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Abstract

The personal sequential inference machines: PSI and PSI-1T and its object-
ariented logic programming and operating system, SIMPOS, have been devel-
oped as part of the fifth generation project at 1COT. Al present, more than
three hundred PSI machines and some other machines have heen connected
to each other via LAN: and WA Ns, and have been used not only for research
and development but also for actual daily work.

This paper describes the design and implementation of the SIMPOS dis-
tributed file system. It was first designed as a local file system: as the need
to share resonrees over the network has arisen. it has gradually evolved into a
distributed file svstem, through revisions and extensions. The goal of the dis-
tributed file svstem was to provide a network-transparent file access suviron-
ment without loss of compatibility with the existing application software, It
has been achieved by adapting a dynamic-ob ject-based model for concurrency-
arcess control, a password /capability-based model for access control. and a
remote object access mechanism for communication control. The remote ob-
ject access mechanism is the one to allow network-transparent method calls Lo
ohjects. It has heen found very bemeficial for both system development and
application development; the file system could be globalized with minimal
development cost, and all the existing software was enabled Lo access remote
files in exactly the same way as local ones. without any maodification.

The distributed file svstem has been in operation since summer 1987 and
widely used in the ICOT research center and other research institutes; it has
heen made available for two different communication protocols: PSI-NET
and TCP-IP in spriug 1989, Tu vur kuowledge, this system wonld be the first
distributed object-oriented system running for practical use in this scale.

Keywords:  distributed file system, object-oriented system, distributed operating
system., network system



1 Introduction

As part of the fifth generation project of 1COT, the personal sequential inference
machines: PSI ! and PSI-IT and its programming and operating system have been
developed [23, 26, 43],

The PSI machines provide as their machine language a sequential logic pro-
gramming language, KLO, which is almost a superset of Prolog: there is no lower
language than KLO. which is available for the programmer on the P51 machines.
PSI machines feature their specialty as powerful inference engines and their gener-
ality as independent personal workstations. Fach PSI machine is managed by an
independent operating system. SIMPOS. and is provided with an I/O environment
including disk. tape. printer and network devices. A higher-level language, ESP. 1s
provided as an application and system description language. It is a superset of KLU
with an object-oriented extension {12]. The entire SIMPOS. from the user interface
1o the kernel and device handlers, is written in ESP [13]. The ohject-orientation of
SIMPOS is derived from that of its description language, LSP. STMPOS was frst
designed for local nse and later provided with a network environment. At present,
more than 300 PSI machines and other kinds of machines have been connected to
each other via LANs and WANs. They have been used not only for research and
development hut also for actual daily work such as Japanese text processing. Cur-
rently two different communication protocols: PSENET and TCP-1P are available
over the network: each PSI machine may be connected to the network via at least
one of the two protocols.

As the number of users and machines increases and the scale of a system is
enlarged and enriched, sharing of resources becomes necessary. The history of dis-
tributed file systems started with providing network file scrvers to share a centralized
large scale storage among many small or diskless workstations connected to 1t via
a communication network. Most network file servers developed in the early 1980s,
including not only practical ones but also experimental ones, are surveyed and cach
analyzed from the viewpoint of their ability and mechanisimms for atomic update or
atomic transaction in [38], In a strict sense, network file servers belong to a different
category from distributed file systems in that there is distinction between machines,
whether servers or clients. namely that the machine relationship is not uniform.

Distributed file svstems assume a uniformly distributed environment in which
eaclh machine has its own independent storage. The first goal of a distributed file
system is to achieve network transparency, to enable users to access and share re-
sources without being aware of where they are logging in or where the resources are
physically located. Tn addition, heterogeneity and scalability of the network, user
mobility {whether a user may log in anywhere), file mobility, security, consistency
and fault tolerance of the file content and compatibility with the existing soltware
ought to be considered iu the design. There have been developed several distributed
file systems, some of which are already in operation and widely nsed. A system is

"This is the fiest version of PSI machines and is referred to as PSI-1 machines in this paper.
The word, PSI machines, means both PSI-l and PSI-IT machines.



intended for a large scale network composed of thousands of workstations in attempt
to realize file mobility to keep the [/ access load balanced over the entire system
[32]. The current state of the art in the design and implementation of distributed
file systems is stated with fine survey in (20, 35].

Distributed file systems are distinguished {rom distributed operating systems.
in that the former make network-transparcnt only file resources while the latter
deal with not only file resources but also other kinds of resources, mainly memory
and CPU, and provide themselves with the substantial mechanisms required for
network-transparency [39]. In other words, distributed file systems may be built on
non-distributed aperating svstems.

This paper describes an object-oriented distributed file system which has been
developed as part of SIMPOS. The system is characterized with its flexible con-
currency control, implicit access control and network-transparent access. It was
originally designed as a local file system and has grown to be a distributed file
system through revisions and exiensions. Here is a hrief history of the evolution.

L. Origimal: a Semaphore-based Local File System.

The first version was designed in 1924 as a local file system whose storage
structure is a /NIX-like hierarchical tree composed of expandable files.

This system assumed that files would be accessed from a single pracess at the
local site. The mutual exclusion between user processes was controlled using
the semaphore mechanism that each user process blocks a critical region using
lock and unlock primitives,

According to the semaphore mechanism. lock and unlock primitives are scat-
tered over user processes, so debugging was very hard. Moreover, even if the
existing classes were well defined, we would have to pay much attention to
any slight modification along inheritance trees not to cause a deadlock for its
failure to unlock. As a result, it took a long time until the system gets stable,
and still left us some anxiety to the system growing.

2. Redesign to a Dynemic-Object-Based Local File System.

As the number of PSI machines and users increased, the need to share files has
arisen, The file systern was redesigned in 1985 to embed a resource-sharing
mechanism [46].

Resource-sharing does not. mean just letting more than one process access a re-
souce randomly, but controlling cooperative accesses and competitive accesses
hetween processes. The kernel of the sharing mechanism is mutual exelusion
control.

Another problem in the original design was on the integrated control of lo-
cal access and network access. Local [/O requests were transacted in the
semaphore mechanism, while remote 1/0 requests were transmitted via message-
passing. This control mismatch had complicated the structure and control of



the system. To allow resource-sharing over the network and make the system
simple and stable, an integrated exclusion control was necessary.

These problems were solved with the notion of a dynamic (or concurrent) ob-
ject elegantly. An dynamic object is a process which encapsulates a shared
resource. as a monitor [13] does, but more simply communicates via message
passing with the outside. Owing to the dynamic object model, all the inter-
actions to shared resources are centralized to a single communication channel
to their dynamic objects so debugging should he made much easier.

3. Ertension to a Capability-based Local File System.

To safelv share resources, merely providing the file system with concurrency
control is not sufficient. Fven if the PSI users do not intend to destray others’
resources, they might destroy other users’ files and directories by mistake. The
file svstem was extended to embed a protection mechanism in 1986,

Tor a protection mechanism, a user process is regarded as an offense with a
weapon and a resource as a defense with a shield. Our strategy is very simple:
a user may hold a set of passwords as the weapon, a resource may hold an
access list as the shield, and each directory entry on the way to the resource
works as a protection pate, where an access list prescribes what capability (a
set of rights [#4. 21]) may be given to whal password. At every protection
gate on the way to a target resource, users show their passwords Lo obtain a
capability to proceed. Thus, a legally-controlled resource-sharing environment
was set up in the SIMPOS file system.

Yet, this system was still a local file systemn in that remote file access was
independently done in network application software above the file systemn.
The file system was not concerned with remote access at all. Each of the I/O
related application software, such as editors, had to contain two modules: one
for local file access and the other for remote file access,

4. Ertenston to a Distributed File System.

As the number of application software requiring remote file accesses increases,
absorbing the remote file access function in the file system became necessary.
The tile svstem was redesigned again in 1987, to provide a remote access
mechanism so that users be able to access remotc files as they do local ones.

To enable the netwark-transparent access al the primitive interface level, we
embedded in the file system a remote object access mechanism (ROAM) [47],
which enahles network-transparent method calls to objects. FEvery file and
directory method was reimplemented using the mechanism. In addition, user
names and file pathnames were globalized. As a result. any application soft-
ware was enabled 1o access remote files in the same way as local ones without
any modification.

Thus, the way to be a distributed file system was step by step. Throughont the revi-
sions and extensions, the primary constraint imposed on us is to keep compatibility



with the existing software, so that they will be available without any modification.
This problem was solved with the class inheritance mechanism of ESP. All the revi-
sions were absorbed by reconstructing, renewing or newly defining super classes of
the existing classes.

The system has been in operation since summer 1987 and made available for the
above two different communication protocols in spring 1989,

The rest of the paper 15 organized as follows: Section 2 clarifies the assumptions
and policy taken in the distributed system. The detailed design is described in
Section 3. Section 4 examines the design in both functionality and performance,
comparing our system with other distnbuted file systems and distributed object-

oriented systems.

2 Requirements

The design of a distributed file system is determined by what kind of properties
are required for its usage environment. ['hese properties are tightly related ta each
other.

Assumptions: We clanfy the assumptions and constraints that arose while ex-
tending the SIMPOS file system to make it a distributed file system.

e Heterogeneily, The PSI network is physically a heterogeneous network in that
PS1 machines and other kinds of machines are connected to each other. The
SIMPOS distributed file system was designed mainly as a homogeneous system
to deal only with PSI files, but it provides an object-oriented abstraction to
deal with other non-objected-oriented systems’ files in almost the same way
as PSI files at the primitive interface level. Only the homogeneous aspect is
described in this paper.

e Scalability. It was assumed that the number of P5] machines joined to the
network would increase moderately. In fact, since the SIMPOS distributed file
systern started running to date, the number of PSI machines tripled, from one
hunedred to more than three hundred.

o User Mobility. The individual PSI users or groups have their own PSI ma-
chines to keep their own files in their machines, so they use their machines in
their own offices or laboratories, do not move often from one machine after
another. User mobility was given high priority.

e File Mobility.  Since each PSI machine belongs to an individual user, the
entire disk space over the network is not assumed to be such a shared space
that the storage load should be balanced by implicitly migrating files from one
machine to another.



¢ Machine Mobility. It is not so rare to move each PSI machine from one place
to another following its user, mainly for room rearrangement and laboratory
reorganization. Independence of each machine was of importance.

o Security. The PSInetwork has been used internally by researchers working on
the fifth generation project. Sccurity was required to protect files from careless
and unintentional destruction. rather than from the invasion of malicious users.

o Fault Tolerance. For internal faulls within a machine, it is left to the users’
responsibility to take a backup of their own disks. The underlying network
systern was assumed to be reliable enough.

Summarizing the above. the distributed environment we assumed 15 a cluster
ol completely independent machines whose connection is very loose, not a totally
unified space which regards the CPU and 170 resources of cach component machine
as part of the entire CPU and [/O resources.

Primary Policy:  To keep independence of users. machines and files, we took
the following policy in the design:

o No Centralized Control. There are no centralized mechanisms to manage
users and files; there are no contralized machines; all the machines are treated
equally: every machine can be a server as well as a client,

3 Design and Implementation

In this section, we describe in detail the design of the SIMPOS file system. Be-
fore gpoing into detail, we summarize characteristics of the description language,
ESP, especially its abject-oriented features which effected greatly the design and
implementation of the file svastem. Then, the storage management is outlined and
1.]“:' ]:H:l,-'.‘.‘ii(' IIH:'ChiI-HiEIIIS fU'I' CONCUTTENCY L'[T[]LFU].. ACCERS I.'UI]l,l'U} H.IJ'.]. ['-Uii][]'lllllil:i:l-tniull
control are described.

3.1 Object-Orientation

LISP 15 a sequential object-oriented logic programming language based on Prolog
[12]. It contains logic features and object-oriented features together. lor the for-
mer, unification is used as a parameter passing mechanism, and backtracking as a
control structure. Lor the latter, data encapsulation and mnltiple class inheritance
mechanism are supported as follows:

Data Encapsulation:  ESP ohjects are stafic objects in that they only encapsu-
late a set of internal states stored in siots and offcr, as their interface protocol, a set
of methods to manipulate the internal states, whereas dynamie objects are supposed



ta hold an activation record as a unit of concurrent execution. Thus, no notion or
mechanism for conenrrency is contained in ESP 1tself.

[t 15 SIMPOS which introduces dynamic objects. A class, process. 1s provided
tu create process instances, each of which holds an activation record. The kernel
of SIMPOS schedules the process instances hased on a non- preemptive scheduling
method. not on a time-shcing method.

Note that. according to the strict definition of object-orientation that there
should be nothing other than objects, the object-orientation of ESP is not com-
plete, sinee primitive data such as integers and symbols are not objects.

Multiple Class Inheritance:  Each object is ap instance of a class. Each class
can inherit a set of methods and slots from more than one class, which 1s called
its super class, The multiple class inheritance mechanism of ESP is powerful like
Flavors [24].

An ESP method iz a predicate defined for an object, such as

add_data{Accessor, String) :=
:put_data(Accessor, String),
radd{Accessor, immediate) ;

where the first argument {Accessor) means an object. A method is identified
b the combination of its message name and the number of arguments. such as
radd_data/2. When this method is invoked, two goals: :put_data/2 and :add/2
are executed sequentially.

For one method identifier, three kinds of predicates: principal predicates, be-
fore demon predicates and after demon predicates, may he defined in a class and
its super classes and make a logical consequence composed of AND-combinations
and OR-combinations. This method inheritance mechanism enables incremental
programming as well as generic programming.

Those date stored in slots are side effects, to which destructive assignment is
allowed. Two kinds of slots are provided: one is private slots which are visible only
in their class, and the other iz public slots which can be shared by child classes,

In the file svstem, we have made much use of the method inheritance mechanism.
For the following basic mechanisms, many classes are defined and inherited by file
and directory classes, For example, class directory inherits forty classes. The mul-
tiple class inheritance mechanism has greatly contributed to reduce the development
cost of the file svstem.

3.2 Storage Management

The structure of a local file system is similar to that of the UNIX ? file system [23].

“UNTX is a trademark of Bell laboratories.



o Single Size fllocks. A disk volumne is physically partitioned into 1K byte
pages, and logically managed with four pages as an allocation block *,

This volume management is much simpler than the UNIX 4.2 BSD) file system
which supports cvlinder groups and two different sizes of blocks in a volume

{23].

o Frpandable Files. Those which are stored in it are dynamically expandable
files whose allocation =ize 15 not specified at creation,

o Various File Types. Three tvpes of files are managed: binary files which are
text files. table files which are fixed-length record files, and permanent object
files which are. like typed files in Apollo [19]. frozen images of objects in main
METOTY.

o Tree-Structured Name Space.  Each file is given a numerical identifier {or its
physical data like an i-node number in TUNIX, and is linked with more than
one svmbolic name in a tree-structured name (directory) space whose top is
called the roof directory.

A file name under a directory consists of an identifier, an extension, and a

ve rsion. such as “humm.txt.37. A file is uniquely addressed in the local lile
systern by its pathname. such as “>sys>user>geedhumm.txt. 3", where the
first “>” stands for the local root directory.

o Versioning. The version (*3” in the above example} is assigned by the file
systern and incremented every time a file is newly created. Il only an identifier
and an extension are specified in opening a file, it latest version is retrieved.
Version control is a matier of name binding, not automatic logging. The
file conteni of each version is mutable, unlike immutable files in Cedar [37].
Different versions are preserved until the user explicitly purge thein.

e World. The notion of a world, which is a set of aliases, is introduced. An
alias may be defined for any pathname. For example, by defining an alias,
“snoopy”, for the directory, “>sys>user>gee”. the file, “humm.txt”, can be
referred to as “snoopy:humm.txt’.

o On-Close Writing Policy. The data transfer hetween the main memory and
T/0O devices is done via an 1/O bus memory. A partition of fixed length is
allocated to the disk device handler. and used as a cache for disk 1/0. The
cache is contralled by the deviee handler based on a simple LRU management
algorithm.

Input data is transferred from the disk unit to Lhe cache and copied 1o a user’s
buffer. Output data in a user’s buffer is transferred to the cache, Updates on

3The block size was one page in the original desigh. and was changed to [our pages later,
because, according to our statistic results, abont 50% of files are smaller than 4K bytes in most

P51 machines,
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Figure 1: Optimizations of a dynamic object model

administrative mformation, such as the i-node table and free block map, are
aceumulated in the main memory and written to the cache every time a file is
closed. At the end of the closing, all the data in the cache is written back to
the disk,

3.3 Global Naming

Among those changes introduced for the 3IMPOS file system to be a distributed file
system. the only one noticeable by P51 users is that user names and file/directory
names arc globalized.

User Name:  Users are locally identified by their loin names by the user manage-
ment svstemn al their own site. There is no notion of a user group. There is no group
[or & user to belong to or for a resource to belong to, either. However, a similar
[unction can be realized with passwords, With a common password, users can be
grouped. With different passwords. a single user can belong to several groups.

File/Directory PathName: Ineach machine, files and directories are addressed
with their pathnames from the root directory. such as “>sys>user>gee>humm.txt”.
which are called local pathnames.

Global Name as Combination of Host Name and Local Name: [Taer
names and fle/directory pathnames are globalized just by combining their host
name and their local name, as < HosiName >::< LocalName >, where a host
name identifies a machine not a geographical position.

3.4 Concurrency Control

To control concurrent accesses Lo a shared resource, we separate a logical access,
which 15 a sharer, from a physical data. which is a shared resource. The former

is called a logical object and the latter a physical ohject. For every resource to be
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Ileallv, each phyvsical object should be a dyvnamic object as shown in Figure
l-a. PSED machines, however, Tmits the maber of process creations only up to
63, Because of this limitation awd also for higher performance, this model has been
oplimized as {ollows: all dynanic objects are Dised o one process, called a file
meamgi v oprocess (Figare 1-b further their conmunication channels are merged
o one (Fignre 1-ci. The resulting mode] s similar to the model of scheduling
hghtweight processes tor fhreads) under a full-fledged process. that is commonly
used by most distributed object-oricnted systems in their implementations on top
ol ININ,

Fignre 2 <hows & view over the network. The symbols: W, pfx. Pxx stand
for Jogical file objects, phvsical Ole objects and user processes, At site 1cpsi100,
processes PL P2 and P23 are accessing local files pfl. pf2 and pf3 via logical files 11,
21 aved W31, Process P3 s al=o acvessing & remote [ile pfS at site 1cpsi200, via a
logical file W53 ar the local =ite, and further 53 at 1he remote site. At site icpsi200,
three procesies PACPS and PG are sharing & single physical file pf5. Process P4 is
arcessing pid. too.

3.4.1 luterface Primitives Based on Asynchronous-Conununication

Session: A file access starts with invoking a open or make method of a file
mterface rlase object, such as #binary_file and #table_file, to obtain a logical
file. and ends with invoking a close tnethe! to the logieal file oliject. The duration
is called a session. During the session, each file access operation 1s done by invoking
an interfare method. such as read. write and add.
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For example, the following is a program to make a new file, named
“»sys>user>gee>humm.txt”, and append a string “To be, " to the file:

'make(#binary_file, File, '‘>ays>userrges’humm.txt’'’),
radd_data(File, “‘To be, ''},
reloge(File),

Asynchronous communication:  The first role of a logical object is communi-
cation, whose network-transparency is described later.

Commmunication between a logical file and its physical file is asynchronous, which
consists of the following primitive operations: submit to (non-blocking) send a
request, and wait to wait for a reply, and probe to probe if a reply has returned.
The correspondance between a request and a reply is made by their specifying a
commeon message identifier. For every 1/0 operation, a synchronous method and an
asynchronous method are prepared, such as ;add and :submit add. A synchronous
one is expanded to consecutive submit and wait primitive operations.

The asvnchronous communication feature raises independence of a user process
and the file inanager process, since a user process can run during the submit and the
wail, while the file manager is suspended. This feature has been effectively used for
dml,b].e-buﬂeﬂng Cumpared to Lthe per[urma,u{:v with synchronous communication,
about 20 % improvement could be gained.

Data Caching: The second role of a logical object is data-caching.

The /0 bus memory between the main memory and disk unit is a cache of fixed
length and invisible to users. Instead, every 1/0 operation asks two arguments:
a buffer holding a buffer area of variable length, and a marker holding an access
position, to be explicitly specified. Note that read and write are random access
operations to read and write data at the specified position, while add is sequential
access operation whose access position is kept by the physical file,

This interface level is fully user-controllable but too low for end-users. A higher
level interface is offered to them: a logical file has a pair of a buffer and a marker,
which is called an eceessor, in it, and also allows to attach other external accessors
to it. With this mechanism, most of the users do not need to handle the low level
buffer.

Far each request message, references to a buffer and a marker, not their contents,
are passed from a logical file to a physical file. ln invoking synchronous operations
in a row, the internal accessor can be used from one operation to another. However,
in case that more than one asynchronous operation is invoked in a pipelined man-
ner, the content of the accessor is not guaranteed. since different request messages
might share an identical accessor. This problem can be solved by preparing external
accessors for overlapping operations as follows:

:open(#binary_file, File, ‘‘*sys>user>gee>humm.txt’’, shared, immediate},
raccesgor(File, Acc), % attach an external accessor
:put_data(File, ‘‘or *'), % put “‘or '’ in internal accessor

:submit_add(File, ID1, suppress),
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;put_data(hcc, ‘‘not to be.’’), % put ‘‘mot to be.'’ in external accessor
:gubmit_add(Ace, ID2, suppress),

:wait{File, ID1),

swait{Ace, IDZ},

In & remote access, cach accessor can be used as a cache to the primary data at
the remote site. Since the buffer size is flexible, the whole file copy is possible as
well as partial reads and writes.

Figure 3 shows the above situation in which a user process opened a file addressed
“»sys>user>gee>humm.txt”, and obtained a logical file, named If51 in Figure 2.

3.4.2 Concurrency Rule

Sequentiality and coneurrency of file accesses are controlled every lime a file is tried
to be opened and closed. When a file open is allowed, a user process is returned a
logical file.

Open Mode:  The following four kinds of logical open modes are provided:



Exclusive (Single Reader and Single Writer): A logical file is allowed to
open when its physical file is closed. During the session, both reads
and writes are allowed.

Input (Multiple Readers and No Writer): A logical file is allowed to open
when its physical file is closed or open in the input mode. During
the session, reads are allowed, but writes are prohibited.

Output (Multiple Readers and Single Writer): A logical file is allowed
to open when its physical file is closed or open in the shared mode.
During the session, this logical file is allowed both reads and writes,
but suppresses all write operations from other shared-mode logical
files.

Shared (Multiple Readers and Multiple Writers): A logical file is allowed
to open when its physical file is closed or open in the shared mode
or the output mode. During the session, both reads and writes
are allowed but the above mentioned suppressions of write reguests
might oceur.

For each physical file, one logical open may suppress other logical open or write
requests against its open mode: their suppressions are released when the logical file
is closed.

Suppose that another process, P5, at site icpsi200 opened the same file in the out-
put mode concurrently with the above process, P4, and issued two output operations
to the obtained logical file, 52, as follows:

:open(#binary_file, File, ‘‘>sys>user>gee>humm.txt'’, cutput, immediate),
cadd_data(File, ‘‘That is ''),

radd_data(File, ‘‘the questiomn! %),

iclosa(File},

Since H52 is open in the output mode. the two output operations are guaranteed
o be continuous. In contrast, since {51 is open in the shared mode. after 52
opens, all the output requests, such as :submit_add, from If51 will be suppressed.
Depending on the time when If52 is opened, the file content will result in either “Te
be, or not to be. That is the gquestion! ", “Te be, or That is the gquestion!
not to be. 7, or “To be, That is the question! or not to be.

Request Mode:  Even when a request has to be suppressed, two choices are left to
the user: withdrawing the request or waiting until the suppression is released. They
are called request modes, and specified suppress and immediate at opening/making
a file and submitting every request.

3.4.3 Message Management

The suppression and release of requests are controlled by physical objects under a
file manager process.

— 13 —



Fach physical object has a message queue which keeps all the suppressed requests
in their arrival order. A file manager is just a scheduler of physical objects. All the
messages from logical objects arc sent to the file manager. Each message carries ihe
information of its sender (logical object) and destination (physical object). Every
time a file manager receives a message [rom a logical object, it delivers the message
to the corresponding physical object.

Message Priority: Fach message is given a priority of two levels: normal and

ELPrESS.

e Frpress Messages.  When receiving an express message, the physical object
immediately execute it,

e Normal Messages.  When receiving a normal message, the physical object
takes the following actions, according to the service order rule mentioned be-
low:

1. If the request is acceptable, it immediately executes the request.

2. If the request must be suppressed and the specified request mode is
suppress, that is to wait, it enqueues the request to its own message
quene.

3. If the request must be suppressed and the specified request mode is
immediate. that is to withdraw, it immediately returns a reply message
notifving the withdrawal.

The service order of normal requests issued to a physical object is determined
not only by its current open mode but by the arrival order of requests en-
queued in its message queue. If there are already suppressed requests, even if
a currently coming request is acceptahle under the current open mode, it is
also suppressed.

Express messages have been effectively used when a user process is aborted.
When a user process is being aborted, each of those logical files which belong to
the user process issues an aborf message to the file manager. When a physical file
receives an abort message, it clean up all suppressed requests issued from the logical
file and to release all related suppressions caused by the logical file open. We learned
that. for a stream-based control model, message priority is of great importance.

3.5 Access Control

The primary assumption made in designing the protection mechanism is that most
of the PSI users are conscientious. Rather than excluding malicious invasions, pro-
tecting resources from their careless or unintentional destruction was the purpose of
the protection mechanism. Hence, we aimed at making the protection mechanism
transparent, so that those conscientious users can access resources without being
aware of the existence of the protection mechanism.

The protection mechanism is divided inte two phases,



o a capability-granting phase to grant to a user process a logical object with a
capability given according to the passwords of the user process, and

o a capability-checking phase to check the capability of a logical object every
time an operation is issued to the logical ohject.

and in both phases all the access control is implicitly done without any interaction
with the user.

3.5.1 Capability-Granting

The basic idea underlying our capability-granting mechanism is to regard each di-
rectory entry as a protection gate, a password as a key to open the gate, and each
user process as a holder of passwords. A protection gate may accept more than one
password from a user process, it opens differently depending on what password has
been applied.

User Process Side:  Each user is given a right according to their rank and
passwords. When a user tries to open or newly create a file or retrieve a directory
by invoking open, make, or retrieve method, the user information is carried over
though the capability-granting phase. For remote access, the user information is
implicitly sent at initiating the connection by a remote object access mechanism.
Details are mentioned later.

o Password Holder. A user has a password holder containing up to ten pass-
words, each of which is a string of at most sixteen characters. In addition
to these explicitly defined passwords, every user is implicitly given a defaulf
password mentioned later,

A user process is given at its imiiation a copy of the password holder of the user
who initiated the process, and the copy may he maodified during the process
life. Hence, those processes initiated by the user may have different password
holders.

A user process must show its own password holder every Lime il goes through
a protection gate on the way Lo reach a targel [ile or directory.

¢ [ser Hank. lsers are categorized into two: super users and general users,
according to their privilege. Super users are those who have a privilege to
skip the access list check step in the capability-granting phase and to get full
Permission.

Al registration, each user is given a permanen! rank which is leveled into four:
super_U (privileged over the entire network universe), super_A (privileged
in the resident network area), super_N (privileged at the resident site) and
general (non-privileged). Super users are temporarily ranked down to general
ones when they try to access out of their resident region: super_N users on
accessing out of the resident site and super_N users on accessing out of the



resident area. Also. super users may temporarily level themselves down to
general ones, The temporary rank, either super or general, is called a user
maode,

Directory Entry Side:  For each directory entry. its network publicity and an
access list are specified to protect itself.

o Network Publicity. Lither g (global} to allow remote users as well as local
users to access the directory entry, or 1 {local} to allow only local users to
arcess the directory entry. If the network publicity of the root directory is set
to 1, the files and directories under the root directory are accessible only by
the local users bul no remole users.

o Access List.  An access list is tuples of < Password, ControlRight, AccessRight >.

Three kinds of passwords can be specified: one meta password, $owner. rep-
resenting the globally unique login name of the resource owner. up to three
user-delined passwords, and one default password given to everybody. Ow-
ing the meta password function, users can access their own resources without
being aware of the existence of the protection mechanisin.

The Control Hight is a meta-level right to handle the directory entry itsell,
which is composed of four permissions: £ (to find the directory entry), d (to
delete and rename the directory cutry), m (to modify the right of the directory
entry | and a (to append passwords of the directory entry).

The Access Hightis a right to access the physical file or directory object pointed
from the directory entry, which is composed of three permissions: r (to read
the file; to look up the directory), w (to overwrite data to the file; to delete
directory entries from the directory) and a (to append data to the file; to
register new directory entries to the directory ).

Capability-Granting Algorithm:  The following three-level checks are implic-
itly done for every directory cntry on the way to the target object:

L. Publicity Check. Check if the network publicity to the directory entry accepts
the user. If so, proceed to next.

b

Cser Rank Check. Check 1l the user rank is super. If so, grant a full capability
and skip next.

3. Aceess Tisl Check. Check the password holder of the user process against the
access list of the directory entry and return a logical object for the resource
that the directory entry addresses, The logical abject 1s granted a total sum
of the capabilities given for the accepted passwords, which is called a original
rapabilify.

If this check is successful, proceed to the next directory entry until it reaches
the target object.
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When all checks result in success, the nser process is returned a logical object for
the target. As for a logical file, its original capability might be limited according to
1ts open mode. For example, write operations are restricied in the input open mode,
s0 w and a must be inhibited. The limited capability is called a current capability.

Note that in the actual implementation, a logical shject is not created for each
directory entry, by having all the checks done by physical dircctory objects under
the file manager process,

31.5.2 Capability-Checking

The third role of a logical object 15 capability-checking.

Every time a primitive operation is invoked to a logical object, the logical object
checks if it can execute the operation or not, arcording to its own current capability.
If allowed, it really executes the operation.

Figure 3 shows a situation just after process P4 has reached a directory entry
for a file “>sys>user>gee>humm. txt" which is owned by some other user. Since the
directory entry accepts a password. olive, the user process has oblained a logical
file, 1£51, with rwa as the original capability. The open mode was shared, so the
current capability is the same as the oariginal capability, which will allow to invoke
the subsequent add operations.

3.6 Communication Control

The communication between a logical object and its physical object is network-
transparent. Once a user process oblains a logical object, there is no distinction
visible to the user process whether its physical object is local or remate.

Let us execute the following operations in process P3 at site icpsil00,

ropen(#binary_file, File, ‘‘icpsi200::>sys>user>gee>humm.txt’’,
exclusive, suppress),

:read_data(File, String),

:close(File),

then we will obtain a logical file, File, shown as H53', and the file content in
String.

This network-transparent access has been realized by basing the SIMPOS dis-
tributed file system on a remote object access mechanism (ROAM) [47).

3.6.1 Remote Object Access Mechanism (ROAM)

The ROAM is a mechanism which has been developed on top of the session layer
of the SIMPOS network system, to enable the invocation of methed calls to remote
objects as well as Lo local objects.

- 17 —



Principle: The ROAM is based on the principle of ebject and process reflection,
that is to keep a syvmumetric relation between an object and its owner process at
the remote site as well as at the local site. When a process, say a elient process,
tries to access an object at a remote site, a corresponding process, called a server
process, 18 created at the remote site. For each client process, one server process
is created at every site which the client process accesses. While the server process
accesses the target object, sav an original object, at the remote site, an corresponding
object. called a prory object. is created at the local site and given to the client
process. Original objects and proxy objects have no difference in their structure.
Thev helong to the same class and recognize themselves whether thev are original
or proxy. Original objects execute actual operations, while proxy ohjects forward
everv operation request to their original ohjects and do not any actual operation
themselves.

In Figure 2, process P6 is a server process for the client process, P3, and 1£53’
is & proxy object for the original object, 153, The relation between P3 and 1£53°
18 symmetric to that between P6 and 1£53.

Function:  The ROAM has been designed for a general purpose not specific to
the file system. It provides the following general functions:

o Message Management. For each method call, a request message is sent from
a client to its server and a reply message back from the server to the client.
The message management is to package and unpackage the request and reply
messages of a method call. A message is packed in tagged representation into
a sequence of communication packets of fixed length, 20 a message may be of
any length and those data and objects contained as its arguments may be of
any type, any class and any binding direction: either input or output. Also,
it is allowed to send extra information in addition to the method information
in each message.

o Line Management. When a client process tries to access a remote site for the
first time, a server process is created at the remote site and a virtual cireuit is
connected between the client and the server. The virtual circuit is cut off when
either of the chient or server is terminated. The user information is implicitly
sent from the client to the server at the initiation of a virtual circuit.

o Ohject Management. The export and import of objects, to make correspon-
dance between original objects and proxy objects. is managed. It is allowed
to propagate an object reference from one site to another and to make a nest
of remote methad calls, that is to invoke other remote method calis back and
forth hetween the server process and the client process during executing one
remote method call.

Interface:  The ROAM offers a very simple interface based on class inheritance.
Network-transparent objects can be defined as follows:
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Figure 4: Calling sequence of method :read_data

1. Inherit one of the two ROAM kernel classes:

e Inheril class remote_object [ur defliniug a complete global object which
may be a destination object of a remote method call.

o [uherit class as_remote_object for defining an incomplete global object
which is only carned as an argument of remote methed calls to other
objects. For each incomplete global object, a proxy abject and an orig-
inal object make a pair as well as a complete global object, but only
local method calls are invoked to them at their own site. To synchronize
their contents with each other, the internal states of an incomplete global
object may be frozen and delivered as extra information in request and
reply messages of the remmote method calls.

2. For each method, define two kinds of methods using the offered ROAM inter-
face methods:
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o an erternal method which is an entry of the method entry. This method
must be defined to execute a global method call, :g_call, which will issue
either a remote method call {:r_call) or a local method call {:1_call)
depending on whether the object is a proxy or an original.

In case of a proxv object. when a request message arrives at the remote
site, its server process issues an external call, :z_call, 1o ils original
ahject, which will 1ssue a local method call, :1_call, there,

e a local methed which defines the bodv of an actual operation that an
original object should execute.

Figure 1 shows the calling sequence of a local method call and a remote method
call with an example of method :read_data.

3.6.2 Application to the file system

We embedded the ROAM in the logical objects and their related ohjects. Ap-
pendix A shows some of those methods which have heen referred to in this paper.

Although we could regard every object as a complete global object with the
ROAM. we took the following strategy for higher performance:

o Ouly logical files and directories were implemented as complete global objects,
by inheriting class remote_object and defining external methods and local
methods, (See ¢lass binary_file and its supers.)

¢ Those related objects, such as buffers and markers, were impletnented as in-
complete global objects, by inheriting class as_remote_object and defining
what attributes should be delivered as extra information in which kinds of
messages. Their internal states were delivered in request and reply messages
of file 1/0 operations, only when necessary. For example, the content of a data
buffer was delivered in the request messages of output operations and the reply
messages of input operations. [See class buffer and remote_binary_file.)

4 Ewvaluation

In this section, we compare the SIMPOS distributed file system others from two
aspects: one from a distributed file system and the other from a distributed object-
ariented system, to examine its functionality and performance.

4.1 As a Distributed File System

There are a number of distributed file systems already in operation, many of which
are based on UNIX. Table | summarizes a comparison of the SIMPOS file system
with the following representative distributed operating systems and file systems:
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e Apollo Domain [19], a distributed operating system for a ring network of
Apollo workstations, marketed by Apollo Computer, Inc. It primarily fea-
tures a network-wide single-level storage management which regards all stor-
ages over the network as a single virtual memory. Communication takes place
as part of the virtual memory management.

o Locus [11], a UNIX-compatible distributed operating system kernel, developed
at UCLA. It aims at a high degree of network-transparency of file access and
process execution. For reliability, file replication and nested atomic transac-
tions are supported.

e V[0, 10, 11], a message-based distributed operating system kernel, developed
al Stanford University. It provides efficient general-purpose IPC primitives
based on message-passing, which is tuned for remote file access.

e Sun NFS (the Network File System) [31], a network file system interface on
LUNIX, marketed by SUN Microsystems, Inc.

e Andrew [32, 16, 36), a distributed computing environment for a large scale
network composed of thousands of UUNIX workstations, being developed at

CMT.

o Sprite [13, 28], a network operating system being developed for SPTUR, a high-
performance multiprocessor workstation, being developed at 1ICH.

Naming Control:  Pathnames in SIMPOS are nol location transparent, in that
site information is emdedded in thern, as in This [40] and the Cedar File System [37).
ln UNIX United [?], whose primary goal is o keep complete UNLX semantics, the
top =/7 still s regarded as a local root directory and */. . /7 as a parent directory
of the local rootl directory. A sile name is not explicitly specified, but pathnames
give some hint about storage site, so it is not location transparent, either.

Many UNIX-based systems, such as Locus, Sprite, NFS and Andrew, support
remote fink to mount an remote entire file system or a subtree onto a local directory.
Remote inount s convenient, butl consistency and security of the mounting is left to
the responsibility of system administrators. The mount information must be copied
or cached at each client site. The possible scale is limited. Pointing out this problem,
rather than the remote mount mechanisin, a global name service is provided in V
[11].

In SIMPOS, there is neither remote mount nor global name service. Instead, the
world mechanism played an important role. With the world mechanism, aliases can
be defined for remote sites, directories and files as well as local ones. For example, if
an alias, “snoopy”. is defined as “1cpsi200: :>sys>user>gee”, the file, “bumm. txt",
can be referred to as “snoopy:humm.txt” at any remote site, Even though name
resolution is statically done, the world mechanism is very useful. By defining aliases
for those which are often accessed, we did not feel so much problem on the lack

transparency.
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Concurrency Control:  When to make updates hy one accessor visible to other
accessors 1s called censistency semanfics. Many systems are taking one of the fol-
lowing semantics:

o UNIX semantics, in which any update is reflected spontaneously so that all
shares keep a single access position.

¢ lime-dependent semantics, in which updates are reflected in some delay and
each sharer may access at an independent position.

8 session semantics, in which updates are invisible until a file is closed.

For Andrew, scalability 1= a dominant factor. To raise performance, the session
semantics and the whole file copy sirategy are taken. When a remote file is opened,
the whole file content is transferred and updates during the session are sent bhack at
the closing time. This strategy is disadvantageous in such a case as updating a large
scale database; imagine if the whole database of 100M byte long must be copied just
to update a single record of 100 byte long! Hence, the file size is limited to a few
mega bytes long.

In Locus, write-sharing of UNIX semantics is supported using a token mechanism
that is to give cach client a token which marks which copy of a resource is valid:
access to a shared resource requires the token. Client-server communication to
maintain tokens limits the performance.

SIMPOS supports all three kinds of semantics. Input, output and exclusive opens
realize session semantics, read and write operations in shared opens imply time-
dependent semantics, and add operations in shared opens keep UNIX semantics.
These open 1odes has been very effectively used in various applications software,
T'he combination of output and shared opens enables time-dependent single writer
multiple-reader semantics; it has been used by debugging tools in which one process
generate a log and another monitors. Input and exclusive opens guarantee session
semantics; they have been used in database retrieval and update. Moreover, since
a single read operation can deal with the whole data or a part data of a file, the
user, who is supposed to know most about their own application, can contral how
much to copy to save wasteful communication. For the UNIX semantics, the current
position is kept only by the physical file at the server not by logical files at client
sites, so there is no communication overhead for the maintenance unlike in Locus.

Access Control:  Andrew pays great attention to security and protection, as-
suming malicious users over the large scale network. An access list may be defined
per directory, so all entries under a directory are given the same protection. Entries
of an access list are user or group identifiers and users may be grouped hierarchically
like in Grapevine [8].

In SIMPOS. an access list may be defined per directory entry, so each directory
entry may be given a different protection; the protection is not per file, so for the
same physical file a different protection can be given for each possible path to it:
fine control is possible. There is no notion of user group in SIMPOS; instead, the



password holder mechanism could play a part of user-grouping without any group
database management.

Communication Control:  In Apollo and Locus, which are both distributed
operating systems, network communication is done inside the kernel. Apollo pri
marily features a network-wide single-level store management which regards all the
disk storages over the network as a single virtual memory. Remote disk and meru-
ory access is donc as part of the demand paging function of the virtual memory
management. In Locus, all interprocess communications are done inside system
calls, including those on file access and process creation, using a lower level protocol
specialized for file access. In V, message based general-purpose IPC primitives are
provided by the kernel and an I/O protocol is implemented on top of that.

The rest of the systems use RPC mechanisms for network cornmunication. The
function of RMC (remote method call) mechanisms, such as ROAM, is very similar
to that of RPC (remote procedure call) mechanisms [27, 33, 34, 42]. Such layer that
realizes a network-transparent procedure or method call is called the stub layer and
its interface program, such as :g_call and :1_call, is called a stub [27].

For the development a distributed file system, basing it on a stub layer, whether
it is a RMC mechanism or a RPC mechanism, surprisingly reduces the development
cost. Benefits experienced in the Alpine file system developed on top of the Cedar
programming environment using Cedar RPC are reported in [7].

Similarly, the ROAM benefited us at the following points:

o Network-Lransparent access could be implemented with very little effort. Only
2.7K lines of ESP code were added, which is about 10% against the entire code
of the previous local file system.

e The maintenance of the entire file system has been simplified, mainly because
of the code compactness.

e Later extensions on the file and directory interface, such as adding new 1/0
primitive operations and modifying the existing ones could be very easily done,
just hy adding or modifying their external interface methods and local interface
methods. We could be completely free from details about network communi-
cation; no additional communication protocol were needed to be designed.

e When the distributed file system was designed, in 1987, the ROAM was avail-
able for the PSI-NET communication protocal. Later in 1989, the ROAM was
made available for the T'CP/IP communication protocol, too. A remarkable
thing is that the file system ran for both of the different protocols without any
eflort!

At present, each PSI machine has connected at least one of the two network
controllers to support these protocols. Within the ROAM embedded in each
logical object, which protocol is available between the client node and the
server node is checked, and communication packets are transmitted according
to the chosen protocol. In case that both protocols are available, the PSENET
protocol 15 selected.



In the implementations of the above RPC mechanisms: we can see the following
differences than the ROAM:

o (UNIX) process switching is costly. lo raise utilization of the server site, one
server thread per client is created, rather than one server process per client,
and a cluster of threads is executed under a single or a few processes at the
site.

o If a pracess of the cluster of server threads keeping internal states on commu-
nication is downed, the damage would be large. To keep clients and server
stateless concerning communication, the datagram mode is adopted, rather
than the virtual circuit mode, as the underlying communication mechanism.

These implementation technigues are closely related with the difference between a
meihod call and a procedure call.

The major difference between a method call and a procedure call is whether
their semantics are determined dynamically at execution time or statically at com-
pile time. A method code i1s dvnamically looked up from the method table of a
destination object. while a procedure code is statically hound. In a method call,
cach argument mav be an object reference of any class or data of any type: their
class or tvpe i= unknown until the execution time. In a procedure call, the data
Lype of each argnment 1= specified in the program, so HPC' mechanisms provide
slub translators which generate stub programs statically. RMC mechanisms have
to dynamically check data types and object classes, and to manage the export, im-
port and garbage collection of objects. The object management differentiates RMC
mechanisms from RPC mechanisms,

For the object management, we have to choose a stateful client-server model. To
keep it reliable, we selected the virtual-circnit mode. To simplify garbage collection
of objects, the ROAM assigns one export/import table to each process, not to each
site. When these processes are terminated, the table is collected by the underlving
garbage collector. Thus, the design of the ROAM is very simplified without losing
reliability.

4.2 As a Distributed Object-Oriented System

There have been developed several RMC mechanisms and distributed object-oriented
svstems, categorized as follows, most of which are still at the stage of being ex-
perimental systems, not have been operational as practical svstems yet. lable 2
summarizes a comparison of SIMPOS with these systems,

1. Independent Distributed Object-Orienied Systems

¢ Eden [1. 2,5, an experimental distributed object-oriented system. devel-
oped at University of Washington.

o [imerald [6. 18], an experimental distributed object-oriented language
system, being developed at University of Washington.
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2. Family of Extended Smalltalk

e DOM(Distributed Object Manager) [14]. an experimental distributed
Smalltalk svstem, being developed at Universite de Grenoble.

e DS{Distributed Smalltalk) [4], an experimental distributed Smalltalk sys-
tem, being developed at University of Washington.

Another model similar to DS is proposed in [22].
3. AMC Mechanism on Object-Orienled System
o ROAM ou SIMPOS. Since the ROAM kernel class, remote_cbjact. is

not inherited by class class which is inherited by any other class like
class Object in Smalltalk, SIMPOS is non-distributed object-oriented
svsiems.

1. RMC Interface on Non-Object-Oriented System

o Matchmaker on Mach [17], an RMC stub generator for multi-lingual in-
terprocess cormmunication on Mach, developed at CMU.

5. Distributed Typed Data System

» Apollo, introduced above, The secondary feature of Apollo is its object-
hased storage system (085), which regards each file as a frozen image
of abstract typed data., This approach is completely different from the
others above in that objects are only abstract tvped data, without the
ability to communicate.

RMC Implementation Strategy: Both extended Smalltalk's, DOM and DS,
adopt a similar proxy-original model: when an object is exported, a proxy object,
which is an instance of class Proxy, is automatically created; class Proxy overrides
a method. doesNotUnderstand. which i= a method to catch all undefined messages,
to forward every received message to its original. A slight difference is that DOM’s
proxies are implemented as part of the distributed object manager which is on the
svstem side, while DS's proxies are full-fledged Smalltalk objects. In their model, all
objects are treated uniformly by the same proxy objects which have no knowledge
about their original object and work in the same manner for any kind of methods.

In contrast, ROAM is also based a proxy object model, but different from the
above in that ROAM's proxy objects have knowledge about their original objects.
The proxv class, remote object, is inherited by global object classes, so that proxy
ohjects belong to the same class of their original objects. For each method, an
external entrv and a local entry are specified. Thus, the ROAM’s proxy-original
model is less universal and less elegant than the above model, but more realistic for
practical use over the network in scale of hundreds of workstations.

Basically, one remote method call may cause additional remote method calls. For
example, in the above file system, if we applied straightforwardly the proxy-original



model to any objects, including buffer and marker objects, a huge number of fine
grained messages would be transmitted. Making it worse would be that the binding
direction of each argument of an ESP method is not specified; with the universal
mechanism, all arguments would have to be carried back and forth, We wanted to
get from performance-sensitive programmers inforination about arguments as much
as possible, which will help in reducing communications. Furlhermore, to reduce
communication traffic, it. was necessary for a proxy to cache a copy of a part of the
internal states of its original, so that the proxy could solve some problem by itself
without interacting with its original every time. As a result of accumulating these
techniques, the SIMPOS file system could raise tolerable performance along with
high reliability for practical use as a distributed object-oriented system.

Lden takes a similar strategy to ours. which is based on stub generation; the EPL
{ Eden Programming Language) compiler generates stub routines which is linked with
user prograrmns.

In Emerald. objects are categorized into three, according to their object depen-
dency: global, local and directory objects. Global objects can move freely; local
objects move along with other global ohjects; directory objects are directly repre-
sented in other objects. The compiler generates a code to check the resident bit and,
if it it off, trap the kernel.

For a practical system, object dependency is a very important subject to be
studied, in order to reduce communication traffic and raise reasonable performance.
[n contrast to that ROAM introduced the notion of object category of complete
global objects and incomplete global objects, Lmerald, which aimes at the scale
of 100 workstations. allowed to specify a parameter-passing-mode, either call-hy-
object-reference, call-by-move and call-by-visit, for each argument. Call-by-ohject-
reference is normal; it delivers an object reference only. Call-hy-move and call-hy-
visit are in common to deliver the data representation of an argument ohject with
the invocation message and to relocate the argument ohject at the destination site.
The argument object remains at the destination site in call-by-move, and returns to
the source in call-by-visit.

Object Migration:  Object migration is supported in Eden, Emerald, DOM,
DS. while it is not in ROAM, since the proxy-object relationship is build only for
global ebjects in SIMPOS.

Global Object Management and GC Strategy: In DOM, DS and Emer-
ald, an object management table is prepared for each site, and the global garbage
collection scheme is reference counting in DOM and D5, and mark-and-sweep in
Emerald.

In ROAM, an export /import table is given to each process, not to each site and
is cleaned up when the process is terminated. Since global GC is not supported,
no communication for external reference count management is needed. The life of
an object is guaranteed during the synchronous session between client and server
processes. In the SIMPOS file system, all cases have been covered in this usage.
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Permanent Object Management: In Fden, there is no independent file svs-
tern: instead, a filing function i1s absorbed in the abject model. Objects are au-
temomeans dynamic objects, which can save and retrieve their checkpoints into/from
the secondary storage. When a file 1s opened or a directory is retrieved, a corre-
sponding object (process) is created. The behavior of an Eden’s file or directory
object is very similar to that of a SIMPOS's file or directory object, hut file migra-
tion and nested transactions are supported in Lden. Their protection scheme is very
similar to ours, too: each directory entry contains a capability to access its physical
object; when accessing a directory entry via a directory object, a process is given a
capability,

4.3 Performance

Table 3 shows the performance measured on the SIMPOS file system,

Through the revisions and extensions, the SIMPOS file svstem has been greatly
improved in performance as well as enriched in functionality. Compared to the
original design, for example. a make operation became three times faster and read
and write operations more than twice as fast. As yvet, we have not obtained the
desired performance thal can be competitive with the resnlts of others, such as
reported in [28. 16].

The cost of opening and closing a file 15 16 ms for a local file and 922 ms for
a remote file in STMPOS, while i 18 2,17 ms and 811 ms in the Sprite file system
which iz the top in performance [28]. STMPOS is 50 to 100 times slower. The read
throughput iz 420 byte/sec for local and 14 byte/sec for remote in SIMPOS, while
it 15 3269 hyte/sec and 224 hyte/sec in Sprite. SIMPOS 1s about 10 times slower.

As for ihe underlying network layer, the 1K byte round-trip time is 171 ms in
the session laver of the PSI-NET communication protocol in SIMPOS, while it is
2.2 ms in the V kernel [9]. and 5.8 ms in Sprite RPC [42].

Az for the stub laver, the current ROAM uses 4200 byte physical packets for a
conventional reason for the PSIENET protocol, and a new version using 1024 long
physical packets is now heing tested. The cost of a null RMC. such as instance
method :de(Instance), which carries no parameter and immediately returns at
the server site, s 471 ms with the current ROAM and 207 ms with a new ROAM
in SIMPOS, while a null RPC is 32.0 ms in RPC2 [33] in Andrew. and 32.5 ms in
its extension, MultiRI"C' [34]. Thus, the overhead of the network and stub layers of
SIMPOS is at least 5 times heavier,

Recall that the difference hetween an RMC and an RPC. We should refer to the
performance of other distributed object-oriented systems in literature. In Emerald,
a null RM( 15 27.9 ms, an RMC with a constant parameter is 33.0 ms, and an RMC
with a remote object reference parameter is 61.8 ms, in contrast to 0.019 ms for a
LMC, which is almost the same as our LMC cost. In DS, a null RMC 15 136.9 ms
and an RMC with a constant parameter is 140.2 ms while a LMC is 0.130 ms which
18 very expensive. As for the single RMC performance, our system is slower than
the others. One difference 1n implementation techniques is that our system, which
has heen developed for practical nse, employs reliable virtual aircuits, while Emerald



and DS, which are small scale experimental systems, uses unreliable datagrams on
UNIX.

Here, we should remind that the total performance is not determined merely by
the single RMC performance, but also by the the number of RMC invocations. With
their universal proxy-original model and global GC, a vast number of messages will
be transmitted, though their total performance measurements are not in literature
yib,

The slowness is not derived from the CPLU performance: the performance of the
PSI-II machine is about 30us per one predicate inference 25]; process switching
costs 1 ms, svmbol retrieval (L35 ms. and class retrieval 3.24 ms. These cost are
comparable w the others. Problems are analyecd as follows and their ituprovements
will be our future work:

o [Disk 170 Architecture.  Data transfer between the main memory and the
disk storage 15 done via a cache on the [0 bus memory. To reach the cache
controlled by the disk device handler, process switching oceurs four times. from
a user process to the file manager then to the device handler and back. At
least 4 ms has to he spent for every 1/0 operation. Caching data and cantral
information on main memory as much as possible should be considered.

o Network Inlerface.  The physical packet size iz fived to 4200 byte long now.
but st method calls are found to be shorter than 1K hyvte, Changing the
physical packet to 1K byte long will save about 260 ms.

o ROAM Overhead. In packaging and unpackaging messages of ROAM, symbol
manipulation and class information retrieval are costly, Caching technique
should be introduced for these database access. The reimplementation of the
ROAM is now under way.

5 Conclusion

o this paper. we have described the design and implementation of the SIMPOS file
systenr, looking at the history of revisions and extensions {rom a local file system to
a distributed file system. 'he system has been in operation since summer 1987 and
widely used to support daily work in the [COT' research center and other reseach
institutes.

1'he design stood on rather optimistic assumptions in user mobility, file mobility,
security and fault tolerance, but from the last two year experience, we have found
the functionality and reliability of the svstem suthicient enough for the operation over
the medium scale network of 300 workstations. Flexible concurrency control con-
tributed to expand the variety of applications; wnplicit password /capability-based
access control provided a protection veil invisible to our well-mannered users; sim-
ple name extension and the embedding an RMC mechanism on the basis enabled to
use the existing application software without any modification. The only remaining
problem is performance; only with the currently undergoing reimplementation of
ROAM, a greal performance improvemnent can be expected.
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In the overall design of a distributed file system, communication control is a
central issne, Adopting the remote object access mechanism, ROAM, gave a great
influence on the reduction of the total development cost. Similar effects are seen in
the development of other distributed file systems using RPC mechanisms.

Mare characteristic to our system is its object orientation. To our knowledge,
the SIMPOS file systemn would he the first a distributed object-oriented system run-
ning for practical use in this scale. The experimental distributed Smalltalk systems
adopt an universal proxy-object model that the same proxy object is created for any
object, which uniformly forwards every message to its original object. This scheme
is very simple, but leaves no room for optimization. Since a remote method call
may cause additional remote method calls, the number of issued messages would
be tremendously vast. It is very doubtful to us if this scheme is applicable for a
practical large-scale system. For the development of a distributed system, how Lo
reduce the communication traffic is a key to raise high performance.

The ROAM is a first-order proxv-original made] that allows proxy objects to have
knowledge about their ariginal objects: the invocation of ROAM have to be specified
for each method. but several optimizations are possible. In the implementation of the
file system, the object categorization of complete global ohjects. which are treated
as independent dynamic objects. and incomplete glabal objects, which are treated as
dependent passive data, played an important role to reduce the number of messages.

We helieve that making much use of the information on object dependency that
users already know should be the most promising way to make a distributed object-
oriemed system practical.
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A Class Definitions

class  hinary_tile

nature
ramote_binary file,
binary_file_accessor,
local binary Tile,
p-binazry_fila,
1 ul‘:i.c al_fila,
with_retrieval |

has
L inheritance declaration ¥

instance

e s %

% External Mothods %

¥ = . ]

iread(Lfile, Buffer, Marker. RequestModal := !,
:g_callilfile, read, {Buffer, Markar, RegquentMaoda}l ;

tadd(LFile, Baffar, Markar, BEequastMode) := ¥,

‘h-callflfile, add, {Buffer, Markar, RequestBode}) ;

raccessor (Lfile, Accessar} :- 1,
icraataiBbinary, file_sccessor, Accessor, File)

taubmit add(Lfile, Buffesr, Marker,
MaglD, RequestModad := !,
igacall{Lfile, submit_add,
{Buffer, Marker, MegIl, RequestMadel}) ;

iwait(Lfile, Buffer, Marker, MsgiD) .- 1,
g-callilfile, sait. {Buffer. Marker, WsgIDl) :

and ,

class local_bimary_file hae
instance

¥

% Local Methede imvoked to an eriginal ohjact
Lo

FE € pE

;1 call{lfile, read, {Buffer, Marker, RequantModal} :- !

imand_receive (Liile, impuc, do_read,
{Buffar, Marker}, RequastMade),

t1.cal1(LFile, ndd, {Buffer, Marker, RegquestMode}) -

:!ud_rm;u(u.‘ale, autpat, do_ndd,
{Buffar, Markar}, RequestModal,

sl callilfile, submit_add,
{Boffer, Marksr, Msgll, BegquesiModa}} := I,

;submit (Lfile, eutput, do_add,
{Buffer, Marker}, RequestMods, MsglID}

ilocallilfile, wait, {Buffer, Marker, MsglDl} .- 1,

iwait{lfile, MagID, {Bulfer, Marker}}, ... :

-

T Internal Methods execated umder fila manager

:—-.-

ide_add(Lfila, Buffar, Markar) := ®,
‘intarface{lfils, Prfile, AcceassStatus), ...
:ndd{Pfile, Buffar, Markar, LccessStatual, .., ;

E pE pE

:da_read(Lfile, Buffer, Marker} :- !,
rintarfaca(lfile, Plrile, AccessSimtius),

rraad{PTile, Buffer, Marker » AccessStatus), ... |

wnd,

— 36

e e e e T o

claas 1 ogd canl_file has

TALIEEs
file_acceasor,
lacal logical file,
p.logical _fila,
lagicnl object,
as_agant_of_physical_file,
AR _FRRRUTSe,
as_file,
with_file_capability ;

Ezterpal Mathods

E e Ll

=

:up-u{ﬂl-ut , Lfile, Pathname, ﬂp'nﬂﬂi . hqun EMode )
iremete_or_local {¥pathnams, Pathname,
Node, _, FullPathname, _),
‘g_celliClass, open,

aa

{Lfile, FullPathname, OpanMode, RoquostMode}, Hoda)

class lacal_legical_fils has

e

Local Methods invoksd to an eriginal object

s

1 call(Clase, apen, Lfile, Fathnams,

OpeoMode, RequastModal) = !,
cpetrieve ($directory, Lfile, Pathmems, FollFathosms),

vaet _fell_pathaame(Lfile, FullPathnamal,
iopun{Lfile, OpanMode, RequostModel ;

instanca
:l_callilfile, open, {OpenMode. RaquestModek) :- !,
cmoda_typei{lfile, OpanModa, OpTypal, ... ,
csond_racalvallfile, OpType, do_apen,
{Opanteda)l, RaqoueatMadal,

Y=
% Internnl Mathods axecuted ondar fils mansger
¥

do_open{Lfile, OpenModal ;- !,

sk rE

e
cinterface({Lfile, PFfile, Status),

ropan{Pfile, DpenMode, Lfile, Status), ... ;
wmd
class ln';icl_l_ubjil:t has
BAture

ae_agent_of _physlcal_object,

vith_capability,

with_internal _commupication,

with_mccess_statug,

remete_object ; %L imherit ROAM XX
ard




e e e R

clags hbinary_file_accessar has class remote_binary file has
RATUFS Tile _accessar |

inatanca instance
[5 e % W s=za memrIREIEI =4
% Wighar Level Intorface Methods A % Specification of Extra lnformation Delivary x
{msssssmzmzooosoncosessew = : YaupepuamrT==o=cx %
rand_dntalhecapser. Stringd = !, iaat_parametarsiRobj. read,
vrand_dataihccessor, Buffer, immediate) | {Buffer, Markar, HequastMode}, Facketd - !,
crand_dntalhccossor, Buffoer. BequestMede) - !, cgat_baffer marker(Rabj, requast_input,
raad (Aocaaser, BequastModel, Buffer, Marker, Packeg} |
got_datalhecesser, Buffer)
rget_paramatars{Leb), read,
creadlAccesacr, HequastMaded = 1, {Buffer, Marker, RoquestMods}, Packet) - *,
ibuffer{dccensor, Buffer), 'E\-t_'hmfffr_uuhuri[.ﬂbj. roquest_input,
:file_macker{lccassor, Markar), Buffer, Marker, Packet) |
irasd (hcceamor file, Buffar, Harker, RequestMedel .
‘sat_returna{lobj, raad,
add_dataiAccessor, Sering)l - !, {BHuffar, Marker, RequestMede}, Packet) :- 1,
cadd_dataldccesacr, String, immediatel ; spat_buffer marker{lobj, reply.input,
cadd_datafAccessor, Strimg, ReguastMaodal = !, Buffer, Marker, Packet) ;
put_datalhccessor, String!,
caddidccessor, HeguastMadel} ; ‘get_ruturna{Bobj, read,
{Buffar K Harker, RequestModel. Packet) = !,
iaddihccesaor) = 1, gt _buffer_marker{fichj, reply.input,
sadd{Accessar, immadiateal) | Buffer, Marker, Packet) |
tpddiAcceassor, ReguestModel = 1, ...
:file markerihccessor, Markes), ce
cadd{Accossor!'file, Accesseribuffer, Marker, -
RaguastModal ; ‘met_buffer markar(0bi, Type, Buffer, Marker, Packet) - !
gor_attributesiBuffer, Type. Bufferdttributes),
rsubmit_add(hcosesor, MaglDl - %, raet_data_element (Packet, BufferAttributes), ... ;
:submit_add{Accessor, MaglID, suppress) |
reubait_add(Accessor, MaglD, RequestMode) = !, ... | get_butter markar(Obj, Type, Buffer, Marker, Packet? :- !
:submit_add{hccessor!file, Accessor!buffer, ‘gt dath_slamant (Packet, Bufferdtiributes),
hecapaer tila_marker, MsgID, RegquestMude) | (et _attributes(Buffer, Type, Bufferdttributes), ...
iwait {Accessor, MegID) - f, end .
rwaiv{dccesser !file, Accessor!buffer, e -
Aocessor!file marker, MagID) : clane buffer has
nRTUES
L. Ab_remota_osbiject | ¥Y inherit EOAM ¥¥
and.
class Tile_accessor has instance
X =
rcraata{Glass, Accesmor, Fila) = F, % Specification of Delivered AEtiibutas L
enbaund (Accassar), 3 o4
cnaw{Clams, Aecasmnr), et _attributes(Buffer, requast_input,
csat_accesanriboceracr, Filad ; [DyteSize, ElamentSizal):= f,
iget_ie_buffer{duffer, ElamentSize, ByteSize) ;
instance ipot_attributes(Buifer, reguest_input,
atipibute filw, file _marker, buffasr ; [BytaSize, ElementSize]l:- !,
cmet_io beffar{Buffer, Elament5ize, ByteSize) ;
cpat_datalhccessor, Stringlr¥ector) = ', ... |
iput_datafAccesser |bulffer, Stringlr¥ecter), ... iget_attributas(Buffor, roply_imput,
{Buffartdata_size, EeadBuffar]iz- !,
cgut datal{hcceseor, Stringdr¥ectord = ¢, ... '.:g'lt_rln'l:al:h:ﬂ‘er. ReadBuffar) ;
cget_datalhccessortbulfer, StringlcVecter), ...
:nat_attribates(Buffer, reply_imput,
- [DataSize, ReadBeffer]):- !,
wnd, reapy. data_buffer{Beffer, DataSize, BesdBuffer)
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