G,Env,Db), (NG,NEav,NDb,R))
1= true |
exec([P],Env,Db,NEnv,R),
(NG ,NDb,R)=(G,Db,success) .

Note that this interpretive execution can be mixed with other direct execution. There-
fore, it is possible to execute the specific goals in an interpretive manner and execute
other goals directly. Other possibility is modifying this “exec” and use this “exec” as a
“debugger.” We can perform these kinds of things in a quite straightforward manner.

5.5. Constructing and collapsing a reflective tower

In implementing reflective system, we initially create supporting system and execute
user goals inside the supporting system. This supporting system can also be defined as
an enhanced “exec.” It can be defined as follows:

support([],Env,Db,R)
:~ true|R=success.

support([true|Rest] ,Env,Db,R)
1= truel
suppurt{Rest,Env.Db,H}.

12

support([G|Rest] ,Env,Db,R)
1= user_defined(G,Db) |
reduce(G,Rest,NG,Eav,Db,Envl R1),
support{NG,Envi, Db, ,R2),
and_result(Ri,R2,R).

support([GIRest] ,Env,Db,R)

:= system(G) !
sys_exe(G,Rest,NG,Env,Envl,R1),
support(NG,Envi,Db,R2),
and_result(Ri,RZ,R).

support([G|Rest] ,Env,Db,R)
:- raflective(G,Db)i

create_meta_db(Db,Meta_Db),

shift_up((G,Rest,Env,Db),
(Up_Goal,Up_Rest,Up_Env,Up.Db)),

support([reflect (Up_Goal, (Up_Rest,Up_Env,Up_Db),
(NRest ,NEnv,NDb,R1))], [J,Meta_Db,R1),

shift_down((NRest,NEnv,NDb),

(Down_Rest,Down_Env,Down_Db)),
support(Dewn_Rest,Down_Env,Down_Db,R2),
and_result(R1,R2,R).

We easily notice that this “suppert” is almost same to the “exec” in Section 5.4
except the last definition clause.

This definition clause takes care of the creation of the reflective-tower. “create_meta_db”
creates the meta-database by taking out mefa and reflective definitions from the object-
level database. (G,Rest,Env,Db) is shifted up and the meta-level represcntation
(Up_G,Up_Rest,Up_Env,Up_Db) is generated. Then “support” starts the meta-level com-
putation using these arguments. Note that meta-level environment is initially set to []
since the shifted-up expression does not include variables.

When the meta-level execution finishes, (NRast ,NEnv,NDb,R1)} are instantiated. We
shift down this information and we get (Down_Rest,Down_Env,Down_Db) which denotes
the new object-level information. Then we return to the object-level execution using this
information.

Figure 6 shows how the reflective tower is constructed by calling reflective predicates
and how it is collapsed by finishing up their execution.

6. Related works and conclusion

It scems to be that [Smith 84] and [Maes 88] present us the general background for our
research. Regarding to related works, Sugano is proposing R-Prolog which is the reflective
extension of Prolog [Sugano 89]. Lloyd is also proposing Godel which is a meta-extension
of Prolog [Lloyd 88]. Their approaches are quite similar to each other and their interests
mainly exist in the reconstruction of Prolog which has cleaner semantics without using

13

Figure 6: Constructing and collapsing a reflective tower

side-effects.

In this paper, we have proposed Reflective GHC which is the reflective extension of

parallel logic language GHC. The features of our system can be summarized as follows:

1. Simple formulation of reflection in parallel logic language GHC. We have mentioned
that logic languages have no notion of evaluation comparing to Lisp. Therefore, we
have formulated reflection without using quote. This is the critical difference from
Sugano's or Lloyd’s approach.

. Ground representation of variables. In our system, variables are expressed as special
ground terms as described in Section 4.2, This representation essentially corresponds
to quoted form in other systems.

. Complete handling of database. In our system, we can define the meta-level database,
which is completcly different from the object-level by “meta” predicate. It is also
possible to define the arbitrary layers of databases.

. Dynamic constructing and collapsing of a reflective tower. In our system, a new
level is generated when a reflective predicate is called. When finished, that level is
collapsed and the system automatically returns to its original level.

Our final goal exists in building a sophisticated distributed operating system on top

of the distributed inference machine such as PIM [Uchida 88). Some trials for describing
Eul:h EI}"Et:CIIIE- Can hﬂ SOCIL i.Il ETEI.-[IEI:CE 331}] {Ti:l.].l.i].kd gﬂ}.

14

7. Acknowledgments

This research has been carried out as a part of the Fifth Generation Computer Project
of Japan. The authors would like to express thanks to Yukike Ohta for her useful com-
ments, discussions and programming supports. Thanks also go to Hiroyasu Sugane, Youji
Kohda and Masaki Murakami for their useful discussions.

References

[Bowen 83]

[Lloyd 88]

[McCarthy 65]

[Maes 86)

[Maes 85]

[Smith 84]

[Sugano 89]

[Tanaka 88a)

[Tanaka 88b]

[Tanaka 90}
[Ueda 83]

[Uchida 88]

D.L. Bowen et al., DECsystem-10 Prolog User's Manual, University
of Edinburgh, 1933

J. W. Lloyd; Directions for Meta-Programming, in Proceedings of of
the International Conference on Fifth Generation Computer Systems
1988, pp.609-617, ICOT, November 1988

J. McCarthy, P. W. Abrahams, D. J. Edwards, T. P. Hart and M. L
Levin; LISP 1.5 Programmer’s Manual, The M.LT. Press, 1965

P. Maes; Reflection in an Object-Oriented Language, in Preprints of
the Workshop on Metalevel Architectures and Reflection, Alghero-
Sardinia, October 1286

P. Maes and D. Nardi eds; Meta-Level Architectures and Reflection,
North-Holland, 1988

B.C. Smith; Reflection and Semantics in Lisp, in Proceedings. of in
Conference Record of the 11th Annual ACM Symposium on Principles
of Programming Languages, pp.23-35, ACM, January 1984

1. Sugano: A Formalization of Reflection in Logic Programming, Re-
search Report No.98, ITAS-SIS, Fujitsu Limited, 1988

J. Tanaka; A Simple Programming Systemn Written in GHC and Its
Reflective Operations, in Proceedings of The Logic Programming Con-
ference 88, ICOT, Tokyo, pp.143-149, April 1988

J. Tanaka; Meta-interpreters and Reflective Operations in GHC, in
Proceedings of of the International Conference on Fifth Generation
Computer Systems 1988, pp.774-783, ICOT, November 1988

J. Tanaka; An Overview of ExReps System, Fujitsu Scientific & Tech-
nical Journal, Vol.26, No.1, 1990, to appear

K. Ueda; Guarded Horn Clauses, ICOT Technical Report, TR-103,
1985

S. Uchida, K. Taki, K, Nakajima, A. Goto and T. Chikayama, Re-
search and development of the parallel inference system in the inter-
mediate stage of the FGCS project, Proceedings of the International

15

Conference on Fifth Generation Computer Systems 1988, pp.16-36,
ICOT, November 1988.

. Weyhrauch, Prolegomena to a Theory of Mechanized Formal Rea-

[Weyhrauch 80]
soning. In Artificial Intelligence 13, pp.133-170, 1980

16

