ICOT Technical Report: TR-528

H-52%

A Pruning Condition for the
Davis-Putnam Procedure

by
N. Helft

December, 1989

© 1989, ICOT

Mita Kokusai Bldg. 21F {03) 456-3191~5

ICOT 4-28 Mita 1-Chome Telex ICOT 32964

Minato-ku Tokyo 108 Japan

Institute for New Generation Computer Technology

A Pruning Condition for the Davis-Putnam
Procedure

Nicolas Helft
ICOT
1-4-28, Mita, Mmato-ku, Tokyvo 108, Japan.
Phone +813-456-4365 Email helft@icot.jp

November 20, 1989

Abstract

The Davis-Putnam procedure 15 the most investigated algorithm to test the satishability of
propositional formulae. We uncover some inefficiencies of this algorithm, showing it can explore
the same search space more than once. We then propose a simple maodification of the procedure

that avoids such unnecessary cornpulation.

1 Introduction

T'his paper is concerned with SAT, the problem of determining the satisfiability of propositional
[ormulae. This problem arises i many aveas of compuler science,

The Davis-Putnam Procedure {DP) [2] is the most investigated algorithm to achieve this
task. The procedure attempts to find a model of the given formulae by actually constructing
one, exploring & hinary tree that results from allerpatively assiguing the truth values fruc or

false to the propositional variables appearing in the formulae.

SAT 15 well known to be NP-complete [1]. Much work has been done on speeding up the
algorithm, mainly by using heuristics (o delermine the order in which the propositional vari-
ables are assigned a truth value [7]. The result presented here is different, however. We first
uncover some inefficiencies of DP by showing that it can explore the same search space more
Lhan onee. We then propose a remedy Lo Lhis siluation, a simple condition under which soime
information oblained in a certain parl of the search space can be transwiitted to another part.

This information avoids the unnecessary computation.

The results presented here are analogous to those discovered by Shostak [6] concerning some
inefficiencies of linear resolution. The example used in this paper to illustrate the algorithm 1s

taken from Shostak’s paper.

The next section briefly introduces DP and shows a source of inefficiency. Section 3 introduces
a modification of DP that overcomes this problem. This is illustrated with an example in Section
4. We then make some remarks on implementation, and survey related work.

2 Davis and Putnam’s Procedure

This section briefly introduces the Davis-Putnam Procedure. ! Given a formula in the propes:-
tional caleulus, we are interested in knowing whether it has a model, that is an assignment of
its propositional variables into the set {true, false} such that the value of the formula under
such assignment is true. The formula itself can be put in conjunctive normal form. Each of the
conjuncts is then a clause, consisting of a disjunction of { negated or unnegated) atomic formulae
called fiterals. These are called positive or negative according Lo their sign. We denote literals
with lower-case letters [, =p, g, ... If a clause contains only one literal we call both the clausc

itsell and the literal unary.

Definition Let ¢ be a set of clauses and [a literal. Then Transform(C,I) is the set
obtained from C by performing the following operations.

1. Delete clauses containing (.

9. Delete the literal =0 * from clauses containing it.

3. Delete subsumed clauses * {rom the resulting set.#

For example, il C = {a VbV ¢,a V ~b,d}, then Trans form(C,=b) is {a Ve, d}.

The models of Trans form(C,1) are then a subset of those of C', the ones that assign true
to f.

Let he a set of clauses. The DP procedure is then the following algorithm.
Procedure DP({L).

I. If C contains an empty clause then fail. If C is empty then exil with success.

2. Clioose a hiteral [appearing in €' and return
DP(Transform(C, 1)) OR DP(Trans form{C, -l)).#

1 Additional details can be found in Loveland's book [4].
Py be more precise, instead of =I we should write opposite({). This notation is simpler, however, and no

confugion arses,
3\We recall that a clause C is subsumed by a clause D il every literal of D appears in C.

2

In general, the algorithm needs to explore the two branches in step 2. There are, however,
two well-known situations in which enly one of these branches needs to be explored. If a unary
clause {I} occurs in C, then choosing ~{ would immediately produce the empty clause; the
algorithm can thus safely avoid this choice. If a literal [appears in C and its opposite -/ does
not appear in C, (these literals are called pure) [can also be chosen deterministically.

So step 2 can be replaced by the following:

2. 1f there is a unary or pure literal { in O,
then return D P{Transform(C,1)};
else return D P(Transform(C, 1)) OR DP{Trans form(C, -l}).4

Figure I illustrates the algorithm. Clauses written as a juxtaposition of literals, with the
W7 omitted.

Figure 1: DI' Procedure

In this example, vbserve that nodes C'2 and Cf are exactly the same. Moreover, {2 was found
to be inconsistent, and the information produced while proving so is lost after the algorithm
backtracks to C'1. The subtree rooted at C6 is then explored, producing the same search space as
the one rooted at ("2, Obviously, the example is kept small for understandability, but if €2 and
€76 contained additional clauses, the tree explored twice counld be much larger. The condition
for this to happen, as in the example, is that the inconsistency of C'2 should be independent of
the choices made to generate it (in the example, choosing the literal m, that is, assigning true to
the propositional variable m). The next seclion shows how we can easily transmit information
produced while proving the inconsistency of a certain node to another one higher in the tree.

3 Main Result

T'he improvement over the the pracedure described above foliows from observations below:

Obscrvation 1

Let (' be & certain node of the DP search tree, If DP(Transform{C, 1)) lails, then O =~

Proof If DP{Transferm({C.1)) fails, then no madel of C assigns true to I; thus all models
of O satisfy —~[.#

Observation 2

If a sct of clauses (implies a unary clause {, then the set obtained by removing from C all
the clauses containing —/[also implies I

Proof Call L the scl obtamed from ' by removing clauses containing —={. We have to show
that an arbitrary model A of [satisfies [,

Suppose not. Then M would satisfy =/, and thus all the clauses in €' = [As M satisfies
D, if it satisfied € — D, it would satisfv € and thus | as well, a contradiclion.#

These two results can now be used in the following way.

Application of the above observations: Let € be a node in the search tree, { the literal
chosen to transform O, and D be " with clauses containing ! removed. Let ' be a node higher
in the tree, that 15, an ancestor of (7.

IfDCC ! and DP(Transform(C.1)) {ails, then C' [= =13

If the condition applies, when the algorithm backiracks to " to examine the remaining
cheice on it, the nuary clause = can be added to it. This may simplily (" and avoid redundant
camputation.

An example wili clanify this.

A0 CC ol eonrse means that every clause of D belongs of €. 'this should not be confused with saving that
every clause of 1715 imcluded in some of £7)

4 Example

Figure 2 shows nodes C1 and C2. The three clauses in a circle imply the literal -,

Figure 2: Nodes C'1 and C2 imply -/

From Observation 1, we know that (2 = — because the tree that results from choosing !
fails. By Observation 2 we know thal the unary clause I appearing in (©2 has no responsability
in such a proof: we can discard it and (he resulting set still implies ~I. Now. this resulting sct
appears in C'1. Thus C1 = ~{ as well.

Now at node C1, literal =!I can be chosen deterministically, and the execution proceeds as
indicated in Figure 3,

Thus only two inferences are needed instead of the four in the previous situation.

The reason is that the set of clauses in €1 was simplilied by the derivation of a unary clause,
This clause enables us to delete two clauses and reduce iwe others to unary clauses, that s, to
produce deterministic choices. In general, a set of clauses can be greatly simplified by adding
to it clauses implied by the set and that subsume other clauses of it. Much attention has been
given to this problem in resolution-based theorem proving [4, 6]. The result presented here is
based on the same motivation.

5 Implementation Note

A pruning condition such as the one proposed here must be cheap to implement, otherwise the
cost may oulweigh the benefits. The implementation of the test to verily the pruning condition

Figure 3: The Proof Once =/ has been added to 1

needs two operations in addition te the normal DP procedure.

1. Compute the set of clauses that result from deleting from 2 aade those clauses that contain
the chosen literal.

9 Test whether such a set is included in some ancestor.

The first condition comes with abselutely no cost: this operation has to be performed by
DP in any case. Remember Lthat new nodes are computed by deleting clauses containing the
chosen literal and shortening the ones containing its opposite. The set we are lovking for 15 the
one that results from the deleling operation. We can do the inclusion test and Lhen shorten the
clauses containing the opposile of the chosen literal.

There is a cost to the second of the operations above, that of testing for inclusion. But there
are well-known techniques for achieving this efficiently. In [3]it is proposed not to actually delete
the clauses but rather to replace them by a marker. For example. in a Prolog implementation,
a set of clauses can be represented as a list, and deleting a clause from the list 1s performed
by replacing the clause by a [ree variable, thus leaving unchanged the actual size and order
of the list. The inclusion lest is then performed by a single unification. In [5], an efficient
implementation for a boolean representation ol propositional calculus formulae is described.

6 Related Work

6.1 Linear Resolution and the DP Procedure

The following is a linear refution of clause m Vg, using background theory {~m V1, IV =p, pV
r, =V =l =gV I}, and the GC (zraph-construction) procedure of Shostak [6].

The given clauses are the same as those in our example, and a slightly simplified version
of these given by Shostak; this simplification keeps the example shorter while preserving the
features needed to illustrate Lhe comparison. We denote A-literals in brackets, C-literals in
parenthesis, omit the “V" between literals, and order the clauses from left to nght.

Origin clause.

g

I [m]q Resolution with ~m V!
=pll] [m] g Resolution with =~V —p
r [=p] [11) g Resolution with p v r
L[] [=p) 1] [m] g Resolution with V=L
g (1) (—m) A-resolution on —! and creation of C-literals.
lg] (=) (—m) Resolution with =g V L.
[l Resolution on { using C-literal.

Neow consider the following correspondence between this linear refutation and DP. Resolved-
upon literals in the linear refutation are associaled with literals chosen to transform nodes in
DP. Now, C-literals in the GC procedure play a role analoguous to our literals transmitied to a
node Ligher in the search Lice. Both are ™ lemmas” produced in some part of the search space
thal ave kept for use later. Without the information on the C-literals, the above refulation
would examine twice the same search space, in a way analoguous to DP withont the added

lteral at node €1,

6.2 Other Pruning Conditions

Tn [3], & similar pruning condition for the DP procedure is presented. It is shown that if a
cortnin node of the DP search tree ¢ is included in a higher node D, then " is inconsistent if
and onlv if 7 is. Thus if € fails, the algorithm need not consider D, As an example, consider
again Vigure 1. I the unary clause { were not present in node C'2. then €2 would be included
in (1 as C2 failed, C'1 would not need to be considered and thus the algorithm could stop.

T'he result presentcd here is a particular case of the result in [3]. If C is included n D,
then obviously the set resulting from 7 by removing clauses containing the chosen literal is also
vicluded in 0. Tf inclusion holds, /7 can be removed. This is strouger than just adding to £ a

unary clause, so it should be preferred.

However, our result can be applied in many situations in which the plain inclusion test does
not succeed. The example of Figure 1 is such a case. Note that no node in this search tree is
included in a higher one, and thus the condition of [3] does not apply.

7 Conclusion

We presented a simple condition that enables the DI procedure to transmit information from one
part of the search tree to another part. An example was shown in which this extra information
saves unnecessary computation.

We still have no information en how often the condition applies in real problems, that is,
how much can be gained from it. This needs to be related to other attempts to improve the
efficiency of DP.

Regarding this, it was pointed out in the last seclion how our results complements that of [3].
Concerning heuristics, our approach suggests the use of one that tries to maximize the chances
of applicabilily of the pruning condition. Further rescarch needs to he done on the inleraction
of such a heuristic and the one of, for example {7].

References
[1] Cook, S., The Complexity of Theorem Proviug Procedures, Jrd. Annual ACM Symposium
on Theory of C-'ampu!uﬁml._ (1970} 151-158.

[2] Davis, M. and Putnani, H., A Computing Procedure for Quantification Theory, Journal of
the ACM 7 (1960) 201-215.

[3] Jeannicot, S., Oxusoff, L. and Rauzy, A., Evaluation Sémantique: Une Propriété Pour
Rendre Efficace la Procédure de Davis et Pulnam. Revue d Intelligence Artificrelle 2 (193§)

41-60.
[4] Loveland, D., Automated Theorem Proving: A Logical Basis. North Holland, 1973.

[5] Shensha, M., A Computational Structure for the Propositional Caleulus, Proceedings of
[JCAL-EY 354-3588.

i6] Shostak, R., Refutation Graphs, Artificial Intelligence 7 (1976) 51-61.

[7] Zabih, R. and McAllester, D., A Rearrangement Search Strategy for Determining I'roposi-
tional Satisfability. Proceedings of AAAL-88 155-160.

