ICOT Technical Report: TR-530

TR-530

A Detection Algorithm of Perpetual
Suspension in KL1

by
Y. Inamura & S. Onishi

Febhruary, 1990

€ 1990, 1ICOT
Mita Kokusai Bldg. 21F {03) 456-31091~5
|[:D | 4-28 Mita 1-Chome Telex ICOT]32964
Minato-ku Tokwo 108 Japan

Institute for New Generation Computer Technology

A Detection Algorithm of
Perpetual Suspension in KL1

Yu Inamura
Satoshi Onishi
Iustitute for New Generation Computer Technology

Abstract

KL1 is a committed choice language, designed as the kernel lan
gnage of the parallel inference machines which are under development
in the Japanese fifth generation project. It is known that committed
choice languages are suitable to describe the concurrent processes be-
cause synchronization is supported as a language primitive. A pro-
ducer fconsumer model, in which a producer and a consumer cooper-
ate using data-flow synchronization, is a typical progravuniong style of
these languages. However, one thing we must treat carefully is that
the execution can fall into the state of perpetual suspension because of
some mistakes in the programs, in the cage of such data-flow computa-
tion. Fixing such mistakes would be very difficult if it were not for the
implementation supports. Therefore, as a practical tool for the soft-
ware development, it is extremely important to detect an occurrence
of such an illegal state and to notify it to nsers.

This paper presents an algorithi to detect an occurrence of per-
petual suspension and to report the maximal goals from the causality
graph of perpetual suspension. The algorithm takes advantage of the
characteristics of copving garbage collection acheme, and have already
been implemented on the Multi-PSI, a prototype of the parallel infer-
ence machines.

7- producer(X), consumer(X).

producer(X) :- true | X = [msglX2], producer(X2).
consumer([msglX]) :- true | consumer(X).

Figure 1: A Simple Producer and Consumer

1 Introduction

KL1 is a committed-choice language based on Flat GHC[11], and is the sys-
tern and the user language of the parallel inference machines (PIMs)[6], de-
veloped in the Japanese filth generation project,

Like other committed choice languages such as CP[10], PARLOGI[4]. and
Strand[5)], all the AND goals of a KL1 program can be executed in parallel,
and the execution is controlled by the data-fow synchromzation using shared
variables. In a typical programming style of a committed choice language,
a producer/consumer model. one variable is shared by a producer and a
consurmer, and the execution of the consumer is synchronized to that of the
producer, by letting the consumer wait for the instantiation of the shared
variable. Guard unification mechanism of the language provides the wayv to
realize this synchronization.

As the synchronization is supported as a language primitive, the pro-
grammability of committed-choice languages 15 much better than that of
other parallel languages with which a programmer must take care of the
synchronization. For instance, from our experiences in writing an operating
system, PIMOS[3], for the Multi-PSI[9] with KLI, there was no mistakes
in terms of the synchronization, and this fact proves the excellence of the
language.

However, there is one problem in the case of such data-flow computation
as KL1 that the execution of a program can be suspended suddenly, because
of some mistakes in the program. We show one example of this problem.

Figure 1 shows a simple producer/consumer program written in KL1.

Suppose that the producer/1 in figure 1 releases the shared variable
without instantiating it as follows.

producer(X) :- true | Y = [msglX2], producer(X2).

2

Then the execution of the consumer/1 1= perpetually suspended, because
no other goals can resume the execution of the goal consumer/1 by instan-
tialing that variable. We call this a state of perpetual suspension.

Of conrse, this mistake shown in this example is bronght about by a
siriple miis-typing. and this can be fixed by a static analysis such as a variable
checker, which examines the number of appearances of each variable in one
clause. However, there are sorts of mistakes which are verv diffienlt to detect
hy static analyses. and therefore, a dynamic detection mechanism is required,

Another problemn we must consider is that perpetual suspension 1s infeec-
tious. Ouce a goal lalls into perpetual suspension, also other goals tend to fall
into that state, because usually a consumer is. on the other hand, a producer
for another consumner, In the case of practical applications, the dependencies
hetween goals are complicated and large number of goals fall into the state
of perpetual suspension.

Therefore. programmers must be faced with the sudden stop of their pro-
grams and with a Jarge number of goals of perpetually-suspended. although
only a few of these goals are the actual causes of perpetual suspension.

This paper presents an algorithm to detect an occurrence of perpetual
suspension, which has already been implemented on the Multi-PSI. The fea-
ture of this algorithim is that (1) an occurrence of perpetual suspension can be
detected during garbage collection, whether other normal goals exist or not,
and that (2) only the maximal goals in the causality of perpetual suspension
are discovered. The latter characteristic is especially important as a practical
debugging tool, because these maximal goals is the actual causes of perpetual
suspension. This can greatly decrease the users’ efforts, by restricting the
number of the suspicious goals.

The rest of this paper is organized as follows; section 2 describes how to
report an occurrence of perpetual suspension; section J describes the causal-
itv and the maximality; section 4 describes the algorithm for the detection
of perpetual suspension; section 5 gives some discussions; and section 6 con-
cludes this paper and describes a future work.

2 Report of Perpetual Suspension

2.1 How to Report Perpetual Suspension

There are some requirements about the form of the report which gives infor-
mation on perpetually-suspended goals,

L1t is not desirable to report all of the perpetually-suspended goals,
because only a few goals are the actual causes of perpetual guspension;
and

2. enough information to identify the goal must be reported, hence. not
only the name of the perpetually-suspended goal but also its arguments
are necessary to be reported.

To satisly the former requirement, the maximal goals! in the causality of
perpetual suspension are reported. These maximal goals can be regarded as
the actual causes of perpetual suspension.

1o realize the latter requirement, the exception handling mechanisin is
utilized as described in section 2.2,

2.2 Exception Handling Mechanism of KL1

When occurrences of perpetual suspension are detected, 1t 1s necessary to
notify them to users for helping their debugging. Since perpetual suspen-
sion can be regarded as an exceptional event, we decided to treat perpetual
suspension just like other exceptional events such as fatlure, unification fail-
ure, and so on. To handle these exceptions. a meta programming facility,
Shoen(3], which is introduced as a language primitive, is utilized. Figure 2
shows the logical structure of the shoen mechanism. Goals are executed in-
side a shoen, and the execution of the shoen is controlled through the control
stream. The status of the computation in the shoen is notified through the
report stream. A control process of a shoen watches the report stream and
send certain messages through the control stream to control the shoen. In
other words. the shden mechanism can be regarded as an interpreter of the
KLI language.

'The meaning of the maximality will be defined in the next section

@ e

n R b
: ! Shoen }
o control == | -

| Tl == ()

| L — : |F.-'| O
! = report -

o LB Yy

g ~

. ()

() s Geal A\ ())

Figure 2: Shoen

Using this Shoen mechanism. an exceptional events such as perpetual
suspension is reported by sending a message of the form shown helow to the
report strear.

exception(Info,Goal,NewGoal)
The meaning of cach argument is as follows.
Info: The reason of the exception.

Goal: Information on the goal which caused the exception, and represented
by two Lerms; a code pointer and an argument vector.

NewGoal: Two variables, for a code pointer and for an argument vector,
to specify a goal that will be executed in place of the Goal,

The control process which receives the message will treat the exception
by instantiating the variables of NewGoal.

Note that the perpetualiy-suspended goals other than the maximal goals
are not perpetuallv-suspended after report of exception, because the argu.
ments of the maximal goals are handed to the control process and it is possi-
ble for the conirol process Lo resume Lhese suspended goals by instantiating
some arguments, Therefore, it is possible to say that our decision, that is,
reporting only the maximal goals, is theoretically correct.

A

7- a(X,Y,Z), b(Y), c(Z).

a([msgl|X],¥,2) :- true | Y = [msg2lY1], Z = [msg3|Z1], a(X,Y1,Z21).
b{[msg21¥]) :~ true | b(Y).
c([msg31Z]) :- true | <{Z).

Figure 3 Example of the Perpetuallyv-suspended Goals

3 Suspension Mechanism and Causality Graph

3.1 Suspension Mechanism

For the KL1 implementation. we adopted a non busy-waiting manner to
handle the suspensions of goals. for the efficiency|7. 8. When the execution
of a goal is suspended because of one or more uninstantiated variable(s).
a goal record, containing the goal’s context such as arguments of the goal
and a code pointer. is hooked to the variable(s), in order to wait for the
instantiation of the variable(s). And when a hooked variable i= instantiated,
the goal records hooked to the variable arc resumed, and they are pnshed to
the ready goal stack, a stack of goal records ready for execution.

For instance, goals in figure 3 are represented as figure 4. Tn this example,
goal a/3. b/1. and c/1 are perpetually-suspended, and a/3 is the maximal
in the causality,

By observing figure 4, it can be known that the suspended goal records
and their arguments represent a causality graph of these suspended goals.
The goals in the downstream of the causality are accessible from the argn-
ments of the goals in the upstream.

3.2 Maximal Goals of Perpetual Suspension

To define perpetual suspension and the maximality of causality, now we
would like to introduce a notation to represent a relation between goals as
follows.

e A= Bor B= A

- s
X ([[HooK)

III('
REF
HEF

Figure 4: Goal Status

meaning: goal I is accessible from the arguments of goal A.
If there b= a relation thal
e (A= B (A4 R
goal B s 0 the downstream of the causality. And i there is a relation that
o (A= A= H).

goal A and goal B are equivalent in the cansality.
Using this notation, a perpetually-suspended goal is defined as follows,

e Goal (v pis perpetnally-suspended if (¥ executable goal ,, G'p 4 (..
The maximal goal of perpetual suspension is defined as the goals specifiedd
by following procedure.

1. divide perpetually-snspended goals into sume semi-groups, each of which
consists of the goals with the equivalent causality;

b

let one goal (7; represent each semi-group to which the goal helongs:

3. (o is maximal if (V (7, G, £ G,).

4 Algorithm

So far we have explained that the goal suspension mechanism generates the
actual causality graph of goals during the execution. In this section. we
describe the algorithm to extract the maximal goals out of causality graph of
perpetual suspension, which takes advantage of the characteristics of garbage
collection.

In this algorithm. we assume the usage of copying garbage collection
scheme[l] which uses two independent semi-spaces alternatively. When one
semi-space is exhausted during the execution, the active data objects in the
exhausted semi-space are copied to the other semi-space, and the execution
is continued on that semi-space,

The algorithm is divided into three phases:

[a—

. detection of the occurrence;

)

2. search of the perpetually-suspended goals; and

3. extraction of the maximal goals.

4.1 Detection

We nmst cousider how o detect an occurrence of perpetual suspension.
It is quite difficult to do that during the normal execution. However, the
perpetually suspended goals is independent from other executahble goals as
we described in the previous section. and it suggests us the utilization of
garbage collection. Since garhage collector traces the data objects only from
the execiilable goals. the perpetuallyv-suspended goals are not discovered dur-
ing garbage collection. Therefore, 1t is only necessary 1o compare the numher
of goals hefore and after garhage collection, in order to detect. an ocenrrence
of perpetual suspension. To enable this, two counters for goals must be intro-
duced. One. the goal_counter. is incremented or decremented on the creation
or the termination of a goal respectively?, during normal execution. The
other. the copicd_goal_counter, is used in garbage collection: during garbage
collection. this counter is incremented when copying one goal [rom the old
semi-space 10 the new semi-space. And when all the active data object have
copied. the values of these two counters are compared, and perpetual sus

pension vecurred if the copied_goal counter 1s smaller than the goal counter.

4.2 Search for Perpetually-suspended Goals

When perpetual suspension is detected, 1t is necessary to search for the
perpetually-suspended goal records by sweeping the old semi-space because
tliese goal records are left nn-copied. We introduced a new tag GOAL which
only appears in goal records and enahles us to distinguish goal records from
other data objects during the sweeping. In addition to this, when copying
one goal recard from the old semi-spacce to the new semi-space, the GOAL tag
of the goal record in the old semi-space must be cleared, in order to discover
cml_‘r the F{Uﬂ] records left nn-r‘.npif‘d, while ::wmping.

4.3 Algorithm for Discovering the Maximal Goals

In this section, we would like to describe the algorithm to extract the maximal
goals from the causality graph of perpetual suspension. The algorithin is

2 &ctually, there aleeady exists a counter for this purpose, in order Lo detect the termi-
uation of computation. Thus no overhead is required during the normal execution.

divided into two phases. that is. the sweep-and-copy phase and the mark-
and-sift phase.

4.3.1 Sweep-and-copy Phase

I this phase, all the perpetually -suspended goals are found ont and copied to
the new semi-space. hecause the information on the perpetuallv-suspended
goals, including argnment vector. must be reported as we deseribed in sec-
tion 2.2, The procedure is as follows,

procedure Sweep-and-copy

begin
while (goal.counter > copied_goal counter) do
begin
sweep old semi-space;
i a goal record (7 is discevered then
begin
copy (7 to the new semi-space;
register (¢ to the maximal goal candidate table;
increment copied goal counter;
copy all the data objects accessible from 5
end
end
end

Maximal goal candidate table is realized as a list of goal records in the
old scmi-space, in the actual linplementation.

During the copying of data from the old semi-space to the new semi-space,
the copied_goal connter is also incremented on copying one goal record.

The statuses of the old and new semi-spaces when this phase has finished
are shown in figure 5. In this figure, each G, is a maximal goal candidate,
that is, the goal is found out during memory sweep, and CP —(, is the set of
data objects which were accessible from the ;. There may exist some goal
records in C'P — (G, from which G is accessible, that is, G, may be a member
of a looped causality. In this case, () can be regarded as a representative of
the loop. G| was found ont hefore (7,, if 1 < j.

There is a relation between (s that G ¥ G, if i < j.

10

{5

Normal GO

(i 7

TR

{.;h

P — Gy

Old Semi space New Semi-space

Figure 5: Old & New Semi-spaces after Sweep-and-Copy Phase

i1

This can easily be proved as follows,

I 67 depends on (4 and ¢ < j. the goal record of (7; is accessible from an
argument of (7. hence, 7 must be found out during copying started from
e as a root. However, (7 @s not found ont because ¢ < j. hence, (7; does
not depend ou (7,

In particular, the goal € in hgure 5 s gnaranteed to be a maximal goal,
hecause it does notl depends on G000 G, .

4.3.2 Mark-and-sift Phase

In this phase. the dependencies of the opposite direction are examined, that
15, 1t 1w examined whether the relations

L fr_r P

exist or not,

The actual maximal goals are found out by sifting the maximal goal
candidate table: tracing dala objects from the arguments of i) to find out
(o (1 < j) accessible from ;. For the efficiency, we assume one special bit
i each mermory cell used as a marking bit?, and data objects traced vnce are
marked to avoid tracing one data object twice or more,

The algorithm is as follows.

procedure Mark-and-shift
begin
while (3G in candidate table) A (G; is not marked) A (Y i < j, G is not marked) d
begin
mark Gj;
while trace from arguments of (&; and mark data objects;
begin
if (find maximal goal candidate G;) A (i # j) then
begin
delete (&; from the candidate table;
end
end
end

GO bt can be utilized for this purpose, if any.

12

un-mark memory cells;
end

The tracing is done recursively from one goal record as a root. We can
use the old semi-space as the stack area. in this phase.

When this procedure is finished. only the actual maximal goals remain in
the maximal candidate goal table, because (7 is deleted from the candidate
table, if (G, = (i, A i < j). by this procedure. Eventually. information on
each maximal goal is reported to the shoen to which that goal belong, in the
form described in section 2.2

5 Discussions

5.1 Ovwverhead

In this section, we discuss about overhead brought about by this algorithm. Tt
can be said that overhead is small enough if there is no perpetual suspension
in the system. Considerable overhead occurs when perpetual suspension ig
detected, however, we are convinced that it is compensated by Lhe efficiency
brought about by this algorithm, in terms of debugging.

¢ There is no overhead in the normal execution because no special mech-
anism i required which affects the normal execution.

e There is very small ((n) overhead (n is a number of goals) during
garbage collection, for maintaining the copied_goal counter, if perpet-
ual suspension do not exist.

e There is O(n) overhead (n is size of memory) during garbage collec-
tion if perpetual suspension exist, because this algorithm requires the
MEemaory sweep.

5.2 Limitations
There are some limitations of this algorithm as follows.

. Delection cannot be real-time. Sometimes it is difficult to find out the
actual cause of perpetnal suspension cven though the maximal goals of

13

perpetual suspension are found out, because the actual cause, the pro-
dueer process which finishes without instantiating the shared variable,
does not exist in the causality graph of perpetual suspension.

This can be improved 1o some extent by introducing an incremental
detection mechanism using MRD scheme|2].

]

. The goals which are not actually maximal in the causalily may be
reported. This is because there is no way to know whether a relerence
is a read path or a write path. in our KL1 implementation. To solve this
problem, we must introduce the distinction between these two paths.

3. Currently, inter-processor perpetual suspension, in which perpetually-
suspended goals exist in more than one processing element. cannot
be detected, because global garbage collector has not yvet been imple-
mented on the Multi-P51 However, it is expected that this algorithm is
useful enough, because, in most cases, perpetual suspension is a prob-
lem in the initial debugging stage and it seems natural that only one
processing element is utilized in the case of such initial debugging,

6 Conclusions and Future Work

We have described an algorithm to detect perpetual suspension, which

I. detects the occurrence of perpetual suspension can be detected during
garbage collection and;

2. reports only the maximal goals in the causality graph of perpetual
SUSPension.

This can greatly decrease the efforts of debugging because perpetual sus-
pension is one of the most troublesome problems when building software in
the committed-choice languages like KL.1. It can be said that it is quite diffi-
cult to build practical software without such an implementation support for
this problem.

However, this algorithmm still has a weakness that it finds out only the
goals which already had been perpetually-suspended. The debugging be-
comes more easily if perpetual suspension can be detected when one goal

14

has just heen perpetually-suspended. And now we are implementing such
an ineremental detection mechanism for perpetual suspension, which takes
advantages of the MRB scheme [21. However. this incremental detection
mechanism cannot find out perpetual suspension completely because of the
MRB nature. and these two, inercmental and batch. detection mechanisms
must coexist to cotuplement each other. just Iike two garbage collection mech-
anisms implemented on the Multi-PSH4].

Acknowledgments

We wonld like to thank Dr. T. Chikayama, who proposed an original 1dea
of this algorithm, and to thauk Mr. N. lehivoshi and Mr. K. Rokusawa,
for valuable discussions to improve this algorithm. We would also like to
ihank the 1COT Director. Dr. K. Fuchi, and the chief of the fourth research
laboratory, Dr. 8. Lchida, for giving us the opportunity to conduct this
research.

References

[1] H. G. Baker. List processing in real time on a serial computer. Commun.
ACM, 21(4):280-249, 1978,

2] T. Chikayama and Y. kimura. Multiple Reference Management in Flat
GHC. In Proceedings of the Fourth International Conference on Logic
Programming, Vol. 2, pp.276-293, 1987.

[3] T. Chikayama, H. Sato and T. Mivazaki. Overview of the Parallel In-
ference Machine Operating System (PIMOS). In Proceedings of the In-
ternational Conference on Fifth Generation Computer Systems, pp.230-
251, 1COT, Tokyo, 1958,

[1] K. Clark and 5. Gregory. PARLOG: Parallel Programming in Logic.
ACM Trans. on Programming Languages and Systems 8(1) pp.1-49,
1986.

(5] I. T. Foster and 5. Taylor. Strand: New Concepts in Parullel Program-
ming. Prentice-Hall, Englewood Chiffs, N, J. 1989,

15

6]

[8]

[9]

A. Goto, M. Sato. K. Nakajima, K. Taki and A. Matsumoto. Overview
of the Paralle] Inference Machine Architecture (PIM). In Froceedings of
the Internatiomal Conference on Fifth Generation Computer Systems,
pp.208-229, [COT. Tokvo, 1988,

N. Ichiyoshi, 1. Mivazaki, and K. Taki. A distributed implementation of
Flat GHC on the Multi PSL. In Proceedings of the Fourth International
(onference on Logie Programming, pp 257-275, 1987,

Y. Kimura and T. Chikayama. An Abstract KL1 Machine and Its In-
struction Set. In Procecdings of 1987 Symposium on Logic Programming,
pp 468-477, 1987.

K. Nakajima. Y. Inamura, N. Ichivoshi. K. Rokusawa. T. Chikayama.
Distributed Implementation of KL1 on the Multi-PSI/V2, In Procecdings
of the Sirth International Conference on Logic Programming, pp.436-
451, 1989,

E. Shapira. A Subset of Concurrent Frolog. ICOT Technical Report
TR-003. 1983,

K. Ueda. Guarded Horn ('lauses: A Parallel Logic Programmung Lan-
guage with the Concept of a Guard. Technical Report TR-208, ICOT,
L BRG.

16

