ICOT Technical Report: TR-527

TR-327

On Theorem Provers for Circumscription

by
K. Inoue & N. Helfi

February, 1990

© 1990, 1ICOT
Mita Kokusai Bldg. 21F (03) 456-31591-5
“ :D I 4-28 Mita 1-Chome Telex ICOT]32964
Minato-ku Tokvo 108 Japan

Institute for New Generation Computer Technology

On Theorem Provers for Circumscription

Katsumi Inone and Nicolas Helft
1COT
Research Center, Mita Kokusai Bldg, 21F
1-4-28 Mita. Minato-ku, Tokve 108
Japan

March 16. 1990

Abstract

This paper concerns algorithms to answer gueries in circumseriptive theories.
Twao recent papers present such algorithms that are relatively complex: Praymusm-
ski's algorithm is based on MILO-resolution, a variant of ordered linear resolution;
Ginsherg's theorem prover uses a backward-chaining ATMS. Because of their dif-
ferent concerns, formalisms, and implementation, it is not clear what their relative
advantages are. This paper makes a detailed comparison of these relating them
io a lopical framework of abduction, explains their intuitive meaning, and shows
how the efficiency of both can be improved, Additionaliy, some limitations of both
circumscriptive theorem provers are also discussed.

Keywords: circumseription, abduction, theorem proving, linear resolution,

1 Introduction

Circumscription [McCarthy, 1980; Lifschitz, 1985] is one of the most powerful and well-developed
formalizations of nonmonotonic reasoning as it is based on classical predicate logic. Although
its formal properties arc well investigated, there have been few attempts at effective query
answering procedures or implementations for circumseriptive theories.

Recently, Praymusinski [1989] and Ginsberg [1989] have published algorithms to compute
circumscription. (insberg acknowledges a strong connection between the resulis presented.
However. not mueh is known about the algorithms” relative advantages and disadvantages.

The goal of this paper is twolold:

1. We further explore the vonnections between algorithms [Przymusinski, 1989; Ginsberg,
1989}, showing that:

(a) The theoretical results obtained in each of these papers are the same, and both can
be re-expressed in a simple, general ramework.

(b} The algorithms presented have different computational properties; we provide a de-
tailed comparison of these,

9. We show how the efficiency of both algorithms can be improved.

Sections 2, 3, and 1 consider the above questions. In Section 5, we further discuss two
important problems that arise in Przymusinski’s and Ginsberg’s approaches and suggest some
solutions to them.

2 Comparing the Theorems

We will consider ground theories, that is, first-order theories, without equalily, consisting
of finitely many ground formulas over Lhe representation language L; these are sufficient to
illustrate the comparison between the algorithms of [Przymusinski, 1989; Ginsberg, 1989].
We will use the clausal form representation, and also assume that Unique Names Axioms
(UNA) are satisfied for £, as in both algorithms. According to Przymusinski’s claims, how-
ever, the algorithms are applicable to the first-order case with UNA and equality axioms. Gins
berg adds the domain-closure axiom, which is unnecessary according to the results we shall
present which indicate the equivalence between the theoretical results of [Przymusinski, 1989;
Ginsberg, 1989). In Section 5, we will return to the incompleteness problem, which is due to the
infinite properties of first-order theories.

We briefly recall a basic property of circumscription, on which the algorithms are based. The
predicate symbols of a theory T are divided into three disjoint sets: P, mimimized predicates;
Z, variables; and @, fired. Using this information, some models of T' are defined as mini-
mal with respect to the sets P and Z; we say they are (P, Z)-minimal. Let CIRC(T; P; Z)
be the circumscription of P in T with variable predicates Z. Then, for any formula F,
CIRC(T; P;Z) | F iff M |= F for every (P, Z)-minimal model M of T [McCarthy, 1980;
Lifschitz, 1985].

Now, to compare the theoretical results of Przymusinski and Ginsberg, we use the nolion of
chavacleristic clauses which was introduced by Bossu & Siegel [1985] and was later generalized
by Siegel [1987]. This concept can also give the computational aspect of abduction. Informally
speaking, characteristic clauses are intended to represent “interesting” clauses to solve a certain
problem, and arme constructed over a sub-vocabulary of £ called a produclion field.

Definition 2.1 A production field P is a set of ground literals. A clause O belongs to a produe-
tion field P il every literal in (" belongs to P. The set of clauses that are logical consequences
of a zet of clanses T and that helong to P iz denoted by The(T).

If /15 a set of predicate svmbols, we denote by % (respectively {7) the positive (respectively
negative] gronnd literals with predicates from K, which range over all constants in £. Mareover,
BT U R is denoted B

Example 2.2 Suppose that the language £ coulains predicates, bivd, flies, ab, and ostrich,
and that tweely is a constant. Let P be {ab}* U {bird, osirich}*. Then, —ostrich(tweety) v
hird{tweety) belongs to P, while —ab{tweety) docs not.

Definition 2.3 Let T be a set of formulas, F a formula, and P a production field,
1. The characteristic elonses of T are:
Care(T) = p|Tho(T}]1,

where for a set of clauses ¥, by p[¥] we mean the set of clauses of ¥ not subsumed by
any other clause of X,

2. The new characteristic clauses of F with respect {o 1" are:
Newcare(T, F) = Care(T U{F}) = Care(T),

that is. those characteristic clauses of T'U {F'} that arc not characteristic clauses of T

Example 2.2 (continued) Let T be

bird(tweety),
sbird{lweely) V ab{lweely) v flies(tweety),
—ostrich|{tweety) V - flies(tweety).
In this well-known example, P = {ab}, 7 = {flies}, and @ = {bird, ostrich}.

Let us fix as above P to be P* U QF, that 15, positive occurrences of ab, or any occurrence
of bird and esirich. Then,

ICare(1') depends on the production field P, and thus a correct notation would be Care(1,P). As there will
be no confusion about 7, we simply write Care{T).

Carc(1') = { bird{tweety), ab{tweety)V —ostrich(tweety) },
Newecare(T, bird(tweety)) = ¢
because hird{tweety) € Care(T),
Newcare(T, flies(tweety)) = {—ostrich(tweety)}
as sostrich(tweety) ¢ Care(T) belongs to Care(T U { flies(tweety)}).

There is a strong connection between the concept of the new characteristic clauses and a
logical account of abduclive or hypothetical reasoning defined by such as [Poole et al., 1987;
Poole, 1989].

Definition 2.4 Let T be a set of formulas, D a set of ground literals (called the hypotheses),
and [a closed formula. A conjunction E of elements of I} is an explanalion of F from (T, D)
if: (i) I'U{E} is satistiable, and (ii) T U {E} E F.

An explanation k£ of ¥ from (1", D) is minimal if no proper sub-conjunct E' of E satisfics
TUlE'} [F.

An extension af (1, 1)) is the set of logical consequences of T'U {E} where E is a maximal
conjuncl of elements of [such that TU {E} is satisfiable.

We will denote by — - X the set formed by taking the negation of each element in X.

Theorem 2.5 Let T, D and F be the same as Definition 2.1. The set of all minimal explana-
tions of F from (T, D) iz — . Newecare(T, - F), where P = - D.

Corollary 2.6 Lel T, D) and F be the same as Definition 2.4, There is no extension of (7, D)
i which F holds il there is no explanation of F from (T, D) iff Neweare(T, ~F") = ¢.

2.1 Przymusinski’s Results

Przymusinski’s [1989] algorithm is based on the following two theorems developed by Cel-
fond ef al. [1988].

Theorem 2.7 [Przymusinski, 1989, Theorem 2.5]
If a formula F' does not contain literals from Z, then CTRC(T; P; Z) | F iff there is no clause
E such that (i) £ does not contain literals in ZZU P~ and () T -FVEbut T |£ E.

Now let us rewrite this theorem using the notation intreduced above. Condition (i) means
that E belongs to the production field P = PYUQ*. T | ~FVE can be written as TU{F} |= E.
So we are looking for a clause E belonging to the production field, implied by 7' U {#} but not
by T alone. This means that £ € Thp(T U {F}) — Thp(T). The theorem requires that such £
does not exist. Now, for a set of clauses &, ¥ = ¢ iff 4[] = ¢. Therefore, by Lemma. A1, it is
enough to check whether Newcare(T, F) is empty or not. That is,

Theorem 2.7 (new version) Let F be a formula not containing literals from Z. Let P be

P+ U Q*. Then
CIRC(T; P;Z) = F iffi Newcare(T, F) = ¢.

I'his formulation helps to understand the intuition underlying the above theorem. We want
to know if a query F not involving literals from Z is true or not in the (F, Z}-minimal models
of a theory T. Now, every (P, Z)-minimal model of T" is defined on interpretations of T by
considering differences of extensions of P and equality of extensions of ¢}, but by ignoring
differences of extensions of Z [Lifschitz, 1985]. Therefore, the characteristic clauses of T' are
represcutative of those minimal models, in the sense that if adding F to T produces a change
(new one) in Care(1’) then the addition of F has produced a change in the minimal models of T
as well. The existence of a new characteristic clause of F' means that F' has altered the minimal
models: thus if Neweare(T, I) is empty, the addition of F has no effect on the minimal models
and the circumseriptive theory entails it

For formulas conlaining predicates from Z, the following holds:

Theorem 2.8 [Przyvmusinski, 1989, Theorem 2.6]
Let ' be any formula. CIRC(T: P; Z) k= F iff either T = F or there is a formula ' such that
(i} ¢ does not contain literals in Z* U P=, (ii) T | FV @, and (iii) CIRC(T; F; Z) | -G,

Now, 1' E I' means T U {~F} is unsatisfiable; note that in this casc, Newearc(l',—F)]
would contain only O (the empty clause}. Condition (1) again means that G belongs to P =
P Q%) condition (i) can be written as T U {=F} = ! and condition (iii} is equivalent
to Newcare(T,~G) = ¢ by Theorem 2.7. In this case, the condition T = G is missing in
Theorem 2.8; if 1" |= &, however, then Newecare{T,—(7) = {0} # ¢ holds for satisfiable T.
Therefore, condition (i} together with (iii) further implies that (7 is of the form of a conjunction
of clauses of Neweare(T, F) 2. And in condition (iii), if (7 is O, then =G is the formula true
and adding it to T produces no new theorem: Neweare(T, truc) = ¢. We can now write:

Theorem 2.8 (new version) Let F beany formula, and P = PTUQ*. Then CIRC(T; P; 7) =
F iff there is a conjunct G of clauses in Newecare(T, - F) such that Neweare(T, -G} = ¢.

While this formulation seems simpler than the original one, it still does not provide much
insight. We will see it more clearly in Section 2.2, relating it with hypothetical reasoning. Let
us review one of Preaymusinski’s examples with these new concepts.

Example 2.2 (continued) Przymusinski [1989, Example 3.10] shows that CTRC(T; P: Z)
does not imply Fy = flies(tweety) but implies Fy = ostrich(tweety) V flies(tweety). Let us

verily these facts.
Adding ~F, = ~flies(tweety) to T gives

Newcare(T,=F;) = {ab{tweety)}.

Since adding —ab{tweety) to T gives a new characteristic clause, —ostrich{tweety), CIRC(1, P; Z) ¥
F; holds.

2|n practice, the minimality condition involved by the u operation is not erucial. See Section 3.1,

Now we add
-~ Fy = =ostrich{tweely) A = flies(tweety)

to T, which gives
Newcare(T, = F,) = {ostrich(tweety), ab(fweety)}.
The negation of the conjunciion of these two clauses is
ostrich(tweety) V —ab{lweely) .
Adding this formula to T produces no new characteristic clauses, as the only new theorems are
{ostrich{tweety) V —ab{tweely), flies(tweety)},

and neither belongs to 7. Thus, as expected, F; is in the circumscribed theory.

2.2 Ginsberg’s Results

Ginsberg [1989] presents an another algorithm for computing circumseription. The algorithm
Lwowever works only in the case where @, the set of fixed predicates, is empty. We will transform
Ginsberg's definitions and results to ours.

Definition 2.9 [Ginsherg, 1989, Definition 3.1]
Let D and T be two sets of formulas. 7 is dnf wrt [if it is written as a disjunction of
conjunctions of elements of D. And F is confirmed by G (wrlt T and D) il the [ollowing

conditions hold:
1. 1'U {7} iz satisfiable,
2. TU{G} E F, and
3. G is dof wrt 1),

Comparing Definition 2.9 with Definition 2.4, we see that # is confirmed by & wrt D if G is
a disjunction of explanations of #' from (7', D). Now, =5 is a conjunction of clauses belonging
to the production field = - D) by Theorem 2.5. Or, in other words,

Definition 2.9 (new wversion) Let P = = - [. F is confirmed by G if =G is a con-
junction of clauses in Newcarc(T,—F). Moreover, F' is unconfirmed, if no & confirms F:
Neweare(T,-F) = ¢.

Next is the main result:

Proposition 2.10 [Ginsberg, 1989, Proposition 3.2]
Let D be P~. CIRC(T; P; Z) = F iff there is some G confirming I so that =G is unconfirmed.

We can rewrite 1t as:

Proposition 2.10 (new version) Let P = —-[}. CIRC(T;P; Z) = I iff there is a conjunct
(7 of clauses in Newcare{T, ~F) such that Newearc(T, =G = ¢.

Ginsberg brielly mentions connections with Przymusinski’s work and the possibility of relaxing
the assumption of all non-minimized predicates being variable. Our above results show that:

1. This last proposition is exartly Theorem 2.8,

2. All results can thus be extended to the case (@ £ & (that is, not varying all predicates)
just by setting D = P~ UQ*, that is, P =~ D = PruQ*.

The intuition behind Theorem 2.8 and Proposition 2.10 is the following. From the viewpoint of
abductive rcasoning, those theorems say that CIRC(T,P.Z) | F iff there is a disjunct 7 of
explanations from (7, 1) such that there exists no explanation of (' from (T, 1} 4, and Poole
[1989] introduces the similar condition for a formula to hold in all extensions of (T, D}*. For
answering queries in circunscription, the hypotheses I? must be carefully chosen in the direction
of (P. Z)-minimization: for minimized predicates 7, P~ should be hyvpothesized, and for fixed
predicates 0, @* should be taken into acconnt. Now the existence of an explanation of F from
(T, D) gnarantees that F holds in at least one extension of (T, D)) by Corollary 2.6. Clearly, il
some disjunet (@ of explanations of F holds in all extensions, then F' also holds in all extensions.
Sinee this (7 is constructed over) and thus does not contain literals from &, we see that &
holds in all extensions of (T, 1)) iff Neweare(T,G) = ¢ wrt P = =+ D) (by Theorem 2.7) iff there
is no explanation of = [rom (T, 1)) (by Corollary 2.6).

3 Comparing the Algorithms

In the last section we showed that both Przymusinski’s and Ginsberg’s algorithms were based
on the same theoretical results, This section concerns the computational eflicicncy of the algo-
rithms.

Przyvmusinski [1989] defines MILO-resolution, a variant of ordered lincar (OL) resolution
[Chang and Lee, 1973]. Given a clause €', MILO-resolution is used to deduce a set of minimal
clauses belonging to The (T U {C}), called the derivative of 7'+ C, with top clause " and the
background theory T. The algorithm needs to check the non-deducibility of cach clause in the
derivative from T, in order to determine the new characteristic clauses. On the other hand,
Ginsberg’s [1989] circumscriptive theorem prover uses a “backward-chaining ATMS5" [Reiter
and de Kleer, 1987] to compute minimal explanations of formulas. This backward chaining
procedure also uses a classical theorem prover.

While the structure of the proofs are similar, each algorithm has a different concern and
extends a resolution procedure in a different way. Remember that we should produce clauses (i)
in the production field, and (ii) the “new” and “minimal” of these, that is, neither implied by the

Lin & Goebel [1989] independently derive the equivalent theorem from the result by [Gelfond ef al., 1989]

within the Theorist framework [Poole et al., 1987].
*Etherington {1987] has shown the equivalence of membership in all extensions and eircumseriptive entailment

for propositional theories without fixed predicates.

original theory nor by another produced clause. MILO-resolution provides the ability to restrict
the resolution to some literals by which the algorithm directly focuses on producing the clanses
relevant to answer the query. that is, those in the production field P* 1 @*. Pravmusinski's
concern is thus efficiency regarding the first of the above two points. Ginsberg uses a classical
theorem prover; this means that no information concerning the production field is used during
the proof. His algorithm has however another concern, that of the minimality of the produced
formulas. For this, he uses a struciure called a “bilattice”™ based on his previous work on
multivalued logic [Ginsberg, 1988]. The role of this hilattice is to record inferences. in order to
avoid making them more than once, He is thus concerned with the second of the above.

The next two subscetions expand on these ideas. The discussion is based on each resolulion
procedure to compule Newcare(T, '), given a background theory 1', a clause ' and a production

field 7.

3.1 What Neecds to be Computed

From the resulis presented above, it appears that to answer a query, an algorithm should first
compute the minimal explanations of a formula F from (T, P~ U @¥), or equivalently their
negations, Newecare(T, -I"), with the production field set to P* 1 Q% Ginsherg’s theorem
prover works exactly along this line of computation *.

However, there is a set smaller than Newcare(d, F) that can be nsed to answer such a
query. Let us divide the produced elauses § by using deductions with top clause 7, the back-
ground theory 7T and the production field P, possibly containing subsumed clauses (note thal
Newecare(T, (") © &; see Theorem A.3) into two sets, say &, and Sa, such that

& ;15-1 L.I-AS'Q and TrUS] I—S;

Adding &3 to 8y does nol change the models of the produced clauses, so only & needs to be
computed model-theoretically,. We call a set & verifying this condition a precursor of 8. Note
that a clause in & precursor may not belong to Neweare(T,P), that is, the clause is not always
minimal in the sense of sel-inclusion, but it is the weakest in the sense that for any clause
Ay € &; there exisis a clanse A; € 8y such that TU {-4,} E —4, holds (rccall that for A € S,
—A Is an explanation of =C' from (T, = - P) if it is consisient with 7° %).

MILO-resolution actually computes such a precursor, as the derivative of T ¢ C, because it
restricts the resolution to literals belonging to 220U P~ In other words, when the first literal of
the center clause belongs to P = P U Q*, it is skipped. If it were resolved upon with a clause
from the theory, the resulting leave obtained by chaining the inference would be implied by the
one obtained with the skipping operation (see Theorem 4.2). This is best understood with an
example.

Example 3.1 The theory is

T={pmV-p, pV-ps, ;aVzl.

5This is in essence what [Lin and Goebel, 1989] does too.
SAn explanation E) is called less-presumptive than Fa [Poole, 1989] if T'U {E3} B Ey. Therefore, an
explanation in = - &, is a least-presumptive explanation of ~ from (T, — - P).

8

The production field is P = P* = {p;, p2,pa}*. The query is z,.

By adding =z; to T', MILO-resolution generates only pa, the only new theorem that belongs
to P. Since this literal belongs to P, the procedure skips it and stops. It then adds —p; to T
which generates no characteristic clause, showing that CIRC(T; P; Z) E #.

If the procedure would examine the remaining choice, resolving p; with the clause p; vV —ps, it
would produce py. and a further step would produce p;. This is exactly what Ginsberg's prover
does, as it uses no information from P Lo stop the execution when p; is produced. The set of
assumptions is D = = - P = P, The confirmation of z; produced by an ATMS is dof:

ﬂp-avﬂp?\,!ﬂpl_

The negation of the confirmation is
Pa v pr Apy,

which i1s unconfirmed. Using Ginsberg's terminology, two additional contexts have been pro-
duced. {—p, } and {-p;}, in which z holds (the three are produced because none of them is a
subset of another). MILO-resolution did not need to generate them. As explained above, the

reason is Lhat {jl'ia]' is the precursor of the others, as:

TUlml EpmAp.

There is another big diflerence between Przymusinski’s and Ginsberg's provers concerning
checking the consistency of hypotheses. Reecall that to apply Theorem 2.8 or Proposition 2.10,
we need Lwo sleps; firstly computing a set of clauses belonging to Neweare(T, -F) for the
query I, then checking whether a conjunct & of those clauses satisfies Newcare(T, -G) = 4.
Ginsberg's prover first compultes the minimal explanations £ of F from (T, =-P), then computes
the minimal explanations of =V e F from (T, -« P); on the contrary, Przymusinski’s prover
first computes the derivative Ty of T + F, without checking the non-deducibility of each clause
in Iy from T, then computes the derivative Dy of T+ =~ Vaep, A, checking whether T £ B
[or cach clause B in T, one by one. Clearly, in the second step, we need not compute all the
minimal explanations for the negation of the disjunct; if it has at least one explanation then we
can stop the computation immediately. For the first step, Przymusinski's prover may mnclude
some clauses belonging to The(T) in T4, which are excluded from the produced clauscs by
Ginsberg's prover 7. However, since il takes much computation for this consistency checking
(non-decidable for the first-order case), it seems rather efficient even if these extra clauses are
taken into account in the sccond step (indeed, the efficiency may depend on the knowledge base).

3.2 How it is Computed

Now suppose both algorithms have to compute the same set, that is, MILO-resolution computes
all the new characteristic clauses by avoiding the skipping of literals, or Ginsberg's theorem
prover is restricted to computing a precursor. In that case, another advantage of using the
information on the production field P during the deduction is that fewer clauses are generated.

TIf there is a clause A £ T such that T &= A, then in the second step, the negation of the disjuncis contains
—A. Since itz valuation is false, this docs not affect the result of the query answering.

9

For a very simple example, suppose that the center clause is zV g, where z € P, while g € P.
If = cannot be resolved upon against clauses of the theory in such a way that the result of the
deduetion produces a clause hf-lr:mging to P, MILO-resolution will never try to resolve on the
next literal g. Conventional theorem provers will give no priority to = over ¢ and thus will try all
the resolutions on ¢ as well, making unnecessary computation. This example, although trivial,
15 representative of what will happen in many realistic situations.

We said above that a central concern of [Ginsberg, 1989] was to avoid computing the same
clauses more than once. The role of the bilattice is to record information and use it to avoid
redundant derivations by making subsumption tests. Avoiding the exploration of unnecessary
portions of the search space, and in particular the non-production of subsumed clauses has been
a central concern of automated theorem proving and is onc of the motivations behind all the
refinements of resolution [Loveland, 1978). Many of these use Lhe information of literals that have
been resolved upon to avoid producing many of redundant clauses. For example, OL-resolution
on which MILO-resolution uses framed liferals Lo record the history of the deduction. Regarding
other problems related to irredundancy and countrol, a thorough analysis can be found in the
chapter on subsumption in [Loveland, 1978]. There is not enough information in [Ginsberg, 1989:
Giusberg, 1988] to determine whether the bilattice represents a hetter alternative.

4 Improving Efficiency

We show here how MILO resolution’s scarch space can be reduced. MILO-resolution is hased on
Chang and Lee’s [1973] version of OL-resolution; this procedure is augmented with the ability
to skip hterals when they belong to the production field.

Now, actually there exist superior versions of linear resolution that can be augmented with
skipping operations. Most notably, Model Elimination [Loveland, 1978] and SL-resolution
[Kowalski and Kuhner, 1971]. Basically, the Model Eliminalion procedure introduced the re-
striction that without loss of completeness, it can avoid resolving the center clause with clauses
from the theory that have literals equal to [ramed literals at the right of the literal resolved
upon, as this would produce only clauses subsumed by some previons center clause.

Example 4.1 Suppose a clause,

F=avd,
resolves with a clause,
—a\h,
in T', giving
bv[alvd.
Now suppose there is a clause,
-bva,

in T. The above restriction tells us that this clause may safely be skipped in the deduction, as
it contains a, a literal appearing framed in the center clause. In effect, it would give the clause,

av[bVvlavd,

10

which is subsumed by a previous center clanse, F.

Clearly, this has two advantages: it restricts the scarch space, and avoids many of the
subsumption tests in step (i) of MILO-resolution [Przymusinski, 1989, Definition 3.1].

Additional improvements in efficiency were introduced by [Shostak, 1976] and [Bibel, 1982].
Shostak [1976] shows that we can record still more information on center clanses. When the
first literal of the center clause is framed, previous versions of linear resolution delete it from
the clause. Shostak's procedure complements it and keeps it in a different position called the
C-point in the clause, where it can still be used later in the reduction to reduce the search space
and do ancestor resolution as with ordinary framed literals.

Example 4.1 (continued) 1f now the above clause,
by [a]vd,

15 resolved with,
—h,

the result will he
dv (=) v {~a),

where, the notation (={) is used for the truncated framed literal [/] moved to the C-point; thus
the information that —a and —b are proved is kept.

4.1 Summary

We thus propose the following procedure schema. Given a set of clauses T', a clause ', and a
production field P, a deduction of a clause K from T + € (the background theory 1" with top
clause (7] and P consists of a sequence of structured clauses, oy Cey .o, Oy such that:

1. Cn= I:D, l’_m}-\
2. C, = (A, Q) and

3. "oy = { Kis1, Riyy) is obtained from C; = (K;, Ri) by applying either of the following
operations. We assume that R; is ordered and [is the first literal of R;.

{a) (Skip) 1€ P, then Ky = KV I and Ry is obtained by removing [from R;.

(b) Otherwise, K;y; = K; and R,y is obtained by a linear resolution procedure where
the center clause is B, and the background theory is T

By using this procedure we can find a precursor without computing all the Neweare(T,():
£ P P

Theorem 4.2 If a clause I belongs to Newcare(T, (), then there is a deduction of a clause
M € Thp(TU{C}) from T+ C and P such that T U {M}EL.

The query answering procedure for circumseriptive theories [Przymmsinski, 1989, Algorithm 4.1]
that calls MILO-resolution remains identical; the definition of the derivative of T' + C' is just
changed to be the output of the above procedure instead of the output of MILO-resolution.

11

4.2 Example
We might use Shostak's GC procedure as a linear resolution procedure for step 3(b) above, and

get the following:

Example 4.3 (modified version of [Przymusinski, 1989, Example 3.5]) We apply the procedure
to formulas with variables in order to show that it is not limited to the ground case. Let T
contain the following formulas, with P = {learns, senior}, and Z = ¢.

WYX senior(X) D learns(X, latin)V learns(X, greek),

VX sentor(X) 2 learns(X, french),

sentor{ann),

YX learns{ X, greek) O senior(X).

In clausal form and with the obvious abbreviations, the theory is

HX v X gr) v —s(X), (1)
—s(N)V X, fr), (2)
afa), (3)
=l X. gr) v s(X). : (4)

T'he production field P is then Pt — {l 2}t Consider the query =l{a.gr) VvV =l(a, fr). The
tfollowing is a deduchion obtained by our procedure.

Cy = {0, ~lla,gr)V ~la, fr]) —Given.
) ={0, l{a,t)V ~s{a) v [~lla,gr)] v =l(a, fr)}
—Resolution with 1 (*).

Cy = (o, 1), ~s(a) v [l{a,gr)] v ~(a, fr))
Skip the literal from P (**}.

5 = {la,it), [-s(a)] vV [~l(a,gr)] V -l(a, fr))
—Resolution with 3.

Cy = {1(a,t), =l(a, [r) V (s{a)) V (I(a,97)))
—Recording of solved literals.

Ce = ({a,it), =s{a) VvV [~la, fr)] v (s(a)) v (l{{a,g7)))
—Resolution with 2,

Ce = {I{a,dt), [Sl{a, fri]v (s(a)) vV (Ha,gr)))}
—Truncation using the solved literal (

Cr = {l{a.dt), O) —Reduction.

t#*}

12

Now according to Theorem 2.7, we can answer “no” to the above query, that is,
CIRC{T, P, £) B =l{a,gr) v -lla, fr),

because {(a,{l] i= nol unplied by T.
Let us look al some advantages of this deduction over MILO resolution and Ginsberg’s

theorem prover.

¢ At point {*), Ginsberg's prover, which lacks information on the production field, will
resolve on N a, It), instead of skipping it, thus exploring branches that are pruned by this
skipping operation.

o At point {**), MILO resolution will behave as in the above deduction, but keeps an ad-
ditional choice that results from resolving —s{a) with clause 1. Our procedure avoids this
because clause 4 contains the literal —{{a, gr) that appears framed in the center clause,

thus indicating the remaining choice 15 unnecessary.

¢ At point ("7), MILO-resolution would have lost information about s(a), and thus makes
a resolution against all clanses containing —s(a). Reduction with solved literal avoids this
explaration.

5 Concluding Remarks

We have compared two algorithms to compute circumscription, relating Lthem to abductive
reasoning, and showing that they are based on the same theoretical results. We have also
analyzed their computational properties, showing their different concerns: [Praymusinski, 1089]
defines the set of formulas that needs to be computed and uses skipping operalions to compute
them directly; [Ginsberg, 1989] concerns avoiding redundancy by recording information during
a deduction.

The skipping operation can be applied to other, more efficient versions of linear resolution,
and further improvements on these methods can be incorporated into the procedure. Other
techniques of theorem proving can be used to improve efficiency still more. For example, we can
“compile” the theory, producing either its prime implicates [Reiter and de Kleer, 1987] or the
sub-clauses implied by it. In both cases, the resultant theory has the same models, and thus
the same (P, Z)-minimal models as the former. Deduction from this compiled theory will give
the same results as from the former.

The inprovements in the present paper are based on direct refinements of linear resolution
procedures, and actually applicable to efficient computation of Newcare(T,~F) for a query F
and Neweare(T,~G) for some G in Theorem 2.8. However, both Przymusinski’s [1989] and
Ginsberg’s [1989] algorithms are naive implementations of Theorem 2.8, which states the need
for the existence of a certain conjunct 7 of Newcarc(T,—F), ignoring that many of clauses in
Neweare(T,~F} may exist. Therefore they turn out to suffer from the following two problems
in their computations:

13

1. Both “algorithms® do not work for the case in which there are potentially an infinife
number of clauses in Newcare(T,~F). Even if the number of Newcare(T,~F) is finite,

not all of them are the relevanl parts needed to determine that F is in the circumscribed

theory ®.

2. Neither algorithm can handle the answer extraction for open queries. That is, when a query
contains variables, the algorithms cannot return the substitution values of the variables
for which the query holds. This is a much broader problem than “Yes/No™ type questions.

A procedure attempting to solve the first problem is proposed by Pooale [1989], which is the
dialectical implementation of membership in all extensions. In [Helft et al., 1959], which com-
plements this paper, a solution for both the first and the second problems was proposed, which
finds a minimal, rather than maximal conjunct (& of Newecarce(T,~F). While we will not dis-
cuss it further in this paper, we should note that a certain subset of Newcarc(T, —=#) must be
computed anyway. Therefore, the improvements proposed in this paper can still be applied to
any proof procedure attempting to solve these problems.

Acknowledgment

We would like to thank David Poole, Koichi Furnkawa and Randy Goebel for their helpful discussions
on this topic and their useful comments on an earlier version of this paper. We are also grateful to
Mark Stickel for his comments abont improving efficiency of proof procedures.

References

[Bibel, 1982] Wolfgang Bibel. A Comparative Study of Several Proof Procedures. Artificial
Intelligenee 18 (1982) 269-203,

[Bossu and Siegel, 1985] Genevieve Bossu and Pierre Siegel. Saiuration, Nonmonotonic Rea-

soning, and the Closed-World Assumption. Artifictal Intelligence 25 (1985) 23-67.

[Chang and Lee, 1973] Chin-Liang Chang and Richard Char-Tung Lee. Symbolic Logic and
Mechanical Theorem Proving. Academic Press, New York, 1973.

[Ftherington, 1987] David W. Etherington. Relating Default Logic and Circumscription. Proc.
LICAL-87, Milan (1987) 489-494.

[Gelfond et al., 1989] Michael Gelfond, Halina Praymusinska, and Teodor Przymusinski. On
the Relationship between Circumscription and Negation as Failure, Arfificial Intelligence 38
{1989) 75-94.

[Ginsberg, 1988] Matthew L. Ginsberg. Multivalued Logics: A Uniform Approach to Reasoning
in Artificial Intelligence. Computational Intelligence 4 (1988) 265-316.

B;ﬁ}.nu Praymusinski’s prover does not compute all of Newcarc(T, ~F) but computes a precursor of them, in
some cases the precursor may have potentially infinite clauses especially for the first-order case.

14

[Ginsberg, 1989] Matthew L. Ginsberg. A Circumscriptive Theorem Prover. Artificial Intelli-
gence 39 (1989) 209-230.

[Helft et al., 1989] Nicolas Helft, Katsumi Inoue, and David Poole. Extracting Answers in Cir-
eumscription. 1COT Technical Memorandum TM-855, ICOT, Tokyo, 1989.

[Kuowalski and Kuhner, 1971) Robert A. Kowalski and D. G. Kuhner. Linear Resolution with
Yelection Function. Artificial Intelligence 2 (1971) 227-260.

|Lifschitz, 1985] Vladimir Lifschitz. Computing Circumscription. Proc. ITCAI-85, Los Angeles
(1985) 121-127,

[Lin and Goebel, 1989] Dekang Lin and Randy Goebel. Computing Circumscription of Ground
Theories with ‘Theorist. Technical Report TR 89-26, Department of Computer Science, The
[Tniversity of Alberta, Edmonton, 1989.

[Loveland, 1978] Donald W. Loveland. Automated Theorem Proving: A Logical Basis. North-
Halland, Amsterdam, 1978,

MeCarthy, 1980] John MecCarthy. Circumscription—A Form of Non-Monotonic Reasoning.
Artificial Intelligence 13 (1980) 27-39.

[Minicozzi and Reiter, 1972] Eliana Minicozzi and Raymond Reiter. A Note on Linear Resolu-
tion Strategies in Consequence-Finding. Artificial Intelligence 8 (1972) 175-180.

[Poocle, 1989] David Poole. Explanation and Prediction: An Architecture for Default and Ab-
ductive Reasoning. Computational Intelligence 5 (1989) 97-110.

[Poole et al., 1987] David Poole, Randy Goebel and Romas Aleliunas. Theorist: A Logical
Reasoning System for Defaults and Diagnesis. In: Nick Cercone and Gordon McCalla, editors,
The Knowledge Frontier: Essays in the Representation of Knowledge. Springer-Verlag, New
York (1987) 331-352.

[Przymusinski, 1989] Teodor C. Przymusinski. An Algorithm to Compute Circumscription.
Artificial Intelligence 38 (1989) 49-73. :

[Reiter and de Kleer, 1987] Raymond Reiter and Johan de Kleer. Foundations of Assumption-
Based Truth Maintenance Systems: Preliminary Report. Proc. AAAI-87, Seattle (1987)
183-187.

[Shostak, 1976] Robert E. Shostak. Refutation Graphs. Artificial Intelligence 7 (1976) 51-64.

Siegel, 1987] Pierre Siegel. Représentation et Utilisation de la Connaissance en Calcul Propo-
sitionnel. PhD thesis, University of Aix-Marseille IT, Marseille, 1987.

15

A Appendix: Proofs of Theorems
The next lemma is used to prove Theorem 2.5.

Lemma A.1 Let T be a set of clauses, # a formula.
Neweare(T, F) = p[The(TU{F}) = The(T)].

Proof: Let A= Thp(T U{F}) and B = The(T). Notice that B C A. We will
prove that uid — B} = p[A] — u[B].

Let ¢ € u|A — B]. Then obviously ¢ € A - B and thus ¢ € A. Now assume that
¢ & p[A]. Then 3d € A such that d € ¢. By the minimality of c € A — B, d € B.
Since d © ¢, ¢ € B, contradiction. Therefore ¢ € p[A]. Clearly, by ¢ & B, ¢ & u[B].
Hence, ¢ € u|A| — p[B].

Conversely, assume that ¢ € u[A] ~ p[#]. Firstly we must prove that ¢ € 4 — B.
Suppuse Lo the contrary that ¢ € B, Since ¢ ¢ p[B], 3d € B such that d C e
However, as B © A, d € A, contradicting the minimality of ¢ € A, Therefore,
ce A~ B, Now assume that ¢ s not minimal in A — B, Then, de ¢ A — B such
that ¢ C ¢, again contradicting the minimality of ¢ € A. Hence, c € y[A— Bl O

Theorem 2.5 Let T be a set of clauses, [J a set of ground literal, F a formula. The zet of all
minimal explanations of F from (T, D) is — - Newecare(T. - F), where P = - - D.

Proof: Now, suppose that E 15 an explanation of F from (T, D). By Definition 2.4,
it 15 observed that (1) the fact that T U {E} 15 satisfiable means T FE -E, (i)
TU{E} E F can be written as T U {-F} | -F, and -F is a clause all of whose
literals belong to -+ . Thus ~£ € The(T'U {~#}) — The(1'). By Lemma A.1, £
is a minimal explanation of F from (T, D) il -F € Newcarc(T,-F). O

We need the following preliminaries for the proof of Theoremn 4.2, In the subsequent discussion,
we will denote a clause as a set of literals. Firstly, a complete abductive procedure is defined by
modifying the procedure described in Section 4.1 as follows:

Definition A.2 Given a set of clauses T', a clause C, and a production field P, an LS (Skipping
Linear] deduction of a clause K from T +C and P consists of a sequence of structured clauses,
Co=(0, C),....05 Cigr,....Crh = (K, O}, such that Cyyy = (Kiy,, iy,) is obtained from
C, = { K;, ;) by applying either of the following operations {we assume that R; is ordered and
[is the first literal of H;):

3-{&-*] (Skip] Ifie ‘p, then Ki—l—l =K U {I} and R..'” = R,' = “]'

') Ky = K; and Ry, is obtained by a linear resolution procedure where the center
clause is H; and the background theory is T.

16

An example of LS resolution is proposed by Siegel [1987], which incorporates the restriction rule
used in Example 4.1. The only difference between an LS deduction and one in Section 4.1 is
that while the rules 3{a} and 3(b) in the latter are cxclusive, in the former 3(a’) and 3(b') are
not: for [€ P either rule can be applied. The next theorem shows that LS resolution is complete
for finding new characteristic clauses.

Theorem A.3 If a clause L belongs to Thp(TU{C}) = Thp(T), then there is an LS deduction
of a clause M € Tha(T U {C}) from T + € and P such that M subsumes L.

Proof: The proof can be seen as an extension of the completeness result for
consequence-finding in linear resolution by Minicozzi & Reiter [1972] augmented with
the skipping operation. And the result also follows easily using the same method as
it the completencss proof for the procedure described in [Siegel, 1987]. O

By using Theorem A3, we can show that Neweare(T, (7) is a subset of the set of clauses derived
using LS deductions from T' + (7 and P. Now, we will prove that, if a clause L 1s derived by
using an LS deduction from T+ C and P, then there is an LS deduction of a clause M from
T + (¢ and P by using only the Skip rule for each first literal { € P in every center clause, such
that T U {M} & L. This result completes the proof of Theorem 4.2.

Theorem 4.2 I a clause L belongs to Newcare(T, (), then there is a deduction of a clause
M ¢ Thp(T U{C)) from T' + C and P such that TU{M} = L.

Proof: Let (g Cy.... O be an LS deduction of L from T + ¢ aud P. Let I; be
ihe first literal of R,, where C; = (K, Ri) and 0 < i < n — 1. Finstly, if Skip is
applicd for every [; (0 < j €n—1) such that [; € P, then L is actually derived from
1+ C and P, and of course I"U {L} = L holds.

Next, supposc that 3C; in the LS deduction such that I, € P is resolved upou
with a clanse B; ¢ 1. In the following proof, to simplify the discussion, we assurne
that there are no identical, truncated, or reduced literals in Ry4, and denote Ry,
by removing the framed literals in it; il they exist, then we can modify the proof
appropriately. Let « (1 € 2 < n) be the number of such clauses, and C, be such
a clause where y (0 < y < n — 1) is the largest number. In this case, Cypn =
(Kyar, fy41), where Kypy = Ky and Fyyy = (B, — {~1,}) U (Ry — {{}). Now, let
U7 be a clanse LS derived from T + (B, — {=l,}) and P, V a clausc LS derived from
T+ (It, —{I,}) and P. Here, we can chouvse such I7 and V to satisfy L = K,uUUV,
because T is LS derived from T + (K41 U Hyyy) and P.

Now assume Lhat instead of resolving R, with By, Skip is applied to K, deducing
Kl = (K Rypy), where Ko\, = K,U{l} and R, = B, — {l;}. Then,
K, U {l,}UV is LS derived from T+ (K, UR,,,) and P, and thus from 7'+ C and

P. Since TU{l,} £ B,—{~4}, TU{l;} | U holds, aud thus Tu{(K,u{L WV} E L
holds.

Now let My = L and M, = (K, U {ly} U V). In the similar way, we can find an LS
deduction of M, from T 4 C and P such that TU {M,} |= M, by resetting y to the

17

second largest number. By using the bottom-up manner. we can successively find
clauses M; {1 < j < z) LS derived from T + (" and P such that T U {M;} = M;_,.
Therefore, 1" U {M,} = M,_,, TU{M,_,}) EM._,, ... TuU {M,} &= My . Hence,
TU{M.} = M, . and we get the theorem. O

18

