ICOT Technical Report: TR-533

R-533

Lin-Kernighan partitioning algorithm
on Multi-PSI

by
D, Dure

Felu TETES [ 40

© 1990, 1COT

Mita Kokusai Bldg. 31V 3] 4ah-319] -5

|GDT 4-28 Mita 1-Chome Telex ICOT ] 32964

Minato-ku Tokyoe 108 Japan

Institute for New Generation Computer Technology



Lin-Kernighan partitioning algorithm
on Multi-PSI

12/21/89

Daniel Dure

Abstract:

Partitioning a graph into several sets while keeping the connection cost between sets low can he
useful to minimize communication cost in distributed algorithms, or to provide an nitial placement
to more sophisticated algorithms. If there are n nodes in the graph. and if partition holds s sets, the
complexity of the sequential Lin-Kernighan algorithm is Q({n*logn). Our parallel implementation
nearly divide this figure by s/2. provided that this number of processors are available, Performance

analysis is provided for a number of example graphs.

Institute for New Generation Computer Technology
Fourth Laboratory

Copyright (C) 1989 by ICOT and the author



Forewords

The Tollowing document is intended of course as the presentation of an uwseful program for subseguent
apphications, aotablv in VL5 CAD, It is also an example of KL1 programming on the Multi-PS1. while
using the FLIB library. Although there are certainly many mischiefs to pick up here ot there. we dare
Leliove these fow lines can be read by a noviee KL programmer with the hope of getting some nseful hints,

Acknowledgements

We would like to thauk some people who helped us, either during the course of programming or debugging:
Kimura Koichi and Yoshida Kaoru demonstrated an endless kindness to lighten the tedium of discovering
Psl Multi-PSE and PDS5, You Inamura guickly relisved me from a nasty KL1 bug., Kazue Taki provided
1¥nl'rﬁf;|h"]1] ng I_:]l_‘f'f,‘.‘-'\. of advire,

This work as been sponsored by Inria. Roequencourt, France throngh a grant and exchange program
with Irot, Tokvo, Japan.



Introduction

The prograimn we describe in Hhis doement s for main piepose to build partition of a graph vsing & given
number of wets, while minimizing the cnmnbated “eost™ of cdges going fromn & vertex in a sl o a vertex i
« difforent set. This probden i fndeed NP-completes and we use an hearistic proposed by BAV. kernigan
ated 8. Linin [2] s approximate e somition,

Tl orgreraad tove 1 sl o large seade, 1o :-iF_lI'!'i'ill o _,".'"..l'ill.lll aver s plang while keeping the number of long

edees as low as possibbe, As an esamples during 1he desizn of VESE cireuits. thousands of cells vonpected
e wires Bave 1o b spread over a constrained silicon area, and connections between cells. whose length s
erivical to speed and quality of signai Cranaden. Dave 1o beoas short as possible.
Also. when distributing a compuiation over a network of processors, in order o perforin computations i
a parallel fashiow, it = fportant 1o averd heas s commminication between Ve tasks on different processors.
while keeping liad halanced berween processors [ we represent e cumpuatalion as a graph, partitioning
cau help to achieve an eflicieu distrilngton.

The following sections deseribe the KL code written ta implement the Lin-Kernighan algorithm on

M-S Text fawd prograast oreanization [oflows.

o Section | deseribos 1he tiodule resdf ile. which parses filos deseribing the graph itsell, as weell as the

o 1
ol o] eelmes.

o Section @ describes the moduie Lk wilieh takes the graph aml cos information. then compacts and

distributes dala ower processors. afior sone preprocessing,

e Sectiog 3 deseriies e module trea. whirl manages commumcation between processors, distrioutes
e worklvad aml decides 1o iterate the Lin-Rernighan procedurs or to stop operations.

o Section | describies the module alge. which contains the core of the partitioning algorithin. for Lwo
arts,

o Section 5 deserihes The prodale use (o meeasnee l'“i"ﬂl’[llﬂllf?s-
o Eventually, section 6 bolds some exanplos of graphs and the related performance measurements.

Oy reader will notice that modules outside of This list are referred by the following code. They come
from the FLIB library that we designed witl Beruard Borg, Although predicate names are rather self-
explanative. dorumentation is available fn the form of 4 1e el repart: [1]. We warmly advice our reader
to get hold of (his docnment . sspectaliy of neis to programein KL on Multi Psl. circamstances for weich
FLIE has been vailored.



1 Module readfile

This module comains whal is necessary Lo transform the graph decription data from a file into the vector
ol .L:t,r]ug.'-. s h:l.' the modile 1k,

1= module readfile.
:= public read/3.

Structure of the fle 1= extremely simple, and data are in ASCI form. The main purpose of this module is
to allow debupging of the Lin-Kernighan algorithm and basic performance measurements,

1.1 File structure

The file holds integers, each one read by a separate gett.
1. The first integer is the number of vertices, n.

2. Then come blocks, one per vertes, Each block starts with the vertex number, from 0 ton = 1. Then,
an integers precises the number of connected vertices, v. Then comes the edge information. with two
integers for each edge: the label of the connected vertex. between ) and » — 1. and the rost of the
edge. (ost shonld be positive of null, if the algorithm is to perform sensible optimization,

On the other hand., the structure vsed by the module 1k is a pair of vector of strings, ane representing
edges starting from each vertex. the other holding the cost associated to each of these edges.

1.2 Reading the file

The following predicate, which is the top level predicate, opens the named file (string or atom | and reads
the first integer, in order to create the two vectors which are to hold adge and cost information,

read(Name, Edge2, Costl) :-
string(Name, _, _) |
fel:open_filae([gett(Vert) | Stream], Name, r, Status},
{Status = normal, integer(Vert) ->
new_vector (Edgel, Vert),
new_vector(Costl, Vert),
Stream = [gett(V), gatt(E) | Streami],
rill(V, E, Streaml, Edgel, Edge2, Costl, Cost2);
othervise;
Status = normal ->»
util:p_console([string#"file:" ,Name,string#"has a wrong format"],.},
Stream = [];
otharwise;
trus -»
util:p_console([string#"can’t open file:" ,Name], )).
read(Name, Edge2, Costl) :-
atom{Nama} |
fel:atom.to_name(Name, Namel},
read{Namel, Edge2, CostZ).

The following predicate goes through the file, picking a node number and then parsing the associated edge
list, until end of file is met.



PooAODULE READFILE

£i11(V, E, Stream, Edgel, Edge3, Costl, Cost3) -
integer(V), integer{E} |
new_string(Edges, E, 32},
new_string(Costs, E, 32},
fillstrings(~(E-1), Edges, Edgesl, Costs, Costsl, Stream, Streaml),
(wait{Costsl), wait(Edgesi) -7
gset_vector_element{Edgel, V, _, Edgesl, Edgel),
set_vector_element{Costl, V, ., Costsl, Costl),
Streaml = [gett(Vi), gett(El) | Stream2],
£i11(Vi, E1, Stream2, Edge2, Edge3, Costl, Cost3)}).
otherwise.
fillfend_of _file, end_of_file, Stream, Edgel, EdgelZ, Costl, Cost?) :- true |
Stream = [], Edgel = Edge2, Costl = CostZ.

The following predicate parses the cost fedge list,

fillstrings(P, Edges, Edges2, Costs, Costs2, Stream, Stream2) :-
P> =1
Stream = [gett(E}, gett(C) | Btreaml],
(integer(E}, integer(C) -»
set_string_element(Edges, P, E, Edgesli),
set_string_element(Costs, P, C, Costsl],
fillstrings(~(P-1), Edges1, FEdges2, Costsl, CostsZ,
Streaml, Stream?)).
otharwisa.
fillstrings(_, Edges, Edges2, Costs, CostsZ, Stream, StreamZ) - true |
Edges = EdgesZ, Costs = Costsl, Stream = Stream2.



a

2 Module lk

This modules contains the topuiost predicates wsed to perform Uhe lin-Kernighan algorithm, to split a graph
intor s sers, More precisely. we consolidate the graph and cost information within a single vector of strings,
witle v string per vertes, aid we add dupimy vertices, so that the total number of vertices hecomes a
maltiple of the number of sets in the required partition, Thess artifarts are eventually removed from the
partition, after the oplimization has heen performed.

t= module lk.
t= public 1k/E,

2.1 The topmost (public} predicate

The following predicate operates a min-cnt on such a graph, making a » way partition, where s is specified
by Set. Operations are doue in parallel, using p processors, starting from processor (1 where p is specified
by Proc. When operations are completed, a string containing the position of each vertex is returned via
Pos. The string is indexed by the label of each vertex. and the corresponding set is labelled by an integer,
ranging from (1 1o s = 1.

The graph itself is specified by vertors Con and Cost. Tach vertex with label I is associated to the string
at position ! in Con. This string is contains the label of vertices connected 1o £, Cost is done the same way.
but insread of vertex lahels. it contains the cost of the corresponding edge. We ronsolidate connection and
rost matrix to speed up data Lrapsler,

1ki{Con, Cost, Set, Prec, Pos) :-
vector(Con, Size), vector(Cost, Size), integer(Set), Proc »= 1 |

MaxPair := Set J/ 2,
fel:mini(Proc, MaxPair, UsedPrec),
init_pos{Con, Conl, Set, Posl),
conselidate(Conl, Coat, Con2),
start_op{Con2, Set, Pos0, UsedProc, Posi),
fel:sub_string{Posl, 0, Size, Pos, _).

2.2 Initializing position string and connection matrix

Here, we initialize the position string, Vertices are attributed some position between 0 and 5 — 1. We also
add “dommy” vertices which are used to balance the size of rach set.

init_pos{Con, Conl, Sat, Pasi) :-
vector(Con, Size), Rest := Size mod Set, Rest = 0 |
new_string(Pos, Size, 32),
new_vector{NewCon, Size),
init _pos( " (3ize-1), “(8iza-1), 0, Set, Con, Newlon, Conl, Fos, Pogl),
ptherwisa.
init_pos(Con, Coni, Set, Posl) :-
vactor{Con, Size), Rest := Size mod Set |
NewSize := Size + Set - Raet,
new_string({Pos, NewSize, 32},
new_vector {(NewCon, NewSize),
init_pos(” (NewSize-1), ~{Size-1),
0, Set, Con, NewCon, Conl, Pos, Posal).



fi 2 MODULE LK

The following predicate mitializes the position strings and connection matrix for the new dummy vertices.

[hmany vertiees are of conrsse conuecbed to nothing,

init_pos(Start, Stop, Moduloe, Set, Con, Coni, Con3, Pos, PosZ) :-
Start > Stop |
new_string(Void, 0, 321,
set_vector_element(Conl, Start, ., Void, Con2l,
set_string_slement(Pos, Start, ~(Medulo mod Set), Pesi),
init_pos(~(Start-1), Stop, ~(Modula+l}, Set,
Con, ConZ, Cen3, Posl, Fos2).

otherwise.

init_pos{_, Stop, Module, Set, Con, Cont, Con3, Pos, PosZ) :- true |
init_pes(Stop, Modulo, Set, Con, Conl, Con3, Pos, Pos2).

The following predicate makes the copy for Lhe remaining vertices. Note that may be some naturally
~dummy” vertices, i.e. without any reference. In this case, we may use more nodes than necessary. This is
unlikely to happen in normal cases, though,

init_pes{Stop, Modulo, Set, Cen, Conl, Con3, Pos, Pos2) :-
Stop » -1 |
set_vector_slement(Con, Step, 01d, _, ConC),
set_vector_element(Conl, Stop, _, 014, Con2l,
set_string_element(Pos, Stop, ~(Mcdulo med Set), Posl},
init_pes(~{Stop-i), ~{Modulo+1}, Set, ConC, Con2, Cen3, Posl, Pos2).
otharwise.
init_pes(-1, _, _, _, Conl, Con3, Pos, Pos2)} :- true | Conl = Con3, Pos = Posi.

Eventually. the following predicate consolidates the information in the connection and cost matrices: the
cost of an edge is put after the label of the referred vertex.

consolidate(Coni, Cost, Conl) :-
vactor{Canl, _), vector(Cost, Size) |
consolidatel (Size-1), Conl, Cost, Conl).

consolidate(P, Conl, Cost, Con4) :-
P> -1
set_vactor_aelement(Conl, P, 01d, _, Con2),
set_vector_slement{Cost, P, 0ldC, _, Costill,
consolidate_string(0ld, 014C, New),
(wait(New)} -2
gat_vector_slement(Con2, P, ., New, Con3),
congsolidate( " (P-1), Con3, Costl, Cond)).
otherwiee.
congolidate(_, Conl, ., ConZ) :- true | ConZ = Coml.

consolidate_string(01ld, 014C, New) :-
string{0ld, Si=ze, _J |
new_string(New0, ~(2*3ize), 32),
consolidate_string(~(Size-1), 01d, 01dC, NewO, New).

consclidate_string(P, 0D1d, 01dC, NewO, New3) :-
P>-11]



200 Ntart o paralled worek sud conted

string.element(0ld, F, E1l, D1d1},

string_element(01dC, P, E2, 01dC1),

set_string_element (Newl, “(2+P), Ei, Newi),

set _string_element (Newl, ~(2+P+1), E2, New2},

consolidate_string{~(P-1), 01d1, D1dC1, New2, Newdl.
otherwige.

consolidate_string( Newl, New3) := true | New(l = Newd.

-_F = =i

2.3  Start of parallel work and control

Here, we start the parallel processing. Each processor receives a copy of the connection matrix, the nuniber
of sets and the nunber of processors. Then. a control predicate is called, which iterates the Lin-Kernighan
J:L|gl::ITif]1l1l until a tviinizin of vost o= reacbed,

start_op(Con, Set, Fosl, UsedProc, Pos) :-
vector{Con, _}, integer(Set), string(Fos0, _, _J, UsedProc »= 1 |
util:object_to_string({Con, Set, UsedProc}, _, Data),
par:sync_create_2_tree_of _p{0, ~(UsedProc-1}, Data, Tree),
par:apply_2_tree_of _p(Tree, _, tree, node,

{data_in, rank_in, children_in,
tree_up_in, tree_up_out,
tree_left_in, tree_laft_cur,
tree_right_in, tres_right_out,
processor_in},

- - [, TO, [Peso | TIT1, _, [1).

control(TO, TI, Pos}.

The contral predicates sends the position string to the tree of processes. This starts the Lin-Kernighan
algorithm. Whenever the algorithm finishes, a position string is received, as well as a flag. If flag value is
Losome change vecured, which improved the partition. In this case, the algorithm is restarted. Otherwise,
flag equals 0: optimization can be stopped and the current position be returned through the arguement Pos.

contral{ [0, Paesl | _], TI, Pas} :-
string(Pes0, _, _} |
Paa = Fosl, TI = [].
otharvise.
contrel([_, Pesl | TOJ], TI, Pos) :-
string(Pos0, _, _) |
TI = [Pos0 | TI1],
contrel (TD, TI1, Pos).



5 3 MODULE TREE

3 Module tree

[hstribution of work load 1= done over several processors, organized as & binary tree, with respect to com-
A tions.

This module contains the predicates defiuing the basic distribution of 1he algorithm, that is. rhe syn-
cliromization with the 1op driving process and The collation of permutations together until the head ol 1he
tree, 1t also holds the algorithnm which determines which pair is treated by a processor.

1= module tree.
:- public noda/10.

The core of the communication algoriihin is guite simple. In any given pass. the pusition string is propa-
gated down the tree. cotnputation takes place. and a string containing permutation is built and propagated
from the bottom af the tree, A new position striug is derived from these permutations and the process
erales,

To determine whicli pair is associated to one processor is tricky. In the first place. let’s assume that the
number of processor is nol bonnded. If we have s sets. there cannot be, ai any given time, more than =/2
pairs treated in parallel. Our problem is therefore to generate s sequences of & /2 pairs. as the total number
M Tweo cases are distinguished:

of pairs we can take among = sels is

e [f s =2k + Lk e A and if we assume sets are labelled as 0,. ... 2k, we consider the pairs {£.1"
m e [k — 1], and w & [00s — 1. suck that (4, jhpm = (Im+ njis)(s—m+ 7 - =il Then., wa
given ng, the best permutations between 2 sets, in the sense of the Lin-Kernighan algorithm. ¢in be
computed in parallel for the k set-pairs (i) . for m € [0.F = 1]. Let's call such a set of pair {,,.
All £, should be enumorated an computed. Since sel labels are not distinets between two [ 5, the
best permutations for 2 ['s caunot be performed concurrently.

The maximum degree of parallelism thos achioved 1s k.

e For an even s = 2.k € A", we have to consider 2 different types of pairs:

L (i i = (mn + mfish (s — m 40 = 2)s)), form g [0k = 2w & 0.k~ 1];
2o (i e = itm 4+ u)shls —m+n =)k for m e [0k = 1. n < [0k - 1].

Like in the previons case. permutations can be computed in parallel for the pairs [ (tg) . for
we & [0k — 2], and for the pairs I8 by form e [0,k = 1]. But computations for differes s
and "= cannot he performed concurrently,

The maximum degree of parallelism achieved iu this case is & — 0.5

If the wnmber of available processors is p < k. we chose to decampose T, or I) into subsets of p pairs. Of
conrse. this i= not optitmal i pis not a divider of k. The achieved paralieliso is in the worsl case pll = plk).

3.1 For a node in the tree...

The following predicate waits for the data describing the graph to be ready. Then. in the case of the head of
the tree. inserls & process (predicate head/5) in the communicating stream. which will transfer the position
string coming from the top driving process, on one hand. On the other hand, this process with take the
permutation string coming from the bottom of the tree and alter the position string accordingly.

Depending on whether ar not the current processor is the head of the tree, the following predicate starts
a communication process, which waits for a position string, starts the search for the best permutations, then
outputs a string with those permutations.

node(CData, Rank, Child, TUI, TUO, TLI, TLO, TRI, TRO, Proc) :-
string(CData,_,_), integer(Rank), integer(Child), integer(Proc) |
util:string_to_object(CData, _, Data)},



404 Head of the 1ree G

(wait(Data), Rank = 0 ->»
Data = {Con, Set, UsedFroc}k,
head{Sat, TUI, TUO, TUI1, TUO1),
com{Child, {0, Proc, Con, Set, UsedProck, ¥ O
{TUT1, TUO1, TLI, TLO, TRI, TRO}):
wait(Data), Rank » @ -»
Data = {Con, Set, UsedProc},
com{Child, {C, Proc, Con, Set, UsedProc}, % O
{TUT, TUO, TLI, TLO, TRI, TRO})).

pass numbar

pass number

3.2 Head of the tree

The following process propagates the position information and collates permutations together. It also keeps
up the number of passes which are necessary to complete the algorithm. During each pass. a different pair
of sets is selected by each processor. If there are s sets, there are s passes, during which 5/2 or 5/2— 1 pairs
are processed, depending on the parity of s

The following predicate waits for o request from the process contrel/3 in module 1k, Note also that
the number of passes is different from = when s = 2. In this case, onlv one pass is necessary

head(Set, [Pos | TUI], TUO, TUIL, TUD1) :-
Set >= 2, string(Pes, _, . |
util:sync_copy(Pos, Posi, Pos2),
(wait{Pos2) -3
TUI1 = [Pes2 | TUIZ],
wait_perms(TUT, TUOD, TUT2, TUOL{, Pasl, 3et, Sat, 0))}.
otherwise.
head{_, [J, TUO, TUI1, _J :=- true | TUC = [J, TUI1 = [].

The fullowing predicate aceepts message [rom (he tree of processors, and updales aceordingly the position
string, and the modification fag,

wait_perms(TUI, TUG, TUI1, [Perms | TUOD1], Pos, Set, Pass, Modif) :-
string{Perma, 0, _) |
check_pass(TUI, TUO, TUI1, TUD!1, Pos, Set, Pass, Modif}.
otherwise.
wait_perms(TUI, TUO, TUI1, [Perms | TUO1], Pos, Set, Pass, _) :-
string(Perms, Size, _) |
apply_perms(~ (5ize-1), Perms, Pocs, Posl),
(wait(Fosl) -»
check_pass(TUI, TUO, TUIi1, TUOi, Posl, Set, Pass, 1)).

In the following predicate. in the case of the last pass. we indicate to the top predicate (contral/3 in
maodule 1k) whether & change accured or not, and we wail for a new request, through the predicate head/s.
Otherwise, we iterate through the next pass, giving a cropy of the current position string to the process tree.

check_pass(TUI, TUD, TUIL, TUOL, Pos, Set, Pass, Modif) :-
Pass » 1 |
util:sync_copy(Pos, Posl, Posl),
vealt Tos2) -»
TUL = [Posi | TUIZ],
wait_ srms{TUI, TUO, TUI2, TUOL, Pos2, Set, ~(Pass-1), Modif})).
otherwis-



[ 0 MODULE TREFE

check_pass(TUI, TUD, TUI1, TUOL, Pos, Set, _, Modif) :- true |
TUD = [Madif, Pos | TUDZ],
head(Set, TUI, TUOZ, TULL, TUOL).

Last af {his section doveted to the tree head, the following predicate applies upon the position string the

permutations computed by application of the Lin Boare ban sdgorithn,

apply_permsi{F, Perms, Pos, Posd) :-
P>,
string_element(Perms, P, E1), string element(Perms, ~(P-1), E2},
string_element(Pos, El, P1), string_element(Fos, E2, P2) |
set_string_element(Pos, E1, P2, Posll,
set_string.element{Posi, E2, P1, Posl),
apply_perms( {P-2), Perms, Pos2, Pos3).
cthervise.
apply_perms{_, _, Pos, Pos3} :- true | Pos = Posd.

1.3 Communication process

The [ollowing predicate. acoording to the number of children af the current node. selects the proper com
mnication process,

com{?, Data, {TUT, TUD, TLI, TLO, TRI, TRO}) :- true |
full _com({TUI, TUO, TLI, TLO, TRI, TRO, Datal.

com(1, Data, {TUI, TUO, TLI, TLO, TRI, TRO}) :- true |
left_com{TUI, TUO, TLI, TLCO, TRI, TRO, Datal.

com(0, Data, {TUT, TUOD, TLI, TLO, TRI, TROF) :- true |
ene_com(TUI, TUO, TLI, TLO, TRI, THO, Datal.

The following predicate implements the comunication process in the case ol & node with 2 children,
Commnication is decomposed into 2 distinets pliases:

o first, we duplicate the position information coming fron: the top: this is done 1o the predicate full _com/7.

o thew. we wait for the permuatations coming frow the local process and the subtrees, and append ' ese
srrings, which are sent to Lhe parent node, This s dane n the predicate full_com2/8.

full_com([Pes | TUI1, TUOD, TLI, TLC, TRI, TRO, Catal .-
string(Pos, _, .} |
util:sync_copy(Pos, Posl, Pos2),
util:sync_copy(Posl, Pos3, Pos4),
(string(Pos4, _, .} =>
TLO = [Pos2 | TLO1], TRO = [Pos3 | TRO1],
one_pair(Pos4, Data, Datal, Par)@priority($,-2000),
full _com2(TUI, TUO, TLI, TLOL, TRI, TRO!, Datai, Per)).
full com({1, _, _, TLO, _, TRO, _} :- true | TLO = {1, TR0 = [].

full _com2(TUI, TUO, [Peri | TLI], TLD, [Parz | TRIG, TRO, Datat, Par} :-
string(Per1, _, .), stringi{Per2, _, .}, string(Per, _, .J |
fel:appendstring([Per, Fart, Ferz}, Pard),
(wait(Perd) -»
TU0 = [Perd | TUOLD,
full _com{TUT, TUOi, TLI, TLO, TRI. TRO, Datall).



A4 Pair determreation

The Tollowing predicates do as ahove for the case when there is only the left children.

left_com([Pos | TUT), TUO, TLI, TLO, ., .., Data) :-
string(Pes, _, . |
util:sync_copy{Pas, Posl, Pos2),
{string(Pes2, _. .} -2
TLO = [Pos2 | TLO1],
one_pair(Posl, Data, Datal, Per)@priority($,-2000),
left_com2{TUI, Tu0, TLI, TLO1, ., ., Datal, Per)).
left_com([], _, -, TLO, _, _, .} :- true | TLO = [].

left_com2{TUl, TUD, [Perl | TLID, TLO, -, .. Datal, Par) :-
string(Pert, _, .}, stringiPer, _, il
fel:appendstring(Per, Pertl, Fer0},
(wait(Par0} -»
T = [Perd | TUO1D,
left_com(TUI, TUO1, TLI, TLO, ., .. Datal)).

Fventually. we do in the following predicate with the case of a leaf node.

one_comi[Pos | TUT), TUO, _, . .. -, Datal} :-
string(Pes, _., _) |
one_pair (Pos, Data, Datal, Per},
cne_com?(TUT, TUQ, _, _. -, -, Datal, Per).
one_com{[l, _, _, _s —» —. -} 1= true | true.

one_com2(TUI, TUO, _, _, _, -, Datal, Per} :-
atring(Per, _, .J |
TUO = [Per | TUD1D,
one_com(TUI, TUOL, _, -, ., ., Datal}.

3.4 Pair determination

i this section. we dotermine which pair to use and how many pair to use {if there are not enough processaors ).
T'his is done according to Lhe current processor number, to the pass number and to the parity.

The following predicate starts the creation of a list of set pairs; several permutations can be compited
on 1he same processor within the same pass if UsedProc is less than half of the number of sets, Then, the
Lin-Kernighan algorithm is called.

one_pair(Pos, {Pass, Proc, Con, Set, UsedProc}, Datal, Per) :-
integer{(Pass), integer(Proc), intager(Set), integer (UsedProc) |
make_pair(Paas, Proc, Set, UsedProc, List, List, Pairs),
algo:1k(Pairs, Set, Pos, Con, Conl, Pari),
(string(Per1, _, ) -2
patal = {-(Pass+l), Proc, Conl, Set, UsedProc}l,

Per = Paril.

The following predicates contruct the list of pairs. Two cases are distinguished first:

e If the number of sets is add. there is a single way to construct pairs, and s — 1 circular permutalions
are done aver the set list.



2 4 MODULE TREE

o T the wimber af sets s oven, there are two topes of pairs: the ones constraeted as above and vl
ane cons! roncied witloan odsd distanes betwesn =ots inoa palt, There are 5o 0 pairs of the later Ly pe,
which are constrneted first, and i~ — 2110 pairs of the former type. which are constructed last in the

following predicate.

maks_pair{Pass, Proc, Set, UsedProc, List, Head, Pairs} :-
Set mod 2 =:= 1 |
make _pair_odd{Pass, Froc, Set, UsedPreoc, List, Head, Palrs).
otherwise.
make_pair(Pass, Proc, Set, UsedPFroc, List, Head, Fairs) :- true I
make_pair_esven{Pass, Proc, Set, UsedProc, List, Head, Pairs).

Here 15 the predicate for an odd -

make_pair_odd{Pass, Proc, Set, UsedProc, List, Head, Pairs) :-
Proc < Set / 2 |
1 := (Fass+Froc) mod Zet,
J = (Set-2#Pass-Proc} mod 3at,
fol:mini(I,J,Min},
fel:maxi(I,J Max},
{wait(Min), walt(Max) -»
List = [Min, Max | Listil],
make_pair_odd{Pass, “{Proc+UsedProc), Set, UsedProo,
List1l, Head, Pairs)}.
otharwisa.
make_pair_odd{_, ., ., .., List, Head, Fairs) :- true
List = [], Pairz = Head.

Here are the two predicates for an even s.

make_pair_even(Pass, Proc, Set, UsadProc, List, Head, Pairs) :-
Pass < Set / 2, Proc < Set [ 2 |
I := {Pags+Proc) mod Set,
J := {Set-1+Pass-Proc) mod Sat,
fal:mini{I,J,Min},
fol:maxi(l,], Max),
{wait(Min), wait{Max) ->
List = [Min, Max | List1],
make_pair_even(Pass, ~(Proc+UsadProc), Set, UsedProc,
List1, Head, Fairse}).
octherwise.
make pair_even{Pasa, _, Set, _, List, Head, Paira} :-
Pass < Set [ 2 |
Liet = [], Pairs = Hamad.
otherwise.
make_pair_asven{Pass, Proc, Set, UsedProc, List, Head, Pairs) :- true |
make_pair_sven2(Pass, Prec, Set, UsedPrvc, List, Head, Fairs).

make_pair_even2(Pass, Proc, Set, UsedProc, List, Head, Pairs)} :-
Proc € {(Set / 2) - 1 |
I := (Pass-(Set/2)+Proc) mod Set,
J := (Set-2+Pass-(Set/2)-Proc) med Set,



ab 0 Pair deternfial o

falimini{Il,], Min},
fel:maxi{l,J],Max),
{wait(Min}, wait{Max) -2
List = [Min, Max | List1],
make_pair_evenZ(Pass, - {Proc+lsedProc), Set, UsedProc,
Listl, Head, Pairs)}.
othervise.
make_pair_even2({_, ., _, -, List, Head, Pairs) :- true |
List = [], Pairs = Head.



Il OMODULE ALGO

4 Module algo

This mesdanle beolbed s the core of Vhe Din-Roernishan alegoriehon to fimd The best permitation of elements belween
a :-.|:-r-ti|i1~-:| st ool wer jraies. Tl beaste aleorithn i detailod in JI and e Tedlowe 1 1'|uhﬁ|_‘r. Senne par'rirul.'-:l'

proitita al Uhis veplementation ave detailled here alter,

t= module algo.
i- public 1k/6.

4.1 From a list of set-pairs...

The Followine {top-levely predicate s called Trons the sodnle tree o order to lind the best permations,
for a Hat of set pairs contained o Pairs, Our earelul reader has already aoticed that even on the same
processor. =everal applivations of the |]||-Hi'rllig|mll alvorithin were dope with e same set of data. The
onby varving parapeeter s the Dstoof pairs. That meeans that oo intermediary stroctuee is kept from ope
congputation 1o the gext one, Conpeetios-rost malris remmains ol comrse antooehed

To the foliowing predicate, woe Saild the intermediary stracture, then we invoke 1he Lin- Kernighan reso-
Tntion ower 3o list of <ot paies, tocaer Baek s list of vortes pernogtations. with respect 1o 50t tnelusion, which
= rransfornwed intooa steine, This steine is wsed by the calling predicate.

1k{Pairs, Set, Pos, Con, Conl, Perl) :-
list{Pairs), integer{3et), string(Fos, Siza, _J,
vector(Con, _) |
make_intermediary(Pairs, Pairsl, Set, Pas, Con, Cenl, Inter),
pair_lk{Pairsl, ~{SizefSet), Inter, Pearl,
list:1list_to_string(Per, 32, Peri).
1k([1, _, _, Con, Coni, Peril} :-
vactor(Con, _) |
new_string(Perl, 0, 32),
Conm = Coml.

4.2 Building the intermediary structure

Av intermediary strueture kas to be boilt to saisfy speed requirements of the Lin-Kernighan algorithm, © e
contertion and cost mattics: are convenient for transfer becaose they are small. but they are not practi .
when we want to access divectly the cost value of the connertion betwesn fwo arbitrary nodes.

For each set concerned in the optimization. we need first of all the list of vertices in the set. Then. for
el vertex, we need the list of connectedt vertices, in the current set and in the other set {of the relevant
pairl, Therefore, we build. for cach set in the pair list, a string containing 20 + 5 elements, where » is
the nmber of elements per set, The label of the ith vertex is stored at position ¢ in the string. We now
ronsider conpections between this set 5 and some other given set 5, That set also has n elements, which
van be fudexed similarly by j. botween | and o, Cost of the edge from § to ¢'. both in 5y, can be found at
position (2= ¢ — in + 0" in the arring. Cost of edge fram ¢ 1o j. the later in 5, can be found at position
P T e

Sinee those strings are expected to change from one pass to the other, we don’t keep them. nor try 1o
share them between processors. We think (it's not provent that keeping them up incrementally or exchanging
them between processors would be slower than systematic re-generation.

The following predicate scans the list of sel pairs and creates an intermediary structure for each set in
the list. In the first place, we scan the pair list to check which sets are concerned and we initialize the
intermediary structure. Also, we create an index from the set of vertex labels to their relative position in
the set-to-vertex string. Then, we scan the vertex to set affectation string to fill up the n first characters of
the intermediary structure strings. Eventually, we insert the cost-connection information.



.2 Huilding the internpediary structnre 15

make_intermediary(Pairsl, Fairs3, Set, Pos, Con, Conl, Interd) :-
string(Pos, Siza, _), vector(Com, _) |
new_vector(Inter, Set),
new_string(Index, Size, 32),
SetSiza := Size [ Set,
StringSize := SetSizes(l + 2 * Set3ize),
scan_list(Pairsl, Pairs2, ~(SetSize-1), StringSize, Inter, Interi),
£i11 inter{ (Size-1), Pos, Posl, Interi, Inter2,
Tndex, Indexl),
cost_inter(Pairs2, Pairsd, Set5ize, Peosel,
Index1, Inter2, Interd, Con, Coml).

The following predicate scans the pair list and initializes the intermediary structure with strings of the
proper length, al the position corresponding to sets in the list,

scan_list([51, 52 | Pairs], Pairsl, Size, 55, Inter, Interd) :-
integer(S1), integer{(S82) |
nev_string(Coni, 58, 32),
set_string_element(Conil, 0, Size, ConZ},
set_vector_element(Inter, 31, _, Con2, Tnterl),
new_string({Cond, 53, 32),
set_string_element(Con3d, 0, Size, Cond),
set_vector_selement(Interil, 52, _, Cond, Interl),
Pairsl = [51, 52 | Pairsi],
scan_list(Pairs, Pairs2, Size, 55, Inter2, Inter3).
otherwisze.
scan_list(Paire, Pairsi, ., ., Inter, Inter2) :- true |
Pairs = Pairsi, Inter = Interi.

The follawing predicate scans the Pos string and inserts in the relevant string, from the intermediary
structure, the label of each vertex which is found to be included in some set of interest. In eackh string. the
character at position 0 is used to store the current number of vertices actually stored in the string. We also
set in the siring index the position at which each vertex is put.

£ill_inter(P, Pos, Posl, Interi, Inter2, Index, Index2) :-
P > -1, string_element(Pos, P, E}, vector_element(Interi, E, 0) |
i1l _inter(-(P-1), Pos, Posl, Interi, Inter2, Index, Index2}.
othervise.
£ill_inter(P, Poe, Posi, Interl, Interd, Index, Index2) :-
P > -1, atring_element{Pos, P, EJ |
set_vector_element(Interl, E, 51, 54, Interl),
string_element(51, O, N, 82),
set_string_element{32, 0, “(N-1), 53},
set_string_element(S3, N, P, S4),
set_string_element(Index, P, N, Indexi),
fill_inter(~(P-1), Pos, Posl, InterZ, Inter3d,
Index1, Index2).
othervise.
£i1l_inter(_, Pos, Pesi, Intarl, Inter2, Index, Index2) :- true |
Fos = Posl, Inter! = Inter2, Index = Indax2.

The following predicate updates the intermediary structure for a list of pair of sets, inserting cost information.



IF 4 MODULE ALGO

cost_inter([S51, 52 | Paire], Pairsl, SetSize, Pos,
Index, Interi, Interd, Coml, Cond) -
integar{5l), integer{52], integer(Set3ize), siringllndex, _, _},
vector{interl, _), vector{Cenl, _}, string(Pes, _, _} |
set_vector_element(Interl, 51, 0ldS1, Newil, inter?),
cost_inter2{~(Set3ize-1), SetSize, 51, 32,

Pos, Posl, Index, Indexl, 01d51, MewS1, Conl, Con2),
set_vector_elementi{Inter?, 52, 01452, New32, Inter3},
cost_inter2(  (Set3ime-1), SetSize, 52, 51,

Posl, Pos2, Index!, Index?, 01452, HewdZ, Con2, Candl,
Pairst = [81, 52 | Pairsl],
cost_intar{Pairs, Pairs2, Set3ize, Pos2, IndexZ, [nterd, Inters,

Con3, Cond).
cost_inter{[], Pairel, _, _, _, Intarl, Interd, Conl, Cond) :- irue |
Pairst = [], Interl = Interd4, Coni = Cond.

The foliowine predicate ivserts the cost information in the part of the iniermediary stracture related to the
sel 81, The basic idea is to scan all the vertices in 81 and 1o pick up the cost Infimmation whenever its
pelaiod tooa node either in 82 or o 32

cost_inter2(P, SetSize, 5i, 52, Pos, Posd, Index, Index?, Siringl, String3d,
Coni, Cond) ;-
string_element (Stringt, P, Vert) |

set_wector _element{Goni, Vert, 0ldCon, Mewfon, ConZ),

update_inter(SetSize, P, 0ldCon, MewCon, 51, 22, Stringl, 3tringZ,
Pos, Fosl, Index, Indexl),

cost_inter2(~(P-1), SetS5ize, 51, 82, Posl, Pos2, Iandexl, Index2,
String2, String3, Con2, Cond).

otherwise.
cost_inter2(., _, _, -, Pos, Posl, Index, IndexZ, Stringl, String3d,
Conl, Cond) -
string(Stringt, _, .} |

Fos = Pogl, Index = Index2, 5tringl = 5tring3, Conl = Cond.

The fotlowing predicate seans the list of vertices, and if they belong 10 31 or 52, they are put in carrespondimng
places in the mtermediary strocture string, nsing the index string to find rhe relative position of a vertex in
Hie st

update_interi(SetSize, I, 0OldCon, NewCon, 51, 52, Stril, Str2, Poa, Posl,
Ind, Indl) :=
string{0ldCon, Size, _J |
update_inter(l, ~(5ize-2)., SetSize, 51, 52, 0ldCen, Newlon, 5trl, 5tra,
Foa, Posl, Ind, Indl).

update_interil, P, SetSize, 51, 52, 0OldCon, NewCon. Strl, 3tra,
Foa, Foal, Ind, Ind2)} :-
string_elemant (01dCon, P, El), string_slement(PFos, El, 51) |
string_element(Ind, E1, J, Indl),
string_element(01ldCon, "{(P+1), Cost, OldConl),
set_string_element(Stri, ~(SetSizex(i+2*I)+J), Cost, 5trl},
update_inter(I, ~(P-2}, SetSize, 51, 52, 0ldConi, NewCon, S5tr2, 3trd,
Fos, Posl, Indl, Ind2).



1.3 Lin-Rernighan algorithn Iy

updata_interil. F, SetSize, 51, 52, 0ldCon, NewCon, Strl, S5tr3,
Pes, Posl, Ind, Ind2) :-
string_element{0ldCon, P, El}, string_element{Pos, El, 52} |
string_element(Tnd, E1, J, Indi},
string_element(0ldCon, “(p+1), Cost, 0ldConl},
set_string_element{Stri, *(2xSetSize*(I+1)+]), Cost, 5trl),
update_inter(I, “{p-2), Set3ize, 51, 52, 0ldConl, ¥ewlon, Str2, 5trd,
Pos, Pos1, Indl, Ind2).
othaerviza.
update_interEI, P, SetSize, 31, 32, 01dfon, WewCom, Stril, Str3,
Pgs, Posl, Ind, [nd2) :-
P»-1]
update_inter(I, “(p-2), SetSize, 51, 52, 0ldCon, NewCon, Stri, 5tr3,
Pog, Posi, Ind, IndZ2}.
othervise.
update_inter{_, _, -, _+ -» 0ldCon, NewCon, Stri, 5tr3, Pos, Posl,
Ind, Ind2) := true |
0ldCen = NewCom, Stri = Str3, Fos = Posl, Ind = IndZ.

4.3 Lin-Kernighan algorithm

Here is the bigev. Let’s recall guickly how this algorithm works. At any time. we look for the bes!
permutation between two vertices in the 2 sefs of interest. We permute and freeze these nodes. We iterate
the process until only frozen nodes remain. Now. all nodes have been exchanged. If we look at the cumulated
score of permutations, considering connection cost. the score rearhes a maximum. At the end, the score is
of indeed zeto. since sets contents have been exchanged. We keep the permutations leading to the maximum
sCOre.

The following predicate applies the Lin-Algorithm to a list of pairs of sets,

pair 1k{[S1, 52 | Paire], Size, Inter, Par) :-
integer(51), integer(32), integer(Size), vector{Inter, _) |
cne_lk{si, 32, 3ize, Inter, Interl, Per, Paril,
pair_lk(Pairs, Size, Interl, Parl).
otherwise.
pair_1k(_, _, ., Per)} :- true | Par = [.

Now. we have to consider the problem of finding the best permutations for a simple pair of sets. At the
top level, in the first place we build the gain lists associated to the two sets. Then. we do all possible
permutations and select the segment of the permutation sequence which brings the largest gain, When no
permutation brings any improvement. this segment is empty, by definition.

one_1k(S1, 52, Siza, Inter, Interd4, StartPer, EndPer) :-
integer(51), integer(32), vector{Inter, _) |
set_vector_element(Inter, $1, Costl, _, Interl),
get_vector element{Interl, 52, Cost2, _, Inter2),
build_list(~(Size-1), Size, Costl, Ceostll, D1J,
build_list(~ (Size-1), Size, Cest2, Cost2i, D2),
perms_lk(Size, D1, D2, Costii, Costl2, CostZi, Coat22, Size, CostPaer),
cut_at_best(CostPer, ListPer, 0, 0, 0, 0, Cutl},
list:split(ListPer, Cut, StartPer, EndPer, Sync),
(wait{Cost12), wait(Cost22), wait(Sync) =>
set_vector_element (Inter2, 51, _, Costl12, Interd),



I~ IOMODULE ALGO
eet_vector_element{Inter®, 52, _, Cost22. Interd)).

The following predicats builds g list of possible garn te eniting vost, Fach gain B bs associaled Looa node
ia ser This gain is the one which woulib coews 30 the pode was displaced alone from the current set 1o the
otlier set ol the pair,

build_1ist(P, Size, Costl, Costd4, D1) :-
P » -1, integer{3ize!), string{Cestl, ., .} |
Start := Size + P+2=*Size,
End := Start + Size,
sum_cost{Start, End, Costl, Cost2, O, E1}, ¥ leocal set cost
sum_cost{End, ~“(End+Size), Costl, Costd, O, EZi, ¥ opposite set cost
D1 = [“(E2-E1), P | D27,
build_list{"(P-1}, 2ize, Costd, Costd, D2).
otherwise.
build_listi{_, _, Costi, Costd, D1} = true | Costl = Costd, DL = [].

The !"tllllh'p'..-lllg |J1'L'|!"|L.'11=' suns The cost from pm—i!illll F1 itutil ;Hl:—.i'.in:l PZ.

sum_cost(Start, End, Costi, CostZ, E, El1} :-
Start < End, string_element{Costl, 3tart, € |
sum_costl(” (Start+l), End, Costl, Cost2, "(E+C), EL).
otherwise.
sum_costi_, _, Cestl, Cest2, E. El)} :- true | Costl = CostZ, E = E1.

The cost-permpuiation lst returned by parms_1k i= 4 Lt of 3 upies. each one holdicg the gain associaled
tor the permutation amd the labels of the ventices toopermogre. The following predicate takes this list and
ratirns the list of the permmtations without the cost tiformation. and the number of slements 1o keep 1o
the list to get the optimal se1 of permatations

cut_at_best([Coat, Pi, P2 | CPer], LPer, Score, Best, CCut, _, Res) :-
N3core := Score + Cost,
NScore > Hast |
LPer = [P1, P2 | LPerz],
NCut = OCut + 2,
cut_at_best(CPar, LPer2, NScere, N3core, NCut, NCut, Res).
otherwisae.
cut_at_besti[Cost, P1, P2 | CPar], LPer, Sccre, Best, CCut, Cut, Res) :- true |
Nicore := Score + Cost,
LPer = [P1, P2 | LPeral,
NCut := CCut + 2,
cut_at_best(CPar, LPer2, NScore, Best, NCut, Cut, Res).
otharwise.
cut_at_best(CPer, LPer, _, _, ., Cut, Res} :- true |
CPer = LPer, Cut = Has.

4.4 Searching the gain lists

A naive algorithm would try all permutations and keep the best. That would take O n') operations. and
since this has to be done until n permutations are found, that would require all in all O(n®) permutations.
There is a basic optimization if we sort the gain lisis D1 and D2, Suppose we have gains A; in the first list



14 Bearching the gain lists |G

and . in the second. We can go through all pairs (A, H;) in decreasing order of A; + H,. The real gain
arhioved if we permte i and s A+ B = 20,0 where ¢ s the cost of the edge between i and j. Since all
costs are positive, we can stop the search for the optimal permutation as soon as we encounter a pair (1 7)
such that A; & J7. i less than the real gain achieved so far. In this case. the dominant complexity factor is
the one associated to sort. Allin all, complexity becomes O n*logn.

To effertively implement this algorithm. we have first to sorl each list. then to go through permuotations
in an ordered manner. This i= done hy the following predicate. which works until the gain lists are empty.
That way. vertices which have heen subject to a permutation are implicitely taken away from the search
space. for further computations. At the end of the following predicate. hefore we go with the remaining of
the list. note that we purge the gain lists from the permuted vertices and update gain values to reflect the
permutalion.

perms_lk(L3ize, D1, D2, Costll, Costl4, Cosill, Coet24, Size, CostFer) :=
LSize > ¢, list(D1), list{D2),
string({Cost11, _, _), string(Cost2l, _, _), intsger(Size) |
gain_sort(LSize, D1, D11},
gain_sort(L3ize, D2, D21},
list:list_to_string(Di1, 32, 311),
list:list_to_string(D21, 32, 521},
sesarch_perms{Size, 511, 8512, 321, 522, Cestll, Costll2, CostZl, Cost22, Per),
gain_filter(CostPer, Per, CostPer2, =212, D12, 322, D2z,
Sostl2, Costl2, Cost22, Cost23],
perms_lk("(L3ize-1)}, D12, D22, Costl3, Costld, Costld, Cost24,
Size, CostPerz).
othervisa.
perms_1k(0, [1, [}, Cost1l, Cost12, Cost21, Cost22, _, CostPer) :-
string(Cost11, _, _), string(Cost2l, _, ) |
Costi1l = Cestl12, Cost2l = Cost22, CostPer = [].

I'he 1wo following predicates perform a merge-sort for lists. The only reasou why we did not use FLIB is
that *he sort key and the element position in the set are at the same level. We rould have arranged that by
encapsulating them together in a vector or a list, but sort speed would be quite slower. Be aware that in
the following. L34ze is hall of the number of elements in the list, i.e. it holds the number ol pairs to sort,

gain_sort(lLSize, D11, D13) :-
L3ize » 2, list{DM1i) |
Sizel := L5ize >> 1,
list:sync_split(D11, ~(Sizel << 1), D21, [], D31},
gain_sort(Sizel, D21, D22),
gain_sort(~(LSize - Sizel), D31, D32},
gain_merge(D22, D32, D12, Sync),
(wait(Sync) -» D12 = D13},
otherwise.
gain_snrtii, [c1, P1, C2, P2], D) :=C1 ¢ C2 | D= [C2, P2, C1, Pi].
otherwise.
gain_sort(_., D1, D2) :- true | D1 = D2.

gain_merge([C1, P1 | D1], [c2, P2 | p2], D3, Sync) :-
C1 »= CZ |
D3 = [C1, PL | D4l,
gain_merge(D1, [cz, P2 | D2], D&, Sync).
ctharwisa.
gain_merge([C1, P1 | D1}, [C2, P2 | D2], D3, Sync) :-



21 T MODULE ALCG

C2 »= C1 |
D3 = [0, P2 | D4,
gain mergel([Cl, P1 | Di], D2, D4, Sync).
cthervise.
gain_merge{[], D2, D3, Svne! - true | D2 = D2, 8Bync = 1.
otherwise.
gain_merge{D1, [}, D3, 3ync) = true | D3 = D1, 3yne = 1.

o, Lot s deal wor ke the filltering ol |1-'i1|||i1|nj proless Woo nlser transform the relative |]{}Hiliﬂj| ol vertices n

sols tnbo eiobod Tabae]s

gain_filter{CostFer, (o, FL1, ¥z], CostPerZ, 511, D1Ll, 521, D21,
Costl2, Cost?’, {pstll, Cost23) -
integer(P1}, integer(P2:,
gtring(511, Size, _J, string{321, Zize, _7 |
string filter{"(5irs-1), P1, 5i1, D1, Synciy,
string_filter  {Size-1) P2, 22t D2, Syne2d,
string_element{CostlZ, P1, L1, Costidl,
string_elementi|lost32, PZ, LZ, Costd3),
{waiti(Sync?), waitiSyncl) =-»
D1 = Dtt, D2 = D71,
CostPer = [C, L1, L2 | JastParz]).

string_filter(P, F1, 51, D1, Syncl) ;-
P> -1, string_element {51, P, P1) |
string filter("(P-23, F1, ©t, D1, Syncl).
athervise,
string_filter(P, P1, 31, D1, 3yncil -
F » -1, string_element{2{, P, Ei), string element(51, ~(P-1}, E2) |
bt = [E2, Ei | D2],
string_filzer{ (P-2), P1, 51, D2, Synci).
othervise.

string_filter(_, _, D1, Syncl) :- true | D1 = [], Syncl = 1.

4.5 The Quest for the best permutation

We donok for the hest peratation, scanuing the giin izt We have 1o sean then so that the sum of gains in
the eleated |h'-1ii' runlln.ﬂllru:-ll-l_'; e roiomin,

o the follonwine predicaie. we compane an initial gain, then call the list scay predicate. After a pernin.
tation lias been done, we have to eorrect the gain value in the remaining part of the list.

search_perms(Size, 311, 213, 51, 524, Costil, Costid, Cest2l, Cost23, Per) :-
string(81i, Els, _}, stzing(§2!, Els=, .},
string(Cestll, _, _), string CostZi, _, _J,
integer(3ize) |
string_elemens (511, 1, Elt, 12,
string_element {521, 0, G, 5227,
string element (522, 1, E12, 523),
string_element(Cost1l, ~“(2+5ize*(E11+1}+El12), Cfs, Costl2),
Gl := G - Cfs,
string_element(Cost21, "(2+#Sizes(El2+1)+EL1), Csf, Cost22),
G2 := G1 - Caf,



15 The Quest for the best pecmntation 21

gearch_perms{2, Els, Ell, G2, 823,
{512, Sigze, Costi2, Cost22, 0, 0, 0}, Finall,

wait_perms(Final, Els, 513, 524, Cost13, Cost23, Per).

We mow scan the pair lists, First is the position of the pivol in the first list. All other elements in the
other list are tried. If no potential gain is found when taking care of the first element of this list, the search
io over. Otherwise, the search b the second listis only stapped and Lhe pivot is incremented. This is it for
the principle. Tmplementation i a Jittle Lit painful. hecanse many variables need to he at hand. Therefore.
vertor Ceats halds many things, Namely:

Costs = {51, Size, Costl, CostZ2, PL, P2, First}

S1 is the string holding the gain list for the first set. Size is the size of each set. This is useful lo access
the costs information in Costl and Cost2 P1 and P2 are the position of the pivot and second element of
the pair having the best gain so far. First is the position of the current pivot.

I the following predicate, 1o gain time, we do not compare full gains but only the variation of gain due
to the second element. This variation is stored in the variable SecGain. On the other hand, we have to
correct this "hest™ variation whenever we change the pivot and at the end of the computation.

The following predicate works according to J different paticrns:

o In the first case. for all elements in the second list between position Second and position EndSecend
we check that there is a potential gain over SecGain.

search_perms{Second, EndSecond, El11, SecGain, 521, Costsl, Costst) :-
Sacond < EndSecond, string_selement(S21, Second, G, G > SecGain |
string_element (321, ~(Secend+1}), El12, 522),
set_vector_element(Costsl, 2, Coatll, Costii, Costs2),
vector_element (Costs2, 1, Siza, Costsd),
string_element(Costil, - (2+Size+(E11+1)+E12), Cfs, Costl2),
¥ = G - Cfs,
set_vector_element(Costs3, 3, Cost2l, Costll, Costsd),
string_element(Costil, ~(2+¢Size*(El2+1)+E11), Csf, Cost22},
Vi := ¥ = Csf,
update_gain(V1i, SecGain, Second, EndSecond, El1, 522, Costs4, Costes).
otharwise,

o We reach the seeonid case if there is no potential gain or if EndSecond was reached. Here, we advance
the pivet from position First until it is at the last position. i.e. Ele— 2. Note that when we restarl the
search in the second list, the end of the search hecomes Second. That means that if the previous case
was not execuled hefore EndSecond. because no potential gain occured, we don’t bother to re-check
for patential gains hefore this position in the next search in the second list.

search_perms{Second, _, ., 5ecGain, 271, Costgl, Costsd] :-
Sacond > O,
vector_element(Costsi, 6, First),
vector_element(Costsi, 7, Els},
First < Els-2 |
get _vector_element(Costsl, O, 511, 514, Costal2),
FNaxt := First+l,
set_vector_element(Costs2, 6, _, FNext, Costsd),
string_element (511, First, G, 812},



A MODULE LG

[
P

V = SacGain+G,

string.element (512, FNext, G1, 313},

Vi1 .=V = {1,

string_element(513, ~(FNext+1), Elsl, 214},

search_perms((, 3ecend, Elsi, V1, 521, Costsd, Costs4).
othervise.

o Dy the last cases o potontial gain conlif be tegisterad. We transform the incremental gain into a full
wain. and we translate positions in 1he gain Hsts into relative positions o Lhe sels,

search_perms(_, _, _, SecGain, 521, Costsl, Costsl) :-
Costsl = {511, Size, Coatl, Cost2, P1, P2, Firsc} |
string_slement(511, First, G, 512),
¥V o= SecGaint,
string_element (312, “(F1+i), El1, 513),
string_element(S21, ~(P2+1), El2, 832),
Costs? = {513, 522, Costl, Cost2, Size, El11, E12, V1.

The following predicate updates the best incremental gain, during the search in the second list.

update_gain{V:, SecGain, Second, EndSecond, El1, 52, Costsl, Costsd) :-
V1 » SecGain, vector_element(Costsl, &, First) |
aat _vactor_alement (Costel, 4, _, First, Costsl),
sat_vector_element (Coste?2, &, _, Second, Costed),
search_perms{~(Second+2), EndSecend, E1l, VI, 32, Costs3, Costsd).
otherwlise.
update_gain(_., 3ecGain, Second, EndSecond, El11, 52, Costsi, Costs2) :- true |
search_perme(~(Second+2), EndSecond, Ell, SecGain, 52, Costsl, Costsl).

The following predicate waits for the result of the permntation search, and calls the correction of the gain
list=, which have to arcount for the new permutation.

wait_perms{{511, 521, Costll, Cost2l, Size, El1, E12, G},
Els, 512, 522, Costl3, Cost23, Per) :-
string(311, ., .J, string(321, _, .},
string(Costil, _, _), string(Cost2i, _, _) |
correct_gains( (Els-1), Size, El1, El2, 511, 512, Coetll, Coeti2),
correct_gains(~(Els-1), Size, El2, El1, 321, 322, Cost2l, Cost22},
(wait(Costl2), waiti(Cort22) -2
Costld = Coptll, Coptd3 = Costll,
Par = [G, E11, E12]).

The following predicate goes through a gain list and corrects the values of gain according to the permutation,
Note that those changes could be restricted to the gains associated 1o vertices connected to the permmted
pair. The cost of the following predicate is minor when compared to the sort, though,

Let’s say vet that in an optimized version, we could hmit the number of clements to re-sort, if we had sucii
a list. But it would require some structure to store the number of each connected vertex (Lhis is pot the
global label but the relative position in the set of interest ). which would change after each permuration. It
would also demand [or a structure supporting incremental sort in truly logarithmic time, like a balanced
tree,



15 The Quest {or the hest permutation

correct_gains(F, Size, EL1, E12, 51, 54, Costl, Costd) :-
string_slement($1, P, E1) | % implies P > -1
Pos! := Size + 2x5izesEl,
string_element(Costl, ~{Posl+El1), Costint, Coatl) ,
string_element(Cost2, “(Pos1+5iza+E12), CostExt, Cost3),
string_element(31, “(P-1), Galn, 52),
set_string_element(S2, “(P-1J, “ (Gain+2#CostInt-2¢CostExt), 33),
correct_gaing(~(P-2), 3ize, Ell, El2, 33, 54, Cost3, Cost4).
otherwise.
correct_gaina(_, _, ., _, 31, 54, Costl, Costd) :- true |
51 = 54, Costl = Costéd.

23



21 S MODULE TEST

5 Module test

c= module test.
1= public go/5,go2/6,square/2, complate/2.

This mindule has been used 1o periorm jesis of the whole program, notabiy 1o measure performances. We
use the FLIB predicates which are provided for statistic measurenment guite extensively here, so refer 1o [1].

There are two tmain parts in this modale: measarement of performances, for a range of processor numbers
and set sizes. and generation of test graphs, namely complete and square graphs,

5.1 Time measurements

In the tollowing predicate, we start the sho-en which will hold time measurements, Al time measures are
collated in the list Res which will be printed at the end of the computation on the console. Parameters
of the predicate have the following meaning: S s the maximum number of sets. SH the minimam. P is the
maximum number of processors, PM s the minimuw and F is a striog bolding the name of the data file to
reqdd.,

go(S, SM, P, PH, F) :-

S >= 5M, SM »>= 2, P >= FM, PM »= 1, string(F,_,_} |
fel:get_code{test, guZ, 5, Code, normal),
util:start_stats{Coda, {5.5M,F,FM,F}, Haz),
util ;sync_wait(Hes, Heal),
util:sync_p._conscle(Resi, _J.

The following predicate calls the read of the example file, and measure the time required for this operation.

go2(5, SM, P, PM, F) :-
integer(S), integer(SM), integer{P), integer(PM), string(F._._J} |
readfile:read(F, A, B),
(wait(aA), wait{B) ->»
util:req_rel_tima(string#'read file", T),
go3(T, &, 5, SM, P, PM, A, B)@priority($,-2000)).

Here, after we got the time, we start the Lin Kernighan algoritho, and wait for the result before regoesong
Lhe time it required to run. The process is iterated with a decreased number of sets, until SM sets remain.

go3(T, 5, M5, SM, P, PK, A, B) :-
display_consocle(T), 5 >= SM, P »= FM |
util:sync_copy([A,B], [A1,B1], [42,B2]),
lk:1k(ALl, B1, 5, P, R},
{wait(R), display_conscle(5), display_console(F} -»
util:req_rel_time(S, T1),
go3(T1, ~(5/2), M5, SM, F, PM, A2, B2)).
otherwisae.
go3(T, S, M5, SM, P, FM, A, B) :-
S < 5M |
go3(T, MS, MS, SM, “(P-1), PM, &, B).
otherwise.
BO3(_, oy =y =4 =3 =+ =3 -y = true | true.



3.2 Usage

5.2 Usage

Let us give same clues abont the usage of this module for measurements of the performance of the algorithm:
with and withoul cheating, Results are presented in section 6 but let’s make some remarks here,

& What happens we the number of sets grows. for a given graph?
More and more dommy nodes are inereased. That's a way Lo measure acceleration due to parallelism
when the cost of the Lin-Kernighav algorithm is minimal, ie for a single pass involving sets with
one vertex onlv, When the number of precessors increases. the intermediary structure built on each
processor is used for less and Jess pairs of sets. until ouly one pair is computed through the Lin-
Lernighan procedure on each processor.
lis thie case. the cost of building the intermediary structure grows like &/p. where is the number of
sets. which is suppused to he much larger than the number of vertices: the cost of communication grows
like «log,ip). and the cost of cach Lin-Kernighan run is nearly constant. while on a given processors,
&/2/p pairs have to be processed. All in all. s pair exchanges have to be done, and we can assume
that ouly 2 passes are done, for s large enough.
In summary, complexity of the algorithm should be near:

o [:»:]l:n.fp+ ;jll:lga[p}])
for large #'s.

s For a given graph with n vertices. and a much smaller number of sets, complexity figure is quite
different. Communication cost grows like n log,(p). while Lin-Kernighan runs cost O (;%lngztnfs}}.
Number of passes depends on the graph complexity and on the number of sets. but is usually limited
to 4 ar 5. 1 is independent of p. in any case. Number of pair exchanges is still 5. In sumtnary.

cotnplexity of the algorithm should be near:
n?
o (ﬁ:r—jlugzt_n,-"s] S nlngi[;r:-])

The results of both types of measurements are done in section fi. 1t's noteworthy that we don’t need anything
but a trivial graph to perform the first measurement, which gives us an idea of the worst case gain we can
expect in terms of speed up. This is what we called cheating.

In order not to cheat, the predicate described in the following section can be used to generate more
complicated graphs,

5.3 Generation of a complete graph

A complete graph is a graph in which each vertex is connected with all other vertices in the graph. In our
case. cost is unit cost. for all edges. The following predicate opens file in write mode, write the number
of vertices and call the graph generation predicate, for a complete graph of size N. Generation is done at a
lower priority than file opening to aveid piling the write request in memory. This causes more SUSPENSIONS
t oceur but makes execution more siootl.

complete(N, File) :-
N >0, string(File, _, .} |

fel:open_file(Stream, File, w, Status),

(Status = normal -»
Stream = [putt(N), putc{#".”), nl | Streamil,
complete{0, N, Streami)@priority($,-2000);

otharwise;

true ->
util:p_consolae([string#"Can’t open file:", Filel, _J,
Stream = [1}.



- 5 MODUVLE TEST

The tollowing predicate deals with the seueration of edges for e vortox with Label Losmongst the N vertices,

complate{l, ¥, Stream) :-
L<k !
Stream = [putt(L), putc{#"."}, al, pust{ {(N-1}), putc{#"."J, nl
| Streaml],

complete(l, O, N, Streaml, Stream?, Sync),
{wait(Sync) -> completa(“(L+1}, N, Stream2)}.

otherwise.

completa(N, N, Stream} :- true | Stream = [].

Eventually the followine prodicate generales all sdpes for o vertex, Note that the reflexive edae is not

gonerated
complete(E, E, N, Stream, Streamn2, Sync) :- true |
complete{E, “(E+1), N, Stream, Stream2, Sync).
otherwise.
complete(L, E, N, 5tream, Stream2, Sync) :-
E <N |

Stream = [putt{E), putc(#“."}, nl, putt(l), putc(#"."), nl | Streami],
complete(lL, "{E+1)}, N, Streaml, Stream2, Sync).

otharwise.

complete(_, _, _, Stream, Stream2, Sync) :- true | Stream = Stream2, 3ync = 1.

5.4 Generating of a square graph

A sqare graph is a graph in which each vertex is counected to cach of its 4 neighbors, when applicable, ie,
besides edges. ALl edeges bave nndl cost, The following predicate opens file in write mode. write the npumber
of vertices and call the graph generation predicate. for a square graph of size ¥°. Generation is done at a
lower priority than Ale opening 1o avoid piling the write request in memory. This causes more snspensions
to ocenr bt makes execution more sont by

square(N, File)} :-
N > 1, string(File, _, _} |

fel:open_file(Stream, File, w, Status),

(5tatus = normal ->
Stream = [putt( (N+N)), putc(®"."), nl | Streaml],
square(0, O, N, Streaml)@priority($,-2000};

otharvisa,

true ->
util:p_conscle([string#“Can’'t open file:",Filel,_ ),
Stream = [1).

The following predicate deals with the generation of edges for the vertex with label ¥ x N + X, amongst the
N? vertices,

square(0, O, N, Stream) :- true |
Stream = [putt(0), putci{#”."}, nl, putt(2), putc(#"."), nl,
putt(1), putc{#"."}, nl, putt(l), puts(#"."}, nl,
putt{N}, putc{#"."}, nl, putt{il), putc(#"."}, nl | Streami],
equare(l, 0, N, Streaml).
square(0, ¥, N, Stream) :-



G4 Clencrating of A syuare graph

T >0, ¥ <b-1]

L := Y=N,

Stream = [putt(L), putc(#'."), nl, putt(3), putc(#*."), nl,
putt(~(L+1)}, putc(#"."}, nl, putt(ll, putc (#7.7"),
putt(“(L-N)}, putci#"."), nl, putt{1}, putc(®#"."J,
putt{~(L+N)), putci#"."), nl, putt{1}, putc(#"'."},
| Streaml],

square(l, Y, N, Streaml).
square(0, Y, N, Stream) :-
¥ =:= N-1 |

L := YeN,

Stream = [putt(L), putc(#"."), nl, putt(2), putc(#"."}, nl,
putt ("(L+1)}, putc{#"."}, nl, putt(1), putc(#"."},
putt((L-N);, putc(#"."}, nl, puttil), putc(#"."),
| Streaml],

square(l, ¥, ¥, Streaml).

square(X, O, N, Stream} :-

x>0, X <N-11

L =X,

Stream = [putt(L), putc(#"."}, nl, putt{3), putc(#"."), nl,
putt{“(L=1)), putc(#"."), nl, putt(1), putc(#"."),
putt(~(L+1)), putc(#®"'."), nl, putt{l), putc(#"."),
putt(~(L+N)}, pute(#"."), nl, putt(l}, putc(#"."),
| Srreaml],

square(”(X+1)}, 0, N, Streaml).

square{X, Y, N, Stream) :-

T >0, L <N-1, ¥>0,%Y<h-1]

L = E+Y=*N,

Stream = [putt(L), putc(#'."), nl, putt{4}, putc(#'."), nl,
putt(~(L-1)3, putc(¥"."), nl, putt(1), putc(¥"."),
putt(~(L+1)), putc(#"."}, nl, putt(l), putc(#"."),
putt (" (L-N)), putc(#"."), nl, putt(1l), putc(#"."],
putt (" (L+N)), putc(#"."), nl, putt(l), putc(#". "),
| Streaml],

square(”(X+1), Y, N, Streami).

square(X, Y, N, Stream) :-

¥ >0, X < N-1, ¥ =:= N-1|

L := X+¥=HN,

Stream = [putt(L), putc(#"."), nl, putt(3), putc{#"."}, nl,
putt{“(L-1)), putc(#"."), nl, putt(i), putc{#"."),
putt("(L+1)), putc(#"."), nl, putt(1), putc(#" "},
putt(“(L-N)), putc(#"."), nl, putt(1), putc(#"."),
| Streami],

square(“(X+1), ¥, N, Streaml).

square{X, C, N, Stream) :=

X == N-1 |

L :=X,

Stream = [putt(L), putc(#"."), nl, putt(2), putc(#"."), nl,
putt(~(L-1)), putc(#"."), nl, putt(1), putc(#"."),
putt(”(L+N)}, putc(#"."), nl, putt(l}, putc(#"."),
| Streami],

square(0, 1, N, Streaml).

nl,
nl,

nl,

nl,
nl

nl,
nl,

nl,
nl

)



e 5

square(X, ¥, N, Stream) :-
X ==N-1, Y >0, Y <N-1|

L = X+4¥=l,

Stream = [putt{lL)}, putc(#".“), nl, putt(3), putc(#"."), nl,
putt{“(L-1}), putc(#"."), nl, putt(1), putc(#"."), nl,
putt({ (L-¥3}), putc(#"."), nl, putt{1), putc(#"."}, nl,
putt(“(L+N}), putc(#"."), nl, putt(1), putc(#"."), ni
| Streami],

squara{d, “(Y+1}, N, Streami).

square(X, ¥, N, Stream) :-
K== H-1, ¥ =:= N-1

L o= X+7=N,

Stream = [putt(L), pute(®#"."), nl, putt(2), putc(a"."), nl,
putt("(L-1)}), putc(#"."), nl, putt{1)}, putc(#"."), nl,
putt{"(L-N)), putc(®#" "), nl, putt{1}, putc(#"."), nl].

MODULE TEST



29

6 Examples

This section las two points: first, 10 illustrate the usage of the Lin-Kernighan procedure with the par-
titioning result for “small” examples. Then. to chow how execution speed was increased by onr parallel

inplenentaiion.

6.1 Simple examples

We show lere some the result of partitioning a grid-shaped graph. as produced by the module test. In
figure 1. we show the result for a 10510 graph, for a d-way partition.

2221110000
t2211106000
2221111000
1111111000
1111111002
ooo33z2222
0003322222
0003333322
3333333323
33333333212

Figure 1: 4-way partitioning of a 10x10 grid

In figure 2. we show the result for a 2020 graph, still for a 4 way partition.

el =R === === s =T R = e R
O 000 0 0D 00 00 e e e P o e e
‘== =T =T = = B T = I = T
T T T T = = T o Q= Y
[ N T = T Tl e T e A R R
[ T = = e o B R e & ]
N T = i T e Y e e T oo i e e
I T T T T T et T S
BE OB OB OB B ORI B BRI ORI B ORI R B R O O O O O O
BB ORI BRI OB ORI BRI ORI B} BRI ORI B ORI R D O D O O O
BYORI ORI ORI ORY BRI ORI ORI B} R R R OB B O O O O OO
B ORI ORI BRI R ORI ORI RS R RY ORI ORI OB R} O D D O O O
BF BT B OB BRI OB R ORI R B R R OB R D O D O O O
B3 ORI B} BRI ORI ORI BRI ORI R BRI R B OB B BRI D D D O O3
B OB B ORI ORI B R} ORI B ORI R} R R BRI R O O O O O
O L L3 G0 G L G0 C0 L0 L W L0 0 o Ly LY L0 W L Lo
W L0 G0 G L L W L W D W 0 W W G L
L) L0 ) G £ Lo o Su 40 L G0 Gt Lo L0 Do L) L0 L L
Lo L) 6 Lo B0 L0 L Do L0 Lo G0t G Lo L Co @0 L oW
Lo L0 Ml Lo G0 L0 L0 L0 L0 W W W W L) 0 LW ol Lo W

Figure 2: 4 way partitioning of a 20x20 grid

Eventually, in fignre 3, we show the result for a 32x32 graph. this time for a 32-way partition.
Let's note that for a reasonable case of standard-cell partitioning, assuming we use one set per row, we
can expect that a 128 way partitioning of a graph with 10000 vertices will be required. Average degree of



BT} 6o ENAMPLES

22023 3T 23 16 16 16 23 23 23 18 28 20 28 29 25 29 06 06 06
22 22 22 23 23 23 16 16 25 25 26 18 13 29 29 20 29 29 29 29
22 23 22 22 22 28 28 28 28 26 25 18 18 1B 1B 18 1B 30 30 30
22 11 1t 11 11 28 28 28 28 28 18 18 18 31 31 31 31 31 20 30
09 08 20 11 11 11 28 28 28 17 17 17 17 10 10 31 31 31 30 30
09 09 09 04 20 20 20 20 20 17 17 17 17 10 10 10 10 10 30 30
09 09 04 04 04 23 23 23 23 17 00 17 1T IV L0 0 10 21 Z1 21
09 09 08 04 04 23 23 16 03 17 00 Q0 Q0 OB 08 OB OB 08 08 19
12 12 09 15 04 04 04 04 03 02 08 00 OO0 OO0 20 15 15 08 19 10
12 09 0% 15 04 04 04 03 03 03 19 00 00 OO0 20 15 20 192 19 19
03 03 06 06 06 16 16 16 03 02 19 14 Q0 00 00 25 25 25 19 19
26 06 08 08 08 16 18 03 03 03 14 14 14 25 25 25 25 25 19 19
26 06 06 06 11 11 16 16 14 14 14 24 24 24 24 24 20 20 20 19
26 26 26 02 02 02 31 31 14 14 14 24 24 24 2% 24 20 0t 01 01
26 26 28 26 02 02 02 02 14 14 11 24 07 OF 24 24 ©1 01t 01 @1
26 26 26 26 02 02 02 02 10 10 10 07 O7 OF 15 15 185 Ol 01 01
30 30 30 21 02 01 01 O1 OV OF OF O7 OF OF 15 16 1% 05 12 05
12 21 21 21 24 21 27 27 27 27 13 13 13 12 15 15 08 OB Q& 0%
12 12 12 21 21 21 27 27 27 27 13 13 13 13 08 0B 08 05 05 Q5
12 12 12 31 31 21 27 27 27 27 13 13 22 13 13 13 08 0b 05 0B

Figurs 3 3d-way partivoning of a 30x30 erid

g vertex in the graph is near 6. in most practical cases, whereas in the case of a grid. degree of a vertex is
close 1o 4,

Those figures suggest a hasic time complexity 5007 higher than for a grid-shaped graph with the <ame
nuniber of vertiees. For a 128 way partitioning, intrinsic specd-ug factor s limited 1o 64, This figure can
be improved if we further increase the number of sets by assigning several sets Lo ane row. That will also
improve the quality of the subsequent set-to-row assignement, This would be the basis Tor a bottom-up
hierarchical cell-placement strategy,

6.2 Graphs with no edges

To nse graphs with no edges to measure performances of the Lin-Kernighan algoritiun seems curious o the
least. Our point here is to measure precisely the cost of features which are not pertaining to the pure  n-
Hn‘-'-fn'lgh:-l.n prnrp.ﬂﬁing. T our case. we have to consider the cost of b mll:'aﬁting to all [roaEsRT the H1.ril|ﬁ
holdipg current partition and the cost of building an intermediary straeiare al each pass of the algorithen
instead of only modifving the current structure,

Now. let’s remark that during the conrse of onre program, we add “duommy™ nodes to the graph so Lhat
the number of vertives is a multiple of the number of sets of the partition. Thus, if we give to our program
a small graph and a large number of sets, many such “dammy™ nodes will be created. and the optimal
partition of a graph will be looked fur, sueh that there is one vertex per set. Very clearly, no optimization is
necessary to achieve this, so that the Lin-Kernighan algorithm will converge immediatly, Therefore, in order
to measure the cost of parallel artifacts, we took a graph with only | vertex, and we changed the number of
sets & used in the partition,

A rongh expression of the complexity of those operations is given in section 5. Our task is now Lo verify
that the hypothesis uwpon which we based thuse expressions conform to measurements,

Figure 4 shows the computing time for a range of processors. as a function of the nnmber of sets. We
can check that the complexity actually grows like the square of s

Figure 5 shows the coefficient of the curves above as & function of the number of used processors. We see
that complexity, as the number of processor increases, decreases like the inverse of the number of processors.



fi.4  €irid shaped graph 3

fime {ms)

EDD:CU1 {=2.17s"2
sO0000

J|B p="
anoonnd |[* P2

: : te 11252
sopooeA |,

b 1= 07682
200000 4

. t = &6s"2
100000 = 1= 042542

oA . ) . ' number of sets
i 128 256 3E4 512

Figure 4: Computation time versus the number of sets

It is difficult to measure the communication cost of the implementation, becanse it is a second order factor
in the cost. and the coefficients of figure 4 are first order approximations.

time (meafs"2)

B aiphaip)
& 184/p
B Hast

t=0.28 + 0.0025p (R - 0.27)

oa

o N i ' number of proc.

d-'.ib-

Figure 5: Time factor versus the number uof processors

Therefore. we have to analyze a specific case in order to measure the communication cost. In figare fi,
we show the camputing time, for a 32 way partition, as a function of the number of processors. We see
that this time is the sum of an hyperbolic function and a linear function. The latter equals the hyperholic
function when p ~ % It means we can expect a speed up of § in the worst case, i.e. when no oplimization
is necessary. This figure, theoritically, does not depend on s,

As a matter of fact, when the graph size increases. we shall see that this figure improves, as predicted
by the formula of section 5. Let’s note also that the linear curve of figure 6 is unexpected, and let us think
that implementation (especially synchronization) is not correct. We could not check this further as the
6i4-processors machine is currently down, but we noticed at the least that speed still increases for more than
8 processors, when s grows larger and larger.

6.3 Grid-shaped graph

A grid shaped graph cau give us more realistic figures of the complexity of the algorithm. Several runs have
been done, for a 32 way partition of a n by a grid, with n chosen amongst 10, 20, 30 and 40,

Fignre 7 pictures execution time of the partitioning program for those grids, as the number of proces-
sors increases. Whereas dots correspond to actnal figures, curves are an approximation of the logarithmic
functions which best matches experimental points. Expression in regard of each curve indicates that as the



6 FXAMPLES

lime (s

2500 -L

1700 4

1= 377 IR =001

1
T
. & - - numper af proc.

Figure 6: Computation tioe versus the pamber of processors (= = 432

number of vertices increases. speed up Hgure gets closer 1o a linear funetion of p.

p time (sec | o 40ud0
10 & 3030
w2020
& 10210
103
1= B30V 0 B0
102 t= 1BSE R0 35
{ = 354/p*0.T6
10!
= 3ipt0 A3
ot 4 T T 1 ber af
) N 0 1 Mumber of proc.

Figure 7: Computalion time versus the number of processors for grid-shaped graphs

Aceurate speed up figures can he found in table |

[p I 1owin | 2020 | 3036 | 40x40 |

IR
o [| 5.4 i 5.6
6 T4 ] 106 [ 1T

Table 1: Speed up of partitioning, for 1 to ib processors. and various grids sizes

These figures, although satisfving are a little bit far from the linear speed-up we would expect: commu-
nication cost and constrietion of the intermediary -trueture does not take a long time and divides well over
several processars, as shown in section 6.2

There are two main reasons, according to us. to explain the slow-down:

1. Sume computlations may be more heavy on some processors, due to the non wniformity of the problem
introduced by the initial placement and the arhitrary order in pair processing.

2. When less than s/2 processors are used, pairs are allocaled statically 1o processors, This may further
accentuate problem 1.



i Conelusions BB

T furiher check that no artifact hias baan introduced. whiel could explain the siow down. let’s see how
the partioning speed evolves with the number of nodes in the graph. from ligure 8.

fime {sec.)

6000 4 1= 00032

4000 4

2000 =

g 1 1 .
100 GO0 10 Lo Modes in graph

Figure ®: Computation time versus the number of nodes, for a single processor

W can see that complexity evolves quadratically with the wnmber of nodes. The logarithmic factor does
not appear. 11 weans that the heuristic is efficient. and that a ueacly constant number of trials has to be
done to find optimal permutations between [wo sels.

Fventually. let's note that an optimized sequential version may be faster than our version running on a
single processor. For the matter of asvmprotic complexity though, figure 8 proves that the dominant factor
is not due to the creation of intermediary structures (the main point to be optimized on a sequential version)
but to the determination of the optimal permutation.

6.4 Conclusions

We could register encouraging performance results. for middle-sized graphs. The cost of parallelism over
the sequential version can be decomposed into three main components:

o the communication cost. when current partition is broadcasted, after each pass, and when permutations
are collated together: this accounts for a negligible franction of the computing time,

o the parallel implement ation cost, which is due to the creation of an intermediary data structnre {parti
cost matrix} on each processor for each pass: this account for a small part of the total computing time.

o the static ordering of pairs chosen for optinization: this is the major prablem of our implementation.
causing a speedup platean 1o appear.

The solution of this problem lies mayhe in dynamic allocation of pairs to processors. We waonld like to do
that. but the main problem is to find a continuous sequence of pairs., (75, ji) such that Vu,j, 0 £ ¢ < j < s,
Fk € [l.sls — 1)/2]. such that ¢ = i and j = Ji. and k= k| < p=s e #ip Ak F Ji-



31 CONTENTS

Contents
Forewords and Acknowledgements 1
Introductioa 2
1 Module readfile 3
L File structure | L o L e e e e e e e e e e e e e e e e e e e e e 3
1.2 Reading the file :
2 Module 1k 5
2.1 The topmost (public) predicate © 00000000 h
22 Initializing position =tring amd connection mateix o . 0 L L L L L L. L L L0 e e s s
240 Btart of parallel work and control 000 0oL oo i
3 Module tree 8
S.b Fora node tn Che treec. o0 000 L L0 o e e e M
8.2 Mead of the tree 0 0 0 0 oo
B0 Uommumication PIOCEEE . o L s e e e e e e e e e e e e e e e e 1
A0 Pair determination il
4 Module algo 14
2.1 Fromoa list of set-pairs.. . 0 000 00 e 14
4.2 Building the intermediary structuee - . _ . L L L L L L e B
43 Lin-Kernighan algorithen o0 0 0 00 0000 0o 00 LY
44 Searching the gain lists . . © . . L L e A |
4.5 The Quest for the best perntation . . . . . . . . . L L e e L 2D
5 Module test 24
S0 Thme measurements . . .. L L e e s
5.2 TI8AEe . . L L e e 25
53 Generation of a complete graph . . . 0 0L L L e e 25
S0 Generating of a square graph . . . . . L L L L e e e M
6 Examples 28
fi.l  Simple examples . . . . L L e e e e e e e e e 29
6.2 Graphs with noedges . © 0 0 0 L0 e 30
f.4 Lirid-shaped graph a1
4 Conclusions . . 0 0 0 L L 13
Contents 34

References a6



REFERENCES

References
[1] B. Burg and D. Dure. Flih nxer manual. Technical repart. leot, 1980,

[2] H. W, kernighan and S, Lin. An efficient heuristie procedire for partitioning graphs. Rell Systetn
Toehnical Jowroaal. 19:291 308, Febroary 1074



